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Abstract

We investigate the generalisation performance of consistent classifiers, i.e. classifiers that

are contained in the so-called version space, both from a theoretical and experimental

angle. In contrast to classical VC analysis—where no single classifier within version

space is singled out on grounds of a generalisation error bound—the data dependent

structural risk minimisation framework suggests that there exists one particular classi-

fier that is to be preferred because it minimises the generalisation error bound. This is

usually taken to provide a theoretical justification for learning algorithms such as the

well known support vector machine. A reinterpretation of a recent PAC-Bayesian re-

sult, however, reveals that given a suitably chosen hypothesis space there exists a large

fraction of classifiers with small generalisation error albeit we cannot identify them for

a specific learning task. In the particular case of linear classifiers we show that classi-

fiers found by the classical perceptron algorithm have guarantees bounded by the size

of version space. These results are complemented with an empirical study for kernel

classifiers on the task of handwritten digit recognition which demonstrates that even

classifiers with a small margin may exhibit excellent generalisation. In order to perform

this analysis we introduce the kernel Gibbs sampler—an algorithm which can be used

to sample consistent kernel classifiers.

1 Introduction

Over the last ten years, machine learning has received a boost due to the ground-
breaking results on the generalisation error of classifiers (see Vapnik [1982], Shawe-
Taylor et al. [1998]). Their results build the theoretical basis for the well-known
support vector machine (SVM) algorithm. It is now widely accepted that for
complex models it is necessary to use regularisation techniques such as margin
maximisation in order to find a classifier exhibiting a small generalisation error
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(see Vapnik [1995, p. 157]). Since for large datasets the SVM algorithm is too
time consuming many heuristics to approximate the SVM solution have been put
forward (see, e.g. Platt [1999], Keerthi et al. [1999], Smola and Schölkopf [2000]).
Recently, it has been demonstrated experimentally that even algorithms with
no explicit regularisation perform comparably to SVMs (see Mika et al. [1999],
Herbrich et al. [2001]). This observation raises an interesting question:

What fraction of classifiers within version space exhibit a small generalisation
error?

In this paper we try to answer this question both from a theoretical and experi-
mental point of view. Using a recent result in the PAC-Bayesian framework we
are able to show that given a suitably chosen hypothesis space there exists a large
fraction of classifiers with small generalisation error. More precisely, the general-
isation error of most of the classifiers in version space is controlled by the size of
the version space relative to the size of the hypothesis space. This result, which
we call the egalitarian generalisation error bound, is complemented by an exper-
imental study for linear classifiers on the task of handwritten digit recognition
using the MNIST database. It is worthwhile mentioning that in a fully Bayesian
treatment the size of version space is also called the evidence of the model or
hypothesis space, respectively (see MacKay [1992]).

The paper is structured as follows: in the following section we review gen-
eralisation error bounds for single classifiers consistent with the whole training
sample. We will also introduce the PAC-Bayesian framework and its main result
which allows us to give our main theoretical result together with its proof at
the end of this section. In the subsequent section we discuss the impact of this
result for practical learning theory. We also give a more specific result for the
perceptron learning algorithm that points into the same direction. In Section 4
we present the kernel Gibbs sampler algorithm which allows us to validate our
theoretical result on a benchmark problem in the field of handwritten digit recog-
nition. The paper concludes with a discussion of generalisation error bounds for
specific algorithms as opposed to bounds that hold uniformly over version space.

We denote a probability measure by PX; random variables are typeset in upper
capital sans-serif font. The symbols E and I denote the expectation of a random
variable and the indicator function, respectively. We use bold roman font for
vectors x and denote tuples by x . Finally, the symbol `n

2 denotes the space of
all sequences x = (x1, . . . , xn) of length n for which

∑n
i=1 x2

i <∞.
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2 Generalisation Error Bounds for Consistent Classifiers

Suppose we are given a sample x = (x1, . . . , xm) ∈ Xm together with a sample
y = (y1, . . . , ym) ∈ Ym = {−1,+1}m drawn iid from an unknown distribution
PZ = PXY. Furthermore, assume we are given a fixed hypothesis space H of
functions h : X → Y. We consider learning algorithms that aim at finding a
function h∗ ∈ H that minimises the generalisation error R [h] given by

R [h] = PXY (h (X) 6= Y) = EXY

[
Ih(X) 6=Y

]
.

