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1 AbstractNeural Networks were developed in the sixties as devices for classi�cationand regression. The approach was originally inspired from Neuroscience.Its attractiveness lies in the ability to \learn", i.e. to generalize to as yetunseen observations. One aim of this paper is to give an introduction to thetechnique of Neural Networks and an overview of the most popular archi-tectures. We start from statistical learning theory to introduce the basicsof learning. Then, we give an overview of the general principles of neuralnetworks and of their use in the �eld of Economics. A second purpose isto introduce a recently developed Neural Network Learning technique, socalled Support Vector Network Learning, which is an application of ideasfrom statistical learning theory. This approach has shown very promisingresults on problems with a limited amount of training examples. Moreover,utilizing a technique that is known as the kernel trick, Support Vector Net-works can easily be adapted to nonlinear models. Finally, we present aneconomic application of this approach from the �eld of preference learning.1 IntroductionNeural Networks { originally inspired from Neuroscience { provide powerfulmodels for statistical data analysis. Their most prominent feature is their abil-ity to \learn" dependencies based on a �nite number of observations. In thecontext of Neural Networks the term \learning" means that the knowledgeacquired from the samples can be generalized to as yet unseen observations.In this sense, a Neural Network is often called a Learning Machine. As such,Neural Networks might be considered as a metaphor for an agent who learnsdependencies of his environment and thus infers strategies of behavior basedon a limited number of observations. In this contribution, however, we wantto abstract from the biological origins of Neural Networks and rather presentthem as a purely mathematical models.The paper is organized as follows: In Section 2 we will summarize the mainresults of Statistical Learning Theory which provide a basis for understandingthe generalization properties of existing Neural Network learning algorithms.In Section 3 we will introduce basic concepts and techniques of Neural NetworkLearning. Then, in Section 4, we will give an overview of existing applicationsof Neural Networks in Economics. Recently, however, the ideas from StatisticalLearning Theory, as introduced in Section 2, have lead the way to the so calledSupport Vector learning, which will be described in Section 5 for the task ofclassi�cation. Finally, in Section 6 we leave the review track and present astate{of{the{art application of this technique to the problem of learning thepreference structure from a given set of observations. In contrast to cardinalutility theory our approach is based on ordinal utilities and requires as inputonly objects together with their respective relation (i.e. preference ranking).Throughout the paper, we will support the theoretical arguments by examples.1



Statistical Learning Theory 22 Statistical Learning TheoryBefore studying the principles of Neural Network learning, we will give someresults from Statistical Learning Theory (Vapnik 1982; Pollard 1984; Vapnik1998). These results will provide insights into the problems encountered whentrying to learn from �nite samples. To make the following de�nitions moretransparent, we start with a simple example regarding the classi�cation of bankcustomers (Feng and Michie 1994).Example 1 (Classi�cation). A bank is confronted with the task of judgingits customers according to their reliability of paying back a given loan. Tothis end the bank collects information in the form of n measurable properties(features) of the customers, e.g. age, sex, income : : : . Let us denote each featureby a variable Xi � R. Then each customer is completely described by an n{dimensional vector x = (x1; : : : ; xn) 2 X � Rn . We call the space X theinput space since all customers considered are represented as points in thisspace. Together with the description of its customers the bank records for eachcustomer if he pays back his loan (y = 1) or not (y = �1). The space of allpossible outcomes of the judgments is often called the output space Y and inthe present case has only two elements. The bank is now equipped with a �nitesample S = f(xi; yi)gì=1 of size `. The purpose of classi�cation learning is |based on the given sample S | to �nd a function h : X 7! Y that assignseach new customer (represented by a vector x) to one of the classes \reliable"(y = 1) or \unreliable" (y = �1). To �nd such a mapping | usually calledclassi�er |, the bank assigns a risk to each hypothesis h. Here the risk of eachclassi�er h is the probability of assigning a customer x to the wrong class, thatis to classify a \reliable" customer to be \unreliable" and vice versa. StatisticalLearning Theory makes this risk more explicit by assuming a probability PXYthat a randomly chosen customer (taken from the space X) is reliable (y = 1)or unreliable (y = �1). Let the cost of assigning a customer to class ŷ whereasthe true class is y be given byL(y; ŷ) = � 0 y = ŷ1 y 6= ŷ : (1)This so called zero{one loss represents one of the simplest ways of quantifyingthe cost of a classi�cation error. In particular (e.g. economic) applications, otherpossibly more speci�c losses may be preferable that take into account the realeconomic cost associated with an error. The expected value of L over PXY |often called the expected loss | is the probability of misclassi�cation. Moreformally, the risk functionalR(h) = ZXY L(y; h(x))PXY (x; y) dx dy (2)is the quantity to be minimized from the viewpoint of the bank. Since the bankis only given the �nite sample S (training set), only the empirical risk (training



Statistical Learning Theory 3error) is accessible Remp(h) = 1̀ X(xi;yi)2S L(yi; h(xi)) : (3)Let us consider a set H of classi�ers h which is called hypothesis space. Inthe context of Neural Network Learning one possible choice of H is the set ofparameterized functions h(x;�) = sign(�1x1 + � � � + �nxn) which is called aperceptron (Rosenblatt 1962). This classi�er is described by a parameter vector� = (�1; : : : ; �n) and the task of learning reduces to �nding a vector �� thatminimizes R(h(�;�)) without extra knowledge about PXY . As will be shownlater in this section, minimizingRemp(h(�;�)) is | under certain circumstancesto be described | a consistent way of minimizing R(h(�;�)). This principle iscalled Empirical Risk Minimization. In the following we will abbreviate h(�;�)by � and H = fh(�;�)j� 2 �g by �.The Learning Problem To summarize the relevant results from the last ex-ample, we can formulate the task of statistical learning as follows: Given a �nitesample S = f(xi; yi)gì=1 � X � Y and a hypothesis space H = fh(�;�)j� 2 �gwe want to �nd �� such that�� = argmin�2�R(�)= argmin�2� ZXY L(y; h(x;�))PXY (x; y) dx dy (4)while no knowledge except the sample is given about PXY .Empirical Risk Minimization In Vapnik and Chervonenkis (1971) a principleis formulated which can be used to �nd a classi�er�` whose performance is closeto the one of the optimal classi�er �� | independently of the used hypothesisspace and any assumptions on the underlying probability PXY . The principlesays that choosing �` such that�` = argmin�2�Remp(�)= argmin�2� 1̀ X(xi;yi)2S L(yi; h(xi;�)) (5)leads to the set of parameters �` that minimizes the deviation jR(��)�R(�`)j| under conditions explicitly stated in the paper. Since this principle can beexplained as \choosing that classi�er �` that minimizes the training error orempirical risk respectively", this principle is known as Empirical Risk Mini-mization (ERM). Although this principle had been used years before, Vapnikand Chervonenkis (1971) gave an explicit explanation of its applicability.Generalization Let us recall what exactly the di�erence jR(��)�R(�`)j mea-sures. In view of Neural Network Learning, this di�erence is often called gen-eralization error. We can bound the generalization error above byjR(��)�R(�`)j � jR(��)�Remp(��)j+max�2� jR(�)�Remp(�)j ; (6)



