Learning to Solve Game Trees

David Stern
Cambridge University, Cambridge, UK

Ralf Herbrich
Thore Graepel

Microsoft Research Ltd., Cambridge, UK

Abstract

We apply probability theory to the task of
proving whether a goal can be achieved by
a player in an adversarial game. Such prob-
lems are solved by searching the game tree.
We view this tree as a graphical model which
yields a distribution over the (Boolean) out-
come of the search before it terminates. Ex-
periments show that a best-first search al-
gorithm guided by this distribution explores
a similar number of nodes as Proof-Number
Search to solve Go problems. Knowledge is
incorporated into search by using domain-
specific models to provide prior distributions
over the values of leaf nodes of the game tree.
These are surrogate for the unexplored parts
of the tree. The parameters of these mod-
els can be learned from previous search trees.
Experiments on Go show that the speed of
problem solving can be increased by orders
of magnitude by this technique but care must
be taken to avoid over-fitting.

1. Introduction

We address the issue of proving whether goals can be
achieved by a player in an adversarial game. The task
is to prove that a player (the ‘attacker’) can achieve
the goal whatever the actions of the opponent (the
‘defender’). Such problems are solved by searching
the state space (the game tree) (Pearl, 1984; Russell
& Norvig, 1995).

We assume every node in the game tree has an under-
lying ‘Delphic’ value: the Boolean value that would be
returned by an oracle with perfect knowledge (Palay,

Appearing in Proceedings of the 24" International Confer-
ence on Machine Learning, Corvallis, OR, 2007. Copyright
2007 by the author(s)/owner(s).

DHS26@QCAM.AC.UK

RHERB@QMICROSOFT.COM
THOREGQMICROSOFT.COM

1985). This value is TRUE for a node if the goal can
be provably achieved in the corresponding position and
FALSE if the goal cannot be achieved. After fully ex-
ploring the tree we can determine by logical deduction
the value of the root node. In this case the tree is
‘solved’ and search terminates. During a search the
values of some nodes are not yet determined and we
can quantify the uncertainty about these values using
probabilities. We assign a probability of 1 to every
TRUE node and probability 0 to every FALSE node.
All other nodes have some probability between 0 and 1
which represents a degree of belief about whether the
node is TRUE (see Section 3).

By placing prior distributions on the values of the leaf
nodes of the game tree we can incorporate knowledge
into search. These distributions are surrogate for the
unexplored parts of the tree. As searches are per-
formed, nodes become proved as TRUE or FALSE and
these proofs can be used to update the surrogate dis-
tributions so future searches are more efficient.

A number of approaches using probability distribu-
tions to guide search in games have been suggested
(Palay, 1985; Baum & Smith, 1997; Russell & We-
fald, 1991). In these cases distributions are used to
model the uncertainty in the real-numbered value of
game states. In this work we are concerned with bi-
nary (WIN/LOSS) games for which the semantics of
a real-numbered state-value are unclear so we assume
the underlying Delphic value of a node can only be
TRUE or FALSE.

Many individual nodes must be solved recursively in
order to solve a game tree so each node represents a
search problem in its own right. This means that a
complex problem provides a rich source of information
about problem solving in general. In Section 4 we
apply these ideas to the game of Go. A Go position in
conjunction with the rules of the game contains all the
information necessary for perfect play but if we have
limited computational resources we must take care to

839



Learning to Solve Game Trees

extract only relevant information. The game tree gives
the structure required to extract this knowledge.

This type of supervised learning is unusual because it is
the agent itself generating the observations. However,
as long as we make our inferences based entirely on
our probabilistic model (the search tree) and on which
nodes are observed to be TRUE or FALSE we receive
the full protection of the likelihood principle (MacKay,
2003): it is not possible to bias our models by the fact
we are selectively exploring the state space because
all proofs and disproofs we observe are objective facts
about the domain.

2. Search in Games
2.1. AND / OR Trees'

Let the set of possible positions in a game be
N. A problem is defined by its ‘goal’, g :
N — {TRUE, FALSE, UNKNOWN}. Each position
n € N has a set of legal successor positions, £(n),
each of which can be generated by an action of a player
(a move). Two players, ‘attacker’ and ‘defender’, take
it in turns to move. We are concerned with proving
whether the attacker can reach a state in which the
goal is TRUE taking into account all possible actions
of ‘defender’. The (Boolean) result of this proof is the
Delphic value of the node and is denoted d(n) where
d: N — {TRUE, FALSE}.

Starting at a root position r € AN we ‘develop’ it
by generating each legal successor position (its ‘chil-
dren’). In this way we begin to generate a search
tree, T := {N, £}, which represents possible (directed)
paths through state space. Each edge e € £ corre-
sponds to a transition between states (a move). We
refer to the set of children of a node n as ch(n) and
the parent of a node ¢ as pa(c). Once a position is
developed it is called an ‘internal’ node otherwise it
is a ‘leat’ node. Leaf nodes, I, where g(I) is TRUE
or FALSE are called ‘terminal’ nodes. We iterate the
process of developing non-terminal leaf positions to ex-
pand the search tree.