A common approach to (approximately) finding h∗ based on the training sample
z = (x,y) ∈ Zm is to select a function h ∈ H that minimises the training error
Remp [h, z]

Remp [h, z] =
1
m

∑
(xi,yi)∈z

Ih(xi) 6=yi
.

Let us assume that PY|X=x (y) = Ih∗(x)=y, i.e. h∗ deterministically labels all the
data and thus has minimal generalisation error. Then we define the version space
V (z) (phrase due to Mitchell [1982]) as the set of all classifiers h ∈ H that are
consistent with the training sample z,

V (z) = {h ∈ H | Remp [h, z] = 0} .

Of course, solely based on the training error Remp [h, z] all classifiers in version
space are indistinguishable. Moreover, even if a classifier has zero training error it
can happen that its generalisation error is large—an effect known as over-fitting.
In order to cope with this uncertainty a lot of research has been done to obtain
probabilistic bounds on the generalisation error of consistent classifiers. The basic
idea is to guarantee that for most training trials (random training samples) the
generalisation error of a consistent classifier does not exceed a certain value.

Definition 1 (PAC Generalisation Error Bound). A function ε : N×H ×
∪∞m=1Zm × [0, 1] → R such that for all measures PZ, for all m ∈ N and for all
δ ∈ (0, 1]

PZm (∀h ∈ H : (h /∈ V (Z)) ∨ (R [h] < ε (m,h,Z, δ))) ≥ 1− δ (1)

is called a PAC generalisation error bound for the hypothesis space H.

Classical VC theory (see Vapnik [1982, 1995]) provides the following bound for
all m > dH and for all hypotheses h ∈ H:

εVC (m,h,z, δ) = εVC (m, δ) =
4
m

(
ln

((
2em

dH

)dH
)

+ ln
(

2
δ

))
, (2)
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where dH is known as the VC dimension of the hypothesis space H (see Vapnik
[1982] for more details). Obviously, the generalisation error bound is independent
of the particular classifier h ∈ V (z) and as such no single classifier h ∈ V (z) is
singled out on the basis of VC theory.

However, in applied classification learning it is common practice that the
classification is carried out by thresholding a real-valued function, i.e. h (x) =
sign (f (x)). It can be shown that the additional information of the real-valued
magnitude |f (x)| before thresholding allows one to obtain a generalisation error
bound in terms of the margin γz (h) = min(xi,yi)∈z yif (xi) attained on the given
sample z, i.e., for all hypotheses h ∈ H and m > dH (γ̃z (h)), γ̃z (h) := γz (h) /8

εfat (m,h,z, δ) = εfat(m, γ̃z (h) , δ)

=
2
m

(
log2

((
8em

dH (γ̃z (h))

)dH(γ̃z(h))
)

log2 (32m) + log2

(
2m

δ

))
, (3)

where dH (γ) is known as the fat shattering dimension of the hypothesis space H
at the observed scale γ (see Shawe-Taylor et al. [1998], Kearns and Schapire [1994]
for details). The function dH : R+ → N is always monotonically non-increasing
and is a straightforward generalisation of the VC dimension to sets of real valued
functions. An immediate consequence of this result is that the bound on the
generalisation error R [h] depends inversely on the margin γz (h). As such the
result singles out one classifier within version space — the classifier with maximal
margin also known as the support vector solution (see Vapnik [1995]).

Recently, McAllester [1998] presented “some PAC–Bayesian theorems” which
provide a generalisation error bound for the Gibbs classification strategy Gibbsz .
Given a prior PH over hypothesis space H and a training sample z, for each
test example x the Gibbs classification strategy samples a classifier h ∈ V (z)
according to PH|H∈V (z) and uses it for classification Gibbsz (x). Note that Gibbsz
does not correspond to any single classifier h ∈ V (z) but to a classification
strategy based on PH|H∈V (z). For any prior PH, the PAC bound εGibbs on the
generalisation error R [Gibbsz ] = EH|H∈V (z) [R [H]] of this stochastic classification
strategy is given by