Statistical Learning Theory 4where the second term is greater or equal to jR(�`) � Remp(�`)j. Although�� is uniquely de�ned by Equation (4), �` strongly depends on the randomlydrawn training set S. Thus, we have to bound max�2� jR(�) � Remp(�)j.What is available from the data, however, is the empirical risk Remp(�`). Thisimplies that we should aim at minimizing the empirical risk while ensuring thatthe abovementioned generalization error remains small. Solely minimizing theempirical risk can lead to what is known as over�tting in the Neural Networkcommunity: The training data are well �t but no relieable predicition can bemade with regard to data not contained in the training set.The Basic Inequality Note from Equations (4) and (5) that if � contains a�nite number of possible classi�ers, the principle of choosing �` to approximate�� is consistent. Consistency means that the generalization error (6) can bebounded with probability one if ` tends to in�nity. This is due to the Law ofLarge Numbers, since R(�) is the expectation of the loss of � and Remp(�)is the mean of the loss of � which converges uniformly to the expectationindependently of the distribution PXY . Problems occur if we consider an in�niteset of classi�ers like in the abovementioned example. For this case, Vapnik andChervonenkis proved the following basic resultP �max�2� jRemp(�)�R(�)j > "� � 4 exp( c�(ln 2`c� + 1)` � "2! `) ;(7)where ` is the number of training examples and c� is a constant depending onthe investigated set of functions. It is called Vapnik{Chervonenkis{dimension(VC dimension) of � and is a measure of the capacity of the set of hypothesesunder consideration. If we set the right{hand side of the inequality to the con-�dence �, solve for ", and drop the lower bound we get the following corollary:For each classi�er � 2 � considered during the learning process, the inequalityR(�) � Remp(�) +sc�(ln 2`c� + 1)� ln �=4` (8)holds with probability 1 � �. For the learning problem this means that theexpected risk R(�), which is the quantity of interest, can be bounded aboveby a sum of two terms: the empirical risk Remp(�), which can be calculatedfrom the training set, and a capacity term which accounts for the complexity ofthe hypothesis space H in relation to the number of training examples. In thiscontext, Empirical Risk Minimization as described above attempts to minimizeRemp(�) while keeping the capacity term �xed. The goal of model selection isto �nd a trade-o� between the explanatory power and capacity control of theNeural Network. In order to allow for a better understanding of the capacityconsider the following two de�nitions on the VC dimension c�.De�nition 1 (Shattering). A subset x1; : : : ;xn 2 Xn is shattered by the setof functions �, if for each of the 2n possible class labelings (yi = 1 or yi = �1)there exists a function � 2 � that classi�es the examples in this way.



Statistical Learning Theory 5De�nition 2 (VC{dimension). The VC{dimension c� of a set of functions� is the maximum number of elements x1; : : : ;xc� � Xc� that can be shatteredby the set of functions �.Let us consider a simple example in order to understand the concepts of shat-tering and VC dimension.Example 2 (Shattering and VC{dimension). Let us examine the func-tions from the last example, that is all classi�ers of the form h(x;�) = sign(x1�1+� � �+xn�n) and n = 2. Now consider the set x1 = (1; 1)0 and x2 = (1; 2)0. Thenfor each of the 4 di�erent labelings there is a vector � that can separate the twopoints, that is the set x1;x2 can be shattered by these classi�ers (see Figure 1).Hence, the VC{dimension of these classi�ers is at least c� = 2. It can easily beveri�ed that there exists no set of three points in R2 that can be shatter by theseclassi�ers. Thus, the VC{dimension of these classi�ers is exactly c� = 2. Note,that there are also sets of two points, that cannot be shattered, e.g. x1 = (1; 1)0and x2 = (2; 2)0.
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Figure 1: Shattering of a set of two points x1;x2 by linear decision functions. All pointsin the halfspace to which the arrow points are labeled y = 1.Structural Risk Minimization Vapnik (1982) presented a new learning prin-ciple, the so called Structural Risk Minimization (SRM), which can easily bejusti�ed by Inequality (8). The idea of this principle is to de�ne a priori nestedsubsets �1 � �2 � � � � � � of functions and applying the ERM principle (train-ing error minimization) in each of the prede�ned �i to obtain classi�ers �ì .Exploiting the inequality, one is able to select that classi�er �i�̀ which mini-mizes the right hand side of (8). Then the learning algorithm not only �ndsthe best classi�er in a given set of functions but also �nds the best (sub)setof functions together with the best classi�er. This corresponds to the modelselection process mentioned earlier.Prior Knowledge We want to make some remarks about prior knowledge.Without prior knowledge no learning can take place since only the combinationof single instances and previous knowledge can lead to meaningful conclusions(Haussler 1988; Wolpert 1995). For a �nite set of samples there exists an in�nitenumber of compatible hypotheses and only criteria that are not directly deriv-able from the data at hand can single out the underlying dependency. In classicalstatistics, prior knowledge is exploited in the form of probability distributions