The values of previously explored paths through
state space are represented as an AND/OR Tree
(AOT) (Nilsson, 1971). Each node n € N
in the AOT is labelled with a value v(n) €
{TRUE, FALSE, UNKNOWN}. If v(n) is TRUE or
FALSE then node n is ‘solved’ and v(n) = d(n). An
AOT has two types of nodes: OR nodes and AND

TWe use the common convention of referring to the search
graph as a ‘tree’. In fact a game corresponds to a directed
acyclic graph because it is possible for the same state to be
reached via different paths.

Figure 1. And / Or Tree with truth values of nodes labelled.
The arcs underneath some of the nodes indicate that they are
AND nodes. The other nodes are OR nodes.

nodes. For a given tree with values assigned to the leaf
nodes we determine the values of the internal nodes by:

AR

cech(n)

\/ v(c).

cech(n)

AND node: v(n) =
OR node: v(n) =

The AND operator (A) is defined such that if any child
of a node is FALSE then the node is FALSE, oth-
erwise if any child is UNKNOWN then the node is
UNKNOWN, otherwise it is TRUE. The OR opera-
tor (V) is defined such that if any child of a node is
TRUE then the node is TRUE, otherwise if any child
is UNKNOWN the node is UNKNOWN, otherwise it
is FALSE; see Figure 1 for an example tree.

Each AND node corresponds to a position in which it
is the defender’s turn to move (because every defender
response must be considered to prove that the goal can
be achieved). Each OR node corresponds to a position
in which it is the attacker’s turn to move (because
only one working attacker move must be found in each
position along the path to the solution). This scheme
is equivalent to the minimax algorithm with a binary
valued evaluation function (Russell & Norvig, 1995).

If the root has value TRUE or FALSE then the tree is
‘solved’ and the value of the tree is the value of its root.
If a tree has value TRUE it is ‘proved’, if it has value
FALSE it is ‘disproved’. If no children can be added to
a leaf node (because no legal moves are available) then
it has value FALSE if it is an AND node and TRUE
if it is an OR node.

In this work we focus on best-first search. At each
step in a best-first search the most promising node

840



Learning to Solve Game Trees

[1.2] [0,00] [1,1]  [1,1]

[00,0] [00.0]

[11] [1,1] [11]

[1,1] [1,1]

Figure 2. And / Or Tree with proof and disproof numbers la-
belled as [PN,DN]. The path to the most proving leaf is shown.

(according to some criteria) is developed. This is in
contrast to depth-first search where the search tree
is enumerated up to some fixed depth. In practice
depth first search has proved much more successful in
game playing applications because of the difficulty of
move selection. However, using depth as the criterion
for terminating search may result in a great deal of
wasted computational effort by not concentrating on
important lines of play. Both depth-first and best-first
methods suffer from the horizon effect: important lines
of play may be terminated before they are played out
leading to a poor estimation of the value of the root
(Palay, 1985).

2.2. Go

AOTs can be used to describe problems in the game
of Go?. Go is an ancient oriental board game of two
players, ‘Black’ and ‘White’ (Miiller, 2002). The play-
ers take turns to place stones on the intersections of
a grid with the aim of making territory by surround-
ing areas of the board. All the stones of each player
are identical. Once placed, a stone is not moved but
may be captured (by being surrounded with opponent
stones). We focus on the task of solving a class of
Go problems called tesuji® problems where the goal in
each case is to capture a particular stone on the board
(Davies, 1975) (Figure 7). For these problems g(n) is
TRUE if the goal vertex is empty in position n.

2 A great deal of information about Go can be found at
http://www.gobase.org.

3A tesuji is the best play in a certain local position. These
moves have names such as the ‘net’, the ‘ladder’, the ‘cranes
nest’ etc. Tesuji problems are used in teaching a player these
standard plays.

Figure 3. Search tree as Bayesian network. Each node is la-
belled with its probability of being TRUE. The estimated path
of best play is also labelled - notice it is the same as the path
followed by PNS (Figure 2).

2.3. Proof Number Search

We compare our techniques to Proof Number search
(PNS) (Allis, 1994), a state-of-the-art best-first search
algorithm for finding solutions to problems represented
as AOTs. Two numbers are assigned to each node: the
proof number (PN) and the disproof number (DN).
The PN of a node is defined as the minimum number
of nodes that must be developed in order to prove that
node.

> cech(n) PNe if internal AND node,
min e () PNe if internal OR node,
PN,, = 0 if g(n) = TRUE,
00 if g(n) = FALSE.
1 if UNKNOWN leaf node

By symmetry the rules for propagating DNs are the
same as the rules for PNs if we exchange OR for AND
and TRUE for FALSE. Figure 2 shows an AOT with
proof and disproof numbers labelled. Given a search
tree the next node to develop is determined by working
down the tree from the root, selecting the child with
the lowest PN at each OR node and the child with the
lowest DN at each AND node. Once a leaf is reached
it is developed and then the PNs and DNs are prop-
agated up to the root. This process is repeated until
the tree is solved.