εGibbs (m,PH,z, δ) =
1
m

(
ln
(

1
PH (V (z))

)
+ ln

(
em2

δ

))
, (4)

hence
PZm

(
R
[
GibbsZ

]
≤ εGibbs (m,PH,Z, δ)

)
≥ 1− δ . (5)

The first term in (2)—which is driven by the worst case number of equivalence
classes w.r.t. the two classes y ∈ Y—has been replaced by a data-dependent
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quantity—the prior belief PH in consistent classifiers h ∈ V (z). As opposed
to classical PAC generalisation error bounds, this result does not provide any
guarantee for single classifiers h ∈ V (z). The first theoretical result of the present
paper is a direct consequence of (4) and is stated in the following theorem.

Theorem 2 (Egalitarian Bound). For all measures PZ, with probability at
least 1 − δ over the random draw of the training sample z of size m, for all
η > 1, at least a fraction of 1 − 1

η of the classifiers in version space V (z) have
generalisation error less than

η · εGibbs (m,UH,z, δ) ,

where UH is the uniform measure over H.

Proof. The proof is a simple application of Markov’s inequality along with the
instantiation of PH by the uniform measure UH. Markov’s inequality says

∀η > 1 : PH|H∈V (Z)

(
R [H] ≥ η · EH|H∈V (Z) [R [H]]

)
<

1
η

,

because the generalisation error R : H → [0, 1] as a functional over hypotheses is
a positive random variable. Hence, from (5) it follows

PZm

(
∀η > 1 : PH|H∈V (Z) (R [H] < η · εGibbs (m,UH,Z, δ)) ≥ 1− 1

η

)
≥ 1− δ .

In the following section we shall discuss this results and its impact on the structure
of version space. However, one of the most intriguing features of this generali-
sation error bound is that it holds true regardless of any property of the single
classifiers considered. In fact, the only quantity that drives the generalisation
error bound is the volume of version space which is a property of the model H
and the data z but not of single classifiers h.

3 Consequences of the Egalitarian Bound

3.1 Linear Classifiers

Consider the result of Theorem 2 with η = 2 and the hypothesis space H used in
SVMs. In this case we know that with high probability (≥ 1−δ) the generalisation
error of at least half of the classifiers in version space V (z) are bounded by at most
twice the generalisation error of the Gibbs classification strategy. This should be
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compared with a typical generalisation error bound for linear classifiers in terms
of margins (see Herbrich and Graepel [2002])

2
m

(
ln
(

2
Γ2
z (h)

)n

+ ln

(
(em)2

δ

))
≥ 2 · εGibbs (m,UH,z, δ) . (6)

Here, n is the dimensionality of the feature space K ⊆ `n
2 in which the linear

classification is carried out. The first term is the inverse of a lower bound on the
volume of version space V (z) in terms of a normalised margin Γz (h) given by

Γz (h) ∝ min
(xi,yi)∈z

yif (xi)
‖xi‖

, (7)

which coincides with γz (h) for normalised data only. Thus we see that when-
ever the SVM solution has a small generalisation error bound at least half of the
consistent classifiers have the same (or even better) generalisation error bound.
The practical difficulty in exploiting these solutions, however, is that they keep
changing over the random draw of the training sample and only the large margin
classifier is able to witness its small generalisation error by an easy-to-determine
quantity—its margin. Nonetheless, randomly drawing a consistent classifier will
do as well in at least half of the learning trials if the hypothesis space (model) was
suited for the task at hand. The result suggests one should not be too dismissive
of algorithms such as the perceptron learning algorithm [Rosenblatt, 1958] which
merely ensure one gets an h ∈ V (z). It appears that the choice of the model H is
more important than the choice of the learning procedure within a fixed model H.
For kernel based classifiers this means the choice of the kernel (see also Section
4).

3.2 From Margin To Sparsity—A Revival of the Perceptron

Theorem 2 tells us that whenever the training sample z observed and the hypoth-
esis space H chosen lead to a large version space, there exists a large fraction of
classifiers h ∈ V (z) with a small generalisation error. In the special case of linear
classifiers there is also an efficient algorithm for finding some of these classifiers
— the perceptron algorithm [Rosenblatt, 1958]. In particular, we can prove the
following theorem (see Graepel et al. [2001], Gat [2001] for more details).