Algorithms for Neural Network Learning 6over the data (Likelihood principle) or over the considered functions (Bayesianprinciple). If these priors do not correspond to reality, no con�dence can begiven by any statistical approach about the generalization error (6). In NeuralNetwork learning, the explicit knowledge is replaced by restrictions on the as-sumed dependencies (�niteness of VC{dimension). Therefore, these approachesare often called worst{case approaches. Using SRM, the prior knowledge is in-corporated by the a priori de�ned nesting of the set of functions. For practicalpurposes, this is less restrictive than the distribution assumptions of classicalstatistical approaches.3 Algorithms for Neural Network LearningIn this section we give an overview on di�erent types of Neural Networks andon existing algorithms for Neural Network learning. The aim is to highlight thebasic principles rather than to cover the whole range of existing algorithms. Anumber of textbooks describe relevant algorithms in more detail (see Haykin(1994) or Bishop (1995)).3.1 Feed{forward Neural NetworksIn the past and due to its origins, the term Neural Network was used to describea network of \neurons" (i.e. simple processing units) with a �xed dynamicfor each neuron (Rosenblatt 1962). Such a viewpoint should indicate the closerelationship to the �eld of Neuroscience. We want to abstract from the biologicalarigin and view Neural Networks as a purely mathematical models. We limit ourattention to those Neural Networks that can be used for classi�cation and focuson feed{forward networks1. In these networks computations are performed byfeeding the data into the n units of an input layer from which they are passedthrough a sequence of hidden layers and �nally to m units of the output layer.In ?) it was shown, that (under some mild conditions) each continuous decisionfunction can be arbitrarily well approximated by a Neural Network with onlyone hidden layer. Let us denote the number of units in the hidden layer by r.Hence, it is su�cient to consider a network described byh(x;�) = f2(f1(x;�);) ; (9)where f1 : Rn 7! Rr and f2 : Rr 7! Rm are continuous functions. � = (�;)0is the vector of adjustable parameters, consisting of � which is the vector ofweights of the hidden layer and  being the weight vector of the output layer.For illustrative purposes it is common practice to represent each unit wherea computation is being performed (\neuron") by a node and each connection(\synapse") by an edge of a graph. An example of a two layer Neural Networkis shown in Figure 2. In the following we will make the functions f1 and f21Note, that in particular dynamical system are often modelled by recurrent Neural Net-works (Hop�eld and Tank 1986). We will not consider these here because they do not o�ernew insights into the problem of classi�cation and preference learning. See, e.g., Kuan andLiu (1995) or Haykin (1994) for a textbook account.



Algorithms for Neural Network Learning 7
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(n units) (r units) (m units)Figure 2: A sketch of a two layer Neural Network with input space X = Rn = R2 , hiddenneuron space Rr = R3 and output space Y = Rm = R1 . Note, that the input layer doesnot count as a computational layer.more explicit to derive di�erent type of Neural Networks and their respectivelearning algorithms.Perceptron and the Delta Rule Consider the simple case r = n;m = 1; Y =f�1;+1g; f1(x;�) = x, and f2(x;) = sign(Pni=1 ixi) = sign( 0x). This typeof Neural Network is called a perceptron and was mentioned earlier in Example 1.Learning in such a network reduces to �nding the vector � =  that minimizesRemp(�) (see Section 2). We will consider here only the case that there existsa vector � such that Remp(�) = 0, i.e. linear separability. Let us rewrite theempirical risk of a vector � as Remp(�) = 1̀Pt̀=1Remp(�;xt) whereRemp(�;xt) / (sign(�0xt)� yt)2 : (10)To minimize this functional one can use the so called Delta rule (Rosenblatt1962) which is similiar to a stochastic gradient descent (e.g. Hadley (1964)) onthe empirical risk functional. Starting with an initial guess �0, the followingiteration scheme is used�t+1 = �t � 12(sign(�0txt)� yt)xt (11)The following pseudo{code gives an overview of the learning procedure2.2Note, that if xi is misclassi�ed, yt = � 12 (sign(�0txt)� yt):



Algorithms for Neural Network Learning 8Perceptron learning�0 := randomly initialized, t := 0do classify each training example xi using �tif xi is misclassi�ed then�t+1 := �t + yixi, t := t+ 1end ifwhile misclassi�ed training examples existMultilayer perceptron and Backpropagation The addition of hidden neuronsincreases the VC dimension of the network and thus leads to more power-ful models of the data. For the case of a two{layer perceptron one choosesf1(x;�) = (g1(�01x); : : : ; g1(�0rx))0 and f2(z;) = g2( 0z), where z is ther{dimensional vector of hidden neuron activations, � = (�1; : : : ;�r)0, andg1 : R 7! R and g2 : R 7! R are the \transfer" functions of the neurons.Usually these are di�erentiable sigmoidal functions, e.g., gi(a) = tanh(c � a).This type of Neural Network is called a multilayer perceptron (MLP). In thecase of classi�cation m = 1 and Y = f�1;+1g. Since in the last layer a contin-uous activation function g2 is used, it becomes necessary to map the continuousoutput to a binary decision. This can be done by thresholding the continuousouput, e.g., sign(h(x;�) � �). Again, learning in such a network reduces to�nding the vector � = (�;)0 that minimizes Remp(�) (see Section 2). UsingRemp(�;xt) / 12 0@g20@ rXj=1 jg1 ��0jxt�1A� yt1A2 = 12(h(xt;�)� yt)2 (12)one calculates rRemp(�;xt) and r�jRemp(�;xt) to apply gradient descent.Note that (12) relates to the fraction of misclassi�ed objects, for c ! 1. Suc-cessive application of the chain rule of di�erentiation givesrRemp(�;xt) = (h(xt;�)� yt)g02( 0zt)zt (13)r�jRemp(�;xt) = (h(xt;�)� yt)g02( 0zt)g01(�jxt)xt ; (14)where g0 denotes the �rst derivative of g w.r.t. its argument, and zt = f1(xt;�).The following pseudo{code gives an overview of the resulting backpropagationlearning procedure.