3. Search and Inference

Probability propagation (PP) applies the rules of prob-
ability to calculating a belief distribution over the Del-
phic values of nodes in the tree. We assume that the

841



Learning to Solve Game Trees

10° .~
..
/ ..
10't gt
.f' H
2 N
° v
o 3| g
z 10 -~
e
o o
10°F
X .
10'F
100 L L L L L
10° 10" ? 10° 10 10° 10°
PNS Nodes

Figure 4. Comparing the number of nodes developed in order
to solve a set of tesuji Go problems.

value of each child of a node is distributed indepen-
dently of the states of its siblings. This assumption
may frequently be violated (for example in a game tree
the values of siblings are likely to be correlated as once
the player is in a strong position there are likely to be
many good moves available). This seems more likely
to be a problem for global (strategic) search of the
game tree rather than local, tactical search, to which
the ideas presented here seem more applicable.

For each node, n, we store the probability of it be-
ing TRUE: P, := P(d(n)=TRUE),n € N. If a
node has value FALSE the probability P, = 0, if it
has value TRUE then P, = 1. If the node is UN-
KNOWN then the probability represents our degree
of belief about the value of the node being TRUE. In-
ference is achieved by simple propagation rules (Pearl,
1984; Chi & Nau, 1988):

AND:P, = P A do|= ][] ~ (1)
cech(n) cech(n)
OR:P, = P| \/ do)| =P~ A\ -dc)

cech(n) c€ch(c)

cech(c)

The Bayesian network for the model is shown in Figure
3. The joint distribution of the Delphic values of all
nodes in the game tree is:

[T 7 (a0l {de)} ceani) TT PE)

neN\F leF
(3)

P(N) =

1- I a-r). (2)

where F is the set of leaves (the search fron-
tier). For an AND node, P(d(n)[{d(c)}.ccnmn)) =
I(d(n) = Accenm)d(c)) and for an OR node
P(d(n)| {d(c)}cech(n)) = H(d(n) = \/CECh(n) d(C)) For
TRUE or FALSE nodes the priors on the leaf val-
ues, P(d(l)) are set to 1 or 0 respectively. For UN-
KNOWN leaves the priors represent our prior belief
about whether the node is TRUE or FALSE (set to
0.5 in initial experiments).

The Algorithm The game tree is explored by the
best-first search procedure described in the algorithm
boxes. At each step the best node to expand is se-
lected by starting at the top of the tree and working
downwards following the path of best play (according
to current beliefs). There are two ways in which new
observations can change the planned sequence of ac-
tions - by reducing the value of the current plan or by
increasing the value other actions so as to make them
preferable (Russell & Wefald, 1991). Our method ex-
plores the first of these possibilities.

To implement the propagation rules we represent the
probabilities as log-odds ratios, logodds(p) := L(p) :=
ln(%). This uses the full floating point range to rep-
resent L(p), with high precision at both ends of the
range (corresponding to probabilities close to 1 or 0).
The log-probability domain is not suitable as it has
poor accuracy for probabilities close to 1 which are
readily generated by the OR rule in large problems.

Algorithm 1 FindBestNode(n)

if n is leaf then

return n
else if n is AND node then

return FindBestNode(argmin, ¢ () {7 })
else

return FindBestNode(argmax, cp,(n){Fc})
end if

Algorithm 2 UpdateBeliefs(n)
if n is AND node then
Calculate P, via (1)
else
Calculate P, via (2)
end if
UpdateBeliefs(pa(n))

Experiments (See Section 5.1 and Figure 4) show that
PP and PNS must expand roughly the same number of
nodes to solve Go problems. Comparing figures 2 and
3 it can be seen that PP and PNS are similar strate-
gies. Both methods avoid exploring branches of the

842



Learning to Solve Game Trees

Algorithm 3 Develop(n)
ch(n) := L(n)
for all ¢ € ch(n) do
if g(c) TRUE then

P.:=1.0
else if g(c¢) FALSE then
P.:=0.0
else
P == p(d(c)) (prior)
end if
end for

Algorithm 4 Search
while p.oot < 1.0 do
n = FindBestNode(root)
Develop(n)
UpdateBeliefs(pa(n))
end while

tree leading to AND nodes with many children (due
to the fact that a proof of such a branch would involve
proving more nodes in total). PP differs from PNS in
that it has an affinity for developing OR nodes with
many children (due to the fact that each child of an
OR node represents an independent additional chance
of finding a proof of the parent). That is, PP tends to
explore parts of the search tree where player has more
moves available and opponent has fewer moves avail-
able. Thus PP seems to recover an intuitive heuristic:
mobility.

4. Search and Knowledge

Search is a process of observation. The search algo-
rithm is initialised with some prior beliefs about the
leafs of the tree. These prior distributions are surro-
gate for the as-yet unexplored parts of the tree. There
is a trade-off between search and knowledge: the more
accurate the prior beliefs the fewer states the searcher
must explore to find a proof. When search termi-
nates the parameters each surrogate prior distribution,
p(d(l)) can be updated according to the final value of
the node, d(1), determined by the search. If the vector
1 denotes all of the nodes in all of the searches then the
joint likelihood is given by p(d(1)|q) = [], p(d(l;)|q).
The parameters q are shared across nodes (depending
on which common patterns match) so generalisation