Theorem 3 (Margin Bound). For any measure PZ, with probability at least
1− δ over the random draw of the training set z = (x,y) ∈ (X × {−1,+1})m of
size m, if there exists a linear classifier h∗ ∈ H such that

κ∗ =
⌈

1
Γ2
z (h∗)

⌉
≤ m
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then the generalisation error R [h] of the classifier h ∈ V (z) found by the percep-
tron algorithm is less than

1
m− κ∗

(
ln
((

m

κ∗

))
+ ln (m) + ln

(
1
δ

))
. (8)

Proof. The proof is a combination of a results in Novikoff [1962] on the num-
ber of mistakes of the perceptron learning algorithm and a compression bound
(see Littlestone and Warmuth [1986], Floyd and Warmuth [1995], Graepel et al.
[2000b]). At first, Novikoff’s theorem tells us that for normalised data x ∈ Xm

the perceptron learning algorithm is guaranteed to make at most κ∗ mistakes.
At each mistake, it adds (or subtracts) the current data point xi to the weight
vector which was initially set to 0. As a consequence thereof, the number of
training samples (xi, yi) used to construct the final hypothesis is always less than
or equal to κ∗. Since there are at most

(
m
κ∗

)
different subsets of training samples

of size κ∗ the effective number of different hypotheses h ∈ V (z) is this number.
A combination of the binomial tail bound on the m− κ∗ left-out training points,
i.e.

∀h ∈ H : PZm−κ∗

(
(h /∈ V (Z)) ∨

(
R [h] ≤

ln
(

1
δ

)
m− κ∗

))
≥ 1− δ ,

with the union bound over the number of different subsets proves the theorem.
Note that the additional ln (m) term is due to the fact that the value of κ∗ is not
fixed. This requires us to share the confidence of 1 − δ among all its at most m
different values.
Similar to the egalitarian bound this result is somewhat surprising as the gen-
eralisation error of the classifier learned by the perceptron learning algorithm is
controlled by the potential margin Γz (h∗) a SVM would have achieved on the
same training sample z. Combining this result with the fact that margin bounds
for support vector machines just witness the good choice of a model H (see (6))
we conclude that the simple perceptron algorithm is theoretically well justified
because whenever the SVM solution has a small generalisation error bound all
the up to m! different classifiers learned with the perceptron learning algorithm
have the same (or even better) generalisation error bound. This has also found
some empirical evidence in the binary classification problems of handwritten digit
recognition (see Freund [1999]).

3.3 Bayes Classification Strategy

Another consequence of Theorem 2 is that half of the classifiers within version
space V (z) have a generalisation error bound as good as that of the Bayes clas-
sification strategy. The Bayes classification strategy—also known as Bayesian
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transduction (see Vapnik [1982], Graepel et al. [2000a])—assigns a test example
x to the class y by majority voting under the measure PH|H∈V (z),

Bayesz (x) = argmaxy∈Y PH|H∈V (z) (H (x) = y) .

In contrast to the Gibbs classification strategy, the Bayes classification strategy
deterministically assigns a new test example to a class. For |Y| = 2, whenever the
Bayes classification strategy is wrong at x, at least half of the classifiers in version
space misclassify x, too. By this argument, the generalisation error bound of the
Bayes classification strategy fulfils

∀PH : εBayes (m,PH,z, δ) ≤ 2 · εGibbs (m,PH,z, δ) . (9)

This equivalence of generalisation error bounds finds empirical support in Graepel
et al. [2000a], Herbrich et al. [2001]. Note that the “averaging” and “voting”
feature of the Gibbs and Bayes strategies, respectively, safeguards them against
domination by a minority of inferior members of the version space V (z).