Algorithms for Neural Network Learning 9Backpropagation learning (MLP Networks)�0 = (�1;::: ;r;0;0)0 := randomly initialized�0 := 1, t := 0do �old := �tfor each training example xi calculate h(xi;�t) and zi = f1(xi;�t)t+1 := t � �t(h(xi;�t)� yi)g02( 0tzi)zi�j;t+1 := �j;t � �t(h(xi;�t)� yi)g02( 0tzi)g01(�j;txi)xit := t+ 1, �t := 1=twhile k�t ��oldk > "In the beginning the learning rate �t is large so as to enable the algorithm to�nd a good minimum of the empirical risk Remp(�). In the course of learning�t is decreased in order to allow for the �ne tuning of the parameters. This isthe basic principle used to learn the adjustable parameters � of a MLP givena �nite sample S = f(xi; yi)gì=1 without exploiting further prior knowledge.More re�ned methods exist if prior assumptions are made about the type of thesurfaceRemp(�) over the space of�, e.g., conjugate gradient learning (Hestenesand Stiefel 1952; Johansson et al. 1992), momentum learning (Rumelhart et al.1986), or Quickprop (Fahlman 1989). Moreover, backpropagation can easily beextended to more than one hidden layer, in which case its recursive naturetrough the layers becomes apparent.Radial Basis Function Networks. Another popular Neural Network architec-ture is obtained for f1(x;�) = (g1(x;�1; �1); : : : ; g1(x;�r; �r))0 and f2(z;) =g2( 0z) where g1 : Rn � Rn � R 7! R is a function that acts locally in the �j ,g2 : R 7! R is a sigmoidal function like in the MLP, z is the r{dimensional vec-tor of hidden neuron activations, and � = ((�1; �1); : : : ; (�r; �r))0. This typeof Neural Network is called a radial basis function network (RBF). Usually thefunction g1(x;�j; �j) is given by a Gaussian of the formg1(x;�j ; �j) = exp �kx� �jk22�2j ! : (15)Again, we consider the case of binary classi�cation. Similiarly to backpropaga-tion the empirical risk becomesRemp(�;xt) / 12 0@g20@ rXj=1 jg1 �xt;�j ; �j�1A� yt1A2 (16)



Algorithms for Neural Network Learning 10In order to apply gradient descent, we calculate the gradients rRemp(�;xt),r�jRemp(�;xt), and r�jRemp(�;xt). Successive application of the chain ruleof di�erentiation yieldsrRemp(�;xt) = (h(xt;�)� yt)g02(0zt)zt ;r�jRemp(�;xt) = (h(xt;�)� yt)g02(0zt) exp �kxt � �jk22�2j ! xt � �j�2j ;r�jRemp(�;xt) = (h(xt;�)� yt)g02(0zt) exp �kxt � �jk22�2j ! kxt � �jk2�3j :The following pseudo{code gives an overview of the backpropagation learningprocedure for RBF Networks (Powell 1992). In Section 5 we will present anotherlearning algorithm that can be used for RBF Networks.RBF Network learning�0 = (�1;::: ;r;0;�0;0)0 := randomly initialized�0 := 1, t := 0do �old := �tfor each training example xi calculated h(xi;�t) and zi = f1(xi;�t)t+1 := t � �t(h(xi;�t)� yi)g02( 0tzi)zi�j;t+1 := �j;t � �t(h(xi;�t)� yi)g02( 0tzi) exp��kxi��j;tk22�2j;t � xi��j;t�2j;t�j;t+1 := �j;t��t(h(xi;�t)�yi)g02(0tzi) exp��kxi��j;tk22�2j;t � kxi��j;tk2�3j;tt := t+ 1, �t := 1=twhile k�t ��oldk > "3.2 Locality and RegularizationGlobal vs. local approximation The main conceptual di�erence between MLP'sand RBF networks is that the former perform a global approximation in inputspace while the latter implement a local approximation. The hidden neurons ofan RBF network specialize to localized regions in data space by �tting a set ofGaussians (\receptive �eld") to the data. In the extreme case, where r = `, i.e.there are as many hidden neurons as data points in the training set, the ERMprinciple cannot lead to consistent learning because such an RBF networks canbe shown to have in�nite VC dimension. Using fewer neurons than data points,however, speeds up convergence during learning. In contrast to the local ap-proximation performed by RBF Networks an MLP considers the data space as



Economic Applications of Neural Networks 11a whole and is thus able to capture complex dependencies underlying the data.The hidden neurons in both, the MLP and the RBF, perform a preprocessingof the data by learning a mapping of the input space to the space of hiddenneurons. We will meet this idea later again when considering the extension ofSupport Vector Learning to the nonlinear case (see Section 5). The advantageof preprocessing the data is the reduction of their dimensionality. This problemmay arise when the input data are of high dimensionality and thus the inputdata density is small. This phenomenon is referred to as the curse of dimen-sionality, i.e. the increase of necessary samples to obtain a small generalizationerror grows exponentially in the number of dimensions (number of parametersin a Neural Network). This can easily be seen, if one solves Equation (8) for` with " and � �xed and assuming that c� scales linearly with the number ofparameters.Regularization Techniques Conceptually, with the techniques discussed inSection 3.1 only the term Remp(�) on the right hand side of Inequality (8)is minimized during the learning process. The Neural Network community alsodeveloped approaches that take into account model complexity as expressed inthe second term of the right hand side of (8). In the case of RBF and MLP's itwas shown that reduction of k�k2 minimizes their VC dimension (model com-plexity) (Cortes 1995; Shawe-Taylor et al. 1996). Bartlett (1998) also showedthat backpropagation learning when initialized with small weights leads to aclass of functions with small VC{dimension. Another way to incorporate thisinto the learning process is to the minimize Remp(�) + �k�k2 where � hasto be chosen beforehand. Such a technique is also called regularization (Poggioand Girosi 1990) and was successfully used in the weight decay learning algo-rithm (Hinton 1987). The Support Vector algorithm to be presented in Section5 makes use of a similar technique.4 Economic Applications of Neural Networks { An Overviewof the LiteratureWith the application of backpropagation to Neural Network learning (Rumel-hart et al. 1986) and the revived interest into Neural Networks, Economistsstarted to adopt this tool as well, since the Neural Networks for classi�cationand regression can easily be adopted them to economic problems. It seems rea-sonable to distinguish at least two major applications of Neural Networks inEconomics: First, the classi�cation of economic agents, i.e. customers or com-pany, and second, the prediction of time series. A third, though less commonapplication of Neural Networks is to model bounded rational economic agents.Let us review the literature that is concerned with these three applications inturn.