3.4 Have we Thrown the Baby out with the Bath Water?

At first glance the egalitarian bound seems to imply that we are hopeless in
the search for the quantity controlling generalisation error (bounds) because it
gives a good generalisation error bound for a huge number of consistent classifiers
h ∈ V (z) not referring to any property other than the choice of the model H.
This result, however, comes at no surprise taking into account what we investi-
gated theoretically (see Definition 1). Although one is typically only interested
in the performance of the one classifier h learned using a fixed learning algorithm
A : ∪∞m=1Zm → H traditional learning theory claims to need guarantees on the
generalisation error that hold uniformly over the whole hypothesis space H or
version space V (z), respectively. This is much too demanding and can there-
fore only lead to bounds that indicate whether we have chosen an appropriate
model or not. A much more promising approach seems to investigate the ques-
tion of generalisation error bounds for specific algorithms. In fact, the proof of
Theorem 3 uses a compression bound which requires the specification of the al-
gorithm A in advance, i.e., the bounds apply only to a small subset of learning
algorithms (so called compression schemes). A related idea is studied in Bous-
quet and Elisseeff [2001] where the VC dimension as a complexity measure of
an hypothesis space H is replaced by the robustness of the learning algorithm
A used. The robustness of an algorithm A measures by how much the training
error of the learned classifier A (z) is changing when adding one additional obser-
vation, i.e. maxz=(x,y) |Remp [A (z) ,z]−Remp [A (z ∪ z) ,z ∪ z]|. According to
intuition, whenever a learning algorithm is very robust we have small deviation
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between generalisation and training error for the classifiers learned although the
VC dimension of the hypothesis class used might have been infinite.

Finally, it is worthwhile noticing that this result does not deny the importance
of inductive principles. Although we know that within a good model H there are
many classifiers with a provably small generalisation error, there might exist pro-
cedures (the maximum margin algorithm is one such procedure) that single out
classifiers with small generalisation error bounds for most random draws of the
training sample z. A potential candidate for formulating such inductive princi-
ples is the luckiness framework Shawe-Taylor et al. [1998], which was recently
extended to include an explicit dependency on the learning algorithm Herbrich
and Williamson [2002].

4 Experimental Results for Linear Classifiers

In order to complement the above theoretical analysis let us empirically evaluate
the distribution of generalisation errors over version space members. Let us con-
sider the hypothesis class H provided by linear classifiers in feature space K ⊆ `n

2

as used in SVMs. Each hypothesis is given by

hw (x) = sign (〈φ (x) ,w〉) = sign (〈x,w〉) , (10)

where φ : X → K ⊆ `n
2 is a mapping1 from the input space X to the feature

space K. Note that it is sufficient to consider weight vectors w ∈ K of unit
length, i.e. w ∈ W, W = {w ∈ K | ‖w‖ = 1}, because for any positive constant

∀λ > 0 : hw = sign (〈x,w〉) = sign (〈x, λw〉) = hλw .

Ergo, the hypothesis space H is isomorphic to the unit sphere W ⊂ `n
2 (see also

Figure 1). If the objective function optimised by the learning algorithm depends
only on the inner products of the weight vector w with all the mapped training
points it can be shown that it is sufficient to consider normal vectors w ∈ W
that are linearly expandable in the training points [Kimeldorf and Wahba, 1970,
Schölkopf et al., 2001],

w =
m∑

i=1

αixi .

As a consequence, each hypothesis h can be written in terms of α ∈ Rm, i.e.

hα (x) = sign

(
m∑

i=1

αi 〈xi,x〉

)
= sign

(
m∑

i=1

αik (xi, x)

)
,

1 We abbreviate φ (x) by x always assuming φ to be fixed. This, however, should not be
confused with the training sample x ∈ Xm.
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Fig. 1: (Left) The hypothesis space H of linear classifiers for a 3–dimensional
feature space K. Each point on the unit sphere is the weight vector w ∈ W
of a linear classifier hw (see (10)). The convex polyhedron on top is a
version space V (z); the length of the gray line is proportional to the
normalised margin Γz (hw) of the classifier on top of the sphere. (Right)
Three data points x1, x2 and x3 in a 3–dimensional feature space K ⊆ `32.
Note that the planes in the left picture are incurred by each of the three
training points by {w ∈ K | 〈x,w〉 = 0}. Using exactly the same rule, each
point w ∈ W on the unit sphere in the left picture induces a decision plane
{x ∈ K | 〈x,w〉 = 0} in feature space.

where the inner product function k : X ×X → R is also known as the kernel (see,
e.g. Vapnik [1995]). In practical application, it is often more convenient to select
the kernel than the feature mapping φ.

4.1 The Kernel Gibbs Sampler

In order to sample consistent classifiers uniformly from V (z) we suggest a Markov
Chain sampling method known as the kernel Gibbs2 sampler [Graepel and Her-
brich, 2001]. It is a variant of the well-known hit-and-run sampling algorithm
Smith [1984], which was recently shown to exhibit a fast mixing time of O

(
n3
)
,

where n is the dimensionality of the space Lovasz [1999]. The kernel Gibbs sam-
pler is applicable whenever PH|Zm=z is a piecewise constant density proportional

2 This should not be confused with the Gibbs classification strategy.
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Two data points y1x1 and y2x2

divide the space of normalised
weight vectors w ∈ W into four
equivalence classes with different
posterior density indicated by
the gray shading. In each iter-
ation, starting from wj−1 a ran-
dom direction v with v⊥wj−1

is generated. We sample from
the piecewise constant density
on the great circle determined by
the plane defined by wj−1 and v.
In order to obtain ζ∗, we calcu-
late the 2m angles ζi where the
training samples intersect with
the circle and keep track of the
number m · ei of training errors
for each region i.

Fig. 2: Schematic view of the kernel Gibbs sampling procedure.

to

L [h,z] = θm·Remp[h,z] (1− θ)m(1−Remp[h,z])
, for some θ ∈ [0, 1] . (11)

Note that this density arises from a Bayesian consideration of learning when
assuming that the classification is corrupted by label noise of level θ ∈ [0, 1], i.e.

PY|X=x,H=h (y) = θ · Iy 6=h(x) + (1− θ) Iy=h(x) . (12)

For a given value of the noise level θ and an arbitrary starting point w0 ∈ W,
the sampling scheme can be decomposed into the following steps (see also Figure
2):

1. Choose a direction v ∈ W in the tangent space {ṽ ∈ W | 〈ṽ,wj〉 = 0}.

2. Calculate all m hit points bi ∈ W from w in direction v with the hyperplane
having normal yixi. Before normalisation, this is achieved by [Herbrich
et al., 2001]

bi = wj −
〈wj ,xi〉
〈v,xi〉

v .
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Fig. 3: A set of 50 samples wj for various noise levels θ. Shown are the resulting
decision boundaries in input space X = R2.

3. Calculate the 2m angular distances ζi from the current position wj .

4. Sort the ζi in ascending order (resulting in a permutation Π : {1, . . . , 2m} →
{1, . . . , 2m} and calculate the training errors ei = Remp [hmi

,z] of the 2m
intervals

[
ζΠ(i−1), ζΠ(i)

]
by evaluating

mi = cos
(

ζΠ(i+1) − ζΠ(i)

2

)
wj − sin

(
ζΠ(i+1) − ζΠ(i)

2

)
v .

Here, we have defined ζΠ(2m+1) = ζΠ(1).

5. Sample an angle ζ∗ using the piecewise uniform distribution and (11). Cal-
culate a new sample wj+1 by wj+1 = cos (ζ∗)wj − sin (ζ∗)v.

6. Set j ← j + 1 and go back to step 1.

Since the algorithm is carried out in feature space K we use

w =
m∑

i=1

αixi , v =
m∑

i=1

νixi , b =
m∑

i=1

βixi .

For the inner products and norms it follows that 〈w,v〉 = α′Gν, ‖w‖2 = α′Gα,
where the m×m matrix G is known as the kernel or Gram matrix and is given
by Gij = 〈xi,xj〉 = k (xi, xj). In Figure 3 we have shown an application of the
kernel Gibbs sampler to some toy data in R2. As can be seen from these plots,
increasing the noise level θ leads to more diverse classifiers on the training sample
z. In the following we will fix the noise level θ to zero in order to sample version
space classifiers only. Other applications of this sampling algorithm are active
learning, transduction and confidence estimation with kernel classifiers.