Economic Applications of Neural Networks 124.1 Classi�cation of Economic AgentsAs discussed above, one of the main abilities of Neural Networks is to classify aset of data into di�erent categories. Thus, Neural Networks can be used as analternative to more traditional methods such as discriminant analysis or logisticregression3. A special feature of Neural Networks that distinguishes them fromtraditional methods is their ability to classify data which are not linearly sepa-rable4. The majority of papers that use Neural Networks for classi�cation tasksin Economics can be found in the area of bankruptcy prediction of economicagents, mainly banks. Most of these papers have been published in the early1990's, a period that witnessed a signi�cant rise of bankruptcies in the U.S..The approach is to use �nancial ratios calculated from a �rm's balance as inputto the Neural Network to obtain an estimate for the probability of bankruptcyas output. Examples are Odom and Sharda (1990) and Rahimian et al. (1993)who used �ve �nancial ratios that have been suggested by Altman (1968) fordiscriminant analysis. Both papers use a two-layer Neural Network trained us-ing backpropagation as discussed in Section 3.1. They report an improvementof the classi�cation quality as compared to discriminant analysis. While thelatter classi�ed 60% of the �rms correctly, Neural Networks classi�ed 70{80%in the right way. Tam (1991) and Tam and Kiang (1992) analyzed a NeuralNetwork with 19 input neurons, i.e., they used 19 �nancial ratios. In their stud-ies they compared a simple feed forward network with no hidden layer with atwo-layer network trained using backpropagation. The performance of the lat-ter was better on average than the one of the former. However, both types ofnetworks performed on average better than other more traditional classi�ca-tion methods5. Other applications with similar results are e.g. Poddig (1995),Salchenberger et al. (1992), Altman et al. (1994), and Erxleben et al. (1992).The latter report \nearly identical" performance for discriminant analysis andneural networks.Further discusions of the classi�cation properties are given, e.g., by Brockettet al. (1994) for insurance companies, Marose (1990) for the creditworthinessof bank customers, Grudnitzki (1997) for the valuation of residential propertiesin the San Diego County, Jagielska and Jaworski (1996), who applied NeuralNetworks to predict the probability of credit card holders to run into illiquidity,or Martin-del Brio and Serrano-Cinca (1995), who classi�ed Spanish companiesinto more than one category. Finally, Coleman et al. (1991) suggested an inte-gration of a Neural Network and an expert system such that courses of actioncan be recommended to prevent the bankruptcy. As an overall result, NeuralNets seem to perform well when applied to economic classi�cation problemsand they often appear to be superior to classical methods.3See the discussion in Ripley (1994). A literature review of traditional methods of BusinessEvaluation can be found in Raghupati et al. (1993).4See the illustration in Trippi and Turban (1990, p. 12) or Blien and Lindner (1993).5See, e.g., Tam (1991, Table 9). The authors compared the performance of NN's withdi�erent types of discriminant analysis, with logistic regression, with the method of nearestneighbours and with classi�cation tree methods.



Economic Applications of Neural Networks 134.2 Time Series PredictionProbably the largest share of economic applications of Neural Networks can befound in the �eld of prediction of time series in the capital markets. Usually,linear models of �nancial time series (like exchange rates or stock exchangeseries) perform poorly and linear univariate models consistently give evidencefor a random walk.6 This has been taken in favour of the e�cient market hy-pothesis where e�cieny means that the market fully and correctly reects allrelevant information in determining security prices7. However this hypothesisis not generally accepted and, therefore, an often followed strategy is to try touse nonlinear models to improve the �t and thus the prediction8. As mentionedearlier Neural Networks are exible functional forms that allow to approximateany continuous | hence also nonlinear | function. Therefore, they can be ex-pected to provide e�ective nonlinear models for �nancial time series and thusto allow for better predictions.One of the �rst researcher to use Neural Networks in the capital markets wasprobably White (1988), who applied a two-layer neural network on a series oflength 1000 of IBM stocks. Rather than to obtain predictions his aim was totest the e�cient market hypothesis. He could not �nd evidence against it whichsuggests that a random walk is still the best model for a �nancial market. How-ever, the network used in his study was rather simple and, therefore, a numberof authors challenged White's results. Bosarge (1993) suggested an expert sys-tem with a neural network at the its core. He found signi�cant nonlinearities indi�erent time series (S&P 500, Crude Oil, Yen/Dollar, Eurodollar, and Nikkei-index) and was able to improve the quality of forecast considerably. Similarresults have been reported by Wong (1990), Tsibouris and Zeidenberg (1995),Refenes et al. (1995), Hiemstra (1996) or Haefke and Helmenstein (1996)9.Other authors reported results that point to the opposite direction. In a surveyof the literature, Hill et al. (1994) report mixed evidence as to forecasting re-sults of Neural Networks, although they performed \as well as and occasionallybetter than" statistical methods. Mixed evidence is also reported in a paperby Kuan and Liu (1995) where they compare feedforward and recurrent NeuralNetworks as prediction tools for di�erent currency exchange rates. The sameapplies to Verkooijen (1996), who linked �nancial time series to fundamentalvariables like GDP or trade balance within a Neural Network. Chat�eld (1993)expressed caution as to comparisons between Neural Networks and linear pre-diction methods, because often the chosen linear methods seemed inappropriate.A major problem in the implementation of Neural Networks as predicting toolsseems to be the fact that no objective guidelines exist to choose the appropriatedimension (i.e. the number of hidden layers or neurons) of the Neural Network,a problem refered to earlier as the model selection problem. Usually, implemen-6See, e.g., the discussion in Meese and Rogo� (1983) or Lee et al. (1993).7See Fama (1970) or Malkiel (1992) for a discussion.8See, e.g., Engle (1982), Granger (1991) or Brock et al. (1991)9See Trippi and Turban (1990) or Refenes (1995) for a number of other papers whoseconclusion goes into the same direction.