275

4.2 Distribution of Generalisation Errors and Margins

Based on the MNIST dataset3 for images of “1” and “2” we generated well-
balanced training and test samples of size 118 and 453, respectively. In order
to explore the structure of version space we were interested in the distribution
of generalisation errors (estimated on the given test sample) and its relation
to the attained margin Γz (h). In Figure 4 (left) we plotted the distribution
of generalisation errors for l = 10000 samples w using different degrees of the
polynomial kernel

k (xi, xj) =
(
〈xi, xj〉X + 1

)p
, (13)

which produced excellent classifiers when used in SVM learning (popt = 5). In
order to reduce dependencies between successive samples w of the Markov chain
we used only one in ten samples thus effectively having leff = 1000 samples. For
any value of p considered there are at least 50% of consistent classifiers whose
generalisation error is smaller than the one found by the SVM (4) in accordance
with (6) and the egalitarian bound of Theorem 2. Surprisingly, with increasing
polynomial degree p the variance of the distribution keeps decreasing while only a
small increase of its mean can be observed beyond degree 5. Furthermore, using
the Bayes point machine algorithm that returns the “centre of mass” of version
space V (z) (see Herbrich et al. [2001]) or the SVM on the normalised training
sample in feature space K we seem to be able to find classifiers always within
the best 50% (◦ and ×). Both these algorithms aim at finding a solution at the
“centre” of version space V (z) in the sense of Γz (see (7)).

In Figure 4 (right) we additionally provide the distributions of generalisation
error for given attained margins Γz (h). As expected, almost all of the classifiers
h with a large margin Γz (h) do have a small generalisation error R [h]. The plot
also clarifies that large margins are only (probabilistically) a sufficient condition
for good generalisation ability and that there exist many consistent classifiers
with good generalisation error despite of their small margins. This is again in
accordance with the egalitarian bound of Theorem 2 keeping in mind that in high-
dimensional feature spaces K the uniform measure over volumes is concentrated
near the edges. Hence, most of the classifiers in version space V (z) do have a
small margin (see width of the box-plots) albeit exhibiting good generalisation.

5 Conclusion

The notion of version space plays a crucial rule both in the theoretical analysis
of learning algorithms and in their practical implementation. We have presented

3 publicly available at http://www.research.att.com/~yann/ocr/mnist/.
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Fig. 4: (Left) Box-plots of distributions of generalisation errors for l = 1000
samples w using different degrees in the polynomial kernel (13). The 4,
× and ◦ depict the generalisation errors of the SVM solution, the SVM
solution when normalising in feature space K and the Bayes point machine
solution (see text), respectively. (Right) Box-plots of distributions of
generalisation for different attained margins (7) when using a polynomial
kernel of degree 5. The width of each box-plot is proportional to the
number of samples on which it is based.

a theorem which shows that within a wisely chosen hypothesis space many con-
sistent classifiers show good generalisation irrespective of the maximisation of a
pre-specified complexity measure (luckiness) such as margin. Our empirical re-
sults strongly support this conclusion and give an intuition for the structure of
version space.

While the restriction to zero training-error classifiers may appear to be severe
at first glance, for linear classifiers this limitation is easily overcome by modifying
the kernel as follows:

kλ (xi, xj) = k (xi, xj) + λIxi=xj .

This trick—well known in SVMs as the quadratic soft-margin technique [Cortes
and Vapnik, 1995]—gradually (with increasing λ) decouples the training exam-
ples φ (xi) for learning and thus serves to create a version space even if the
training examples were not separable under the original kernel k. Furthermore,
it is straightforward to exploit Theorem 2 of McAllester [1998] so as to generalise
the egalitarian bound to any subset H of hypothesis space H. The difference
to the present result is that in this case for many classifiers the generalisation
error is effectively bounded by the training error plus the penalty − ln (PH (H)).
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In case most of the classifiers in hypothesis space exhibit a small training error
(PH (H) ≈ 1) we see that we get a conceptually similar result to Theorem 2.
Hence, our results also cover certain cases of inconsistent classifiers deemed so
important in practice.

It is worthwhile mentioning that a consequence of the above mentioned gen-
eralisation of Theorem 2 is that with high probability over the random draw of
the training sample for many classifiers in hypothesis space the deviation between
generalisation and training error is small. This result holds regardless of the VC
dimension of hypothesis space H used. The challenge is to find generalisation er-
ror bounds that indicate if this result also holds for the single classifier we learned
from the observed training sample.
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