Economic Applications of Neural Networks 14tations refer to rules of thumb and to a trial-and-error procedures, althoughsystematic methods have been suggested such as the Support Vector method tobe presented in the following section. See also Kuan and Liu (1995), Weigendet al. (1992) or Anders and Korn (1997) for a discussions of formalized methods.Thus, as an overall result, it seems that Neural Networks have the potential tobe used as forecasting tools. Their strength can be seen in the prediction ofnonlinear time series. However further results are needed to make them reliableinstuments for the \everyday-forecaster".Applications of time series prediction in other than �nancial �elds are Fransesand Draisma (1997) or Swanson and White (1997) for macroeconomic variables,Church and Curram (1996) for consumers' expenditure, or Kaastra et al. (1995)for agricultural economics.4.3 Modelling Bounded Rational Econmic AgentsA third, less common application of Neural Networks in Economics can be foundin the modelling of learning processes of bounded rational adaptive arti�cialagents. Here, neurons are interpreted as agents who update their perception ofthe environment according to the information they receive. Their decisions (theoutput of the neuron) then exert an inuence on the environment which mightbe fed back to the agent. It was probably Sargent (1993) who �rst proposedNeural Networks in this context. Beltratti et al. (1996, p. 79) argued that NeuralNetworks were apt to model human behaviour since they could interpolatebetween the learned examples and introduce some degree of uncertainty intheir replies. Neural Networks can be seen as an implementation of the ideassuggested by Arthur (1993).Cho (1994) used a Neural Network to model strategies for repeated games.He argued in favour of this tool, because it was capable of capturing complexequilibrium strategies although instructions were stationary, �xed, simple, andindependent of the target payo� vector. Cho and Sargent (1996), in a revisionof the paper by Cho, suggested that agents should be able to memorize thecomplete history of the game. This was implemented by an extension of theinput vector, i.e., the dimension of the input space with every iteration step.However, as they show, memory could as well be implemented using a recurrentnetwork with an an additional storage unit in the input layer which includessome summary statistics.Luna (1996) used Neural Networks to model the emergence of economic insti-tutions. The Neural Networks allowed to model feedback between a learningenvironment and the formation of institutions, and vice versa. Orsini (1996)proposed a Neural Network to model the consumption behaviour of individualswhose expectations about group behaviour played a crucial role on individualand aggregate outcomes. Packal�en (1998) used a Neural Network to relax theassumption of linear forecast functions (that is usually made in the adaptivelearning literature) and to extend them to nonlinear functions. He used threedi�erent rational expectation models as benchmarks to show how convergence



Support Vector Networks for Classi�cation 15to rational expectation equilibria can occur.5 Support Vector Networks for Classi�cationIn Section 3 the classical techniques for learning in a Neural Network were de-scribed. The learning techniques described there are essentially based on theERM principle. In this section we want to present a new Neural Network learn-ing technique that utilizes the SRM principle, the so called Support VectorLearning. It has been successfully applied in the �eld of character recognition(Cortes and Vapnik 1995), object recognition (Sch�olkopf 1997; Osuna et al.1997a), and text categorization (Joachims 1997).We start by developing the learning algorithm for the perceptron under theassumption that the training set can be classi�ed without training error (objectsare linearly separable). Then we extend the learning algorithm to the case wherethe objects are not linearly separable. Furthermore, by using a technique knownas the kernel trick we show how the learning algorithm can be extended to the(nonlinear) case of MLP's and RBF Networks.Case of Linearly Separable Data Consider we want to learn the vector � ofa perceptron (see Equation (9)). Instead of minimizing Remp(�) (see Section3), we assume that there exist vectors ~� which achieve zero training errorRemp(~�) = 0. In order to minimize the generalization error (6), it follows fromthe basic Inequality (8) that | everything else being equal | minimizationof the VC{dimension c� leads to the optimal classi�er �`. Therefore, in thespirit of SRM we have to de�ne a structure nested subsets on the set of linearclassi�ers such that we can at least bound their VC dimension above. Thefollowing theorem gives such a structuring for the set of all linear classi�ers.Theorem 1 (VC dimension of hyperplanes (Vapnik 1995)). Suppose allthe data X lives in a ball of radius D and a training set S is correctly classi�edby all classi�ers HS = fsign(~�0x)j~� 2 Rn ; Remp(~�) = 0g :Consider all ~� whose norm is bounded by a constant Ak~�k � A :Then the VC dimension cHS of HS is bounded above bycHS � min(dD2A2e; n) : (17)A proof can be found in (Burges 1998; Shawe-Taylor et al. 1996; Vapnik 1998).This theorem shows that a perceptron can overcome the curse of dimensionalityeven if the parameter space is very high dimensional(Bartlett 1998). The impor-tance of this theorem lies in the fact, that minimization of the VC dimension of



Support Vector Networks for Classi�cation 16perceptrons can be achieved by minimizing k~�k2 = ~�0 ~� under the restrictionthat Remp(~�) = 0. More formally, we arrive at the problemminimize 12k~�k2 = 12 ~�0 ~� (18)subject to ~�0xi � +1 8yi = +1 (19)~�0xi � �1 8yi = �1 : (20)According to the classical technique of nonlinear optimization (c.f. Hadley(1964)), we introduce ` lagrangian multipliers � = (�1; : : : ; �`)0. This yieldsL( ~�;�) = 12 ~�0 ~�� X̀i=1 �i(yi ~�0xi � 1) : (21)The solution is thus obtained by solving(�`;�`) = min~� max��0 L( ~�;�) : (22)Setting the partial �rst derivatives of L( ~�;�) to zero, we obtain the Kuhn{Tucker conditions �` = X̀i=1 �i;`xiyi (23)�0̀y = 0 : (24)Substitute (23) and (24) into (21) yields the dual problemmaximize W (�) = X̀i=1 �i � 12 X̀i=1 X̀j=1 �i�jyiyjx0ixj (25)subject to � � 0 (26)�0y = 0 : (27)This is a standard quadratic programming problem and thus learning a percep-tron with the Support Vector Method arrives at �nding the solution vector �`.Note, that classi�cation with such a network requires only the optimal vector�` since by virtue of Equation (23)h(x;�`) = sign(�0̀x) = sign X̀i=1 �i;`yix0ix! : (28)Equation (23) states that the linear classi�er is completely described by �` andthe training set. All training points xi where �i;` 6= 0 are called support vectors,because they \support" the construction of the optimal classi�er. Note thatonly a few of the �i;` 6= 0 and it is this sparseness that makes (28) so appealing.Property (23) will later be exploited for application of the kernel trick.



Support Vector Networks for Classi�cation 17Case of not Linearly Separable Data In the last paragraph a learning al-gorithm for the case of Remp(~�) = 0 was derived. This restriction is rathersevere and can be relaxed by introducing a slack variable �i for each trainingpoint that measures the violation of the constraints (19) and (20). If we use theapproximation Remp(�) �Pì=1 �i we arrive at the problemminimize 12k�k2 + C X̀i=1 �i (29)subject to �0xi � +1� �i 8yi = +1 (30)�0xi � �1 + �i 8yi = �1 (31)� � 0 ; (32)where C has to be de�ned before learning and is a parameter that trades theminimization of k�k2 and the \training error" Pì=1 �i. Using the same tech-nique as in the case of linearly separable data, we arrive at the dual problemmaximize W (�) = X̀i=1 �i � 12 X̀i=1 X̀j=1 �i�jyiyjx0ixj (33)subject to 0 � � � C1 (34)�0y = 0 : (35)This is again a quadratic programming problem. The di�erence from the sep-arable case can be seen in (26) and (34). If we set C = 1, which means thatwe are not willing to allow any violation of the constraints (19) and (20), thelearning algorithm for the case of not linearly separable data simpli�es to thecase of linearly separable data.The Kernel Trick Until now, we restricted our attention to the case of per-ceptron learning. If we want to extend the Support Vector method to nonlineardecision functions h(x;�) we de�ne | similar to the MLP's and RBF Net-works | mappings z = f1(x;�) and apply the learning technique describedin the last paragraph to z. Now taking into account that learning with theSupport Vector method is equivalent to minimization of Equation (33) andclassi�cation can be carried out according to Equation (28), only the innerproducts K(x;xi) = f1(x;�)0f1(xi;�) and K(xi;xj) = f1(xi;�)0f1(xj ;�) arenecessary for the calculations. Therefore, instead of applying f1 to each vectorx we only need to replace inner products x0xi and x0ixj in Equation (33) and(28) by the corresponding function K(x;xi) and K(xi;xj). According to theHilbert{Schmidt theory (Courant and Hilbert 1953), each symmetric functionK : Rn � Rn 7! R that satis�es the Mercer conditions (Mercer 1909), corre-sponds to an inner product in some space F . This is the space, to which theprede�ned function f1(�;�) maps. Such functions K(�; �) are called kernels. Inthis sense, to extend the Support Vector method to nonlinear decision func-tions, kernels need to be found that can easily be calculated and at the same



Support Vector Networks for Classi�cation 18Name Kernel function dim(F)linear K(xi;xj) = x0ixj npolynomial K(xi;xj) = (x0ixj + 1)� �n+��1� �RBF K(xi;xj) = exp(��kxi � xjk2) 1Two{layer Neural Networks K(xi;xj) = tanh(�0x0ixj + �1) 1Table 1: A list of suitable kernel functions for Support Vector Networks (taken from Vapnik(1995)).time map to an appropriate feature space F . A list of such kernels is shown inTable 1. The following pseudo{code gives an overview of the Support Vectorlearning procedure (Vapnik 1982; Boser et al. 1992; Cortes and Vapnik 1995;Sch�olkopf 1997; Vapnik 1998).Support Vector Network learningDe�ne C (trade-o� between k�`k2 and Remp(�`))De�ne a kernel K : Rn � Rn 7! R (see Table 1)Compute Q, where Qij = yiyjK(xi;xj)Solve the QP problem: �` = max �10�� 12�0Q�� subject to 0 � � � C1and �0y = 0Classify new x according to h(x) = sign(Pì=1 �i;`yiK(xi;x)).In the case of large training sets e�cient decomposition algorithms for the QPproblem exist (Osuna et al. 1997a). These algorithms exploit the sparseness ofthe �` and show fast convergence on real world datasets (Osuna et al. 1997b;Joachims 1997).Selection of kernel parameters When using the kernel trick the parameters �or (�0; �1) (see Table 1) have to be determined beforehand. Although there ex-ists no automatic method to determine the optimal parameter values, the resultof Theorem 1 can be used to select the best parameter values among a �niteset of parameter values, e.g., the degree of the polynomial kernels. Equation(17) gives an upper bound on the VC dimension of the learned classi�er. Aftertraining with the Support Vector method we can compute A or k�`k2 = �0̀�`utilizing Equation (23) byk�`k2 = X̀i=1 X̀j=1 yiyj�i;`�j;`K(xi;xj) : (36)Furthermore, as Theorem 1 requires to know the radius of the ball containingall the data, we can bound this quantity above by the maximum distance of a



Support Vector Networks for Preference Learning 19data point from the center of the dataD2 � maxi=1;::: ;`f1(xi;�)� 1̀ X̀j=1 f1(xj ;�)2 (37)which can again be calculated in terms of the inner products K(xi;xj), alone.Therefore, in order to select the best kernel parameter, we �x a parameter,train a Support Vector Network, and calculate D2 and k�`k2. The optimalkernel parameter is given by that parameter which minimizes the product ofthese terms.6 Support Vector Networks for Preference LearningIn this section we want to show how Neural Networks can be applied to theproblem of preference learning10. Let us again start by considering a motivatingexample.Example 3 (Preference Learning). Consider an economic agent who is con-fronted with the task of choosing a basket of goods fxigNi=1 amongst di�erentalternatives. Think of xi as a vector which denotes either numbers of di�erentgoods or di�erent levels of relevant features of a certain good. The agent's taskamounts to deciding whether he prefers an xi to another one, i.e., he will haveto order the bundles according to his preference. From a limited number ofpurchases the agent will try to infer his preferences for other baskets (i.e. forfuture purchases). Thus the agent has to learn his preferences as expressed inan assignment of utilities to feature vectors xi from a limited sample. Althoughhe may not be able to assign scores to each vector he will be able to rank thebaskets (ordinal levels).To illustrate what we call preference learning we denote by Y the output space.Then a particular application is given by the problem of learning the ordinalutility yi the agent assigns to a combination of goods described by the featurevector xi. The problem is no longer a mere classi�cation problem since theordering of the utilities has to be taken into account by the learning process.The learned function should be transitive and asymmetric.6.1 Theoretical BackgroundThe preference learning problem The most important problem in solvingpreference learning problems is the de�nition of an appropriate loss for eachdecision f(x;�) whereas the true ordinal utility is given by y. Since the y'sare ordinal, no knowledge is given about the di�erence y � f(x;�). On theother hand, the loss given in Equation (1) weights each incorrect assignmentf(x;�) by the same amount and thus is inappropriate as well. This leads to the10Se also the work by Tangian and Gruber (1995), Herbrich et al. (1998) or Wong et al.(1988).



Support Vector Networks for Preference Learning 20problem, that no risk can be formulated which shall be minimized by a NeuralNetwork learning algorithm.Reformulation of the problem To overcome this drawback we now considerall pairs (x(1)i ;x(2)i ) of objects (e.g. combination of goods), where i denotes theith possible permutation. If in the training set x(1)i has higher ordinal utilitythan x(2)i , we say that x(1)i is preferred (by the customer) over x(2)i and denotethis by the class zi = +1. In turn, if the ordinal utility of x(2)i is higher thanx(1)i 's utility, we denote this by zi = �1. We can now formulate a criterion forthe optimal decision function. The optimal decision function is given by the�` that minimizes the probability of misclassifying pairs of objects. Therefore,if we consider decision functions on pairs of objects, we arrive at a \usual"classi�cation problem, this time on pairs of objects.A latent utility model To derive an Neural Network algorithm we make theassumption, that there is an unknown cardinal utility U(x) an object x pro-vides to the customer. Moreover we assume, that if x(1) is preferred over x(2)then U(x(1)) > U(x(2)), and vice versa. The advantage of such a model is thefact, that transitivity and asymmetry are ful�lled for each decision function.In terms of Statistical Learning Theory this means, that our hypothesis spaceis maximally reduced | we only want to learn decision functions with theseproperties. Since we are interested in cardinal utility functions that classify allpairs of objects correctly they have to ful�llU(x(1)i ) > U(x(2)i ) , U(x(1)i )� U(x(2)i ) > 0 8zi = +1 (38)U(x(1)i ) < U(x(2)i ) , U(x(1)i )� U(x(2)i ) < 0 8zi = �1 : (39)A linear model of the latent utility Let us start by making a linear modelU(x;�) = �0x of the latent utility. The last two equations become�0x(1)i ��0x(2)i = �0(x(1)i � x(2)i ) > 0 8zi = +1 (40)�0x(1)i ��0x(2)i = �0(x(1)i � x(2)i ) < 0 8zi = �1 : (41)According to the idea of Support Vector learning we make these constraintsstronger (see Equations (19) and (20)) where x(1)i � x(2)i now serves as a de-scription of the pair of objects (x(1)i ;x(2)i ). In accordance with the SupportVector algorithm for classi�cation, in order to minimize the generalization er-ror on the pairs of objects we have to minimize k�k2. This leads to the samealgorithm as described in Section 5, this time applied to the di�erence vectorsx(1)i � x(2)i .A nonlinear model of the latent utility Since a linear model of the latent util-ity is often too restrictive, we want to extend the approach to nonlinear utility



Support Vector Networks for Preference Learning 21functions U(x). This can be achieved by considering a mapping f1(x;�) whichhas to be de�ned beforehand. Then the constraints of the optimal classi�ers onpairs of objects become�0(f1(x(1)i ;�)� f1(x(2)i ;�)) � +1 8zi = +1 (42)�0(f1(x(1)i ;�)� f1(x(2)i ;�)) � �1 8zi = �1 : (43)In order to learn using the Support Vector method, we have to compute thematrix Q where the element in the i-th row and j-th column is given byQij = zizj(f1(x(1)i ;�)� f1(x(2)i ;�))0(f1(x(1)j ;�)� f1(x(2)j ;�)) (44)= zizj �f1(x(1)i ;�)0f1(x(1)j ;�)� f1(x(1)i ;�)0f1(x(2)j ;�)�f1(x(2)i ;�)0f1(x(1)j ;�) + f1(x(2)i ;�)0f1(x(2)j ;�)� : (45)The advantage of this decomposition is the applicability of the kernel trick(see Section 5). Instead of de�ning f1(x;�) we replace all inner products by afunctionK (see Table 1) that can easily be calculated and thus learn an optimallatent nonlinear utility function. The following pseudo{code gives an overviewof the learning procedure for preference relations.Learning preference relations with Support Vector NetworksDe�ne C (trade-o� between k�`k2 and Remp(�`))De�ne a kernel K : Rn � Rn 7! R (see Table 1)Compute Q, whereQij = zizj �K(x(1)i ;x(1)j )�K(x(1)i ;x(2)j )�K(x(2)i ;x(1)j ) +K(x(2)i ;x(2)j )�Solve the QP problem: �` = max �10�� 12�0Q�� subject to 0 � � � C1and �0y = 0Compute the latent utility of unseen x according toU(x) =Pì=1 �i;`yi(K(x(1)i ;x)�K(x(2)i ;x)).6.2 An Economic ApplicationLet us illustrate the above discussion by an example. Consider a situation wheretwo goods compete, i.e. x = (x1; x2) is a vector that describes a basket of twogoods. Assume an agent who has purchased a limited number of combinations.The agent will order these combinations according to his preferences and assigna utility level to these combinations such as to achieve the highest possibleutility with the next purchase.
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(a) (b)Figure 3: Learning of a preference structure of combinations of goods. The learned latentutility (dashed lines) is superimposed on the prede�ned (true) latent utility (solid lines).Training set consists (a) of �ve and (b) of ten observations.To simulate this situation we generated a limited number of combinations andclassi�ed them according to an underlying true latent utility functionU(x) = x1x22 ; (46)such as to implement the agent's preference structure. Note that this utilityfunction is ordinal in the sense that any homogenous transformation of thisfunction would not a�ect the resulting order of combinations. Note also thatthe only given information is the set of ordered objects, i.e., we do not referto a cardinal utility scale. Then the process of learning the utility function issimulated with a Support Vector Network that represents metaphorically thelearning capacity of the agent. We assume the agent to be bounded rational,i.e., his classi�cation procedure is not restricted to a certain type of utilityfunction. We therefore start with a polynomial of degree 5 that is able to locallyapproximate any continuous function. Figure 3 shows the results for a trainingset of 5 goods (a) and 10 goods (b).The dashed lines represent the learned utility function. The model selectionstrategy that is based on equations (36) and (37), selects an ordinal utilityfunction of polynomial degree � = 2 out of polynomial degrees � = 1; : : : ; 5.This choice exactly corresponds to the model from which the true utility func-tion (46) was chosen. Note that all combinations are classi�ed correctly andhow close the learned latent utility is to the unknown true latent utility.7 SummaryAfter introducing some basic results from statistical learning theory, we gavean overview of the basic principles of neural network learning. We presentedthree commonly used learning algorithms: Perceptron learning, backpropaga-tion learning, and radial basis function learning. Then we gave an overviewof existing economic applications of neural networks, where we distinguished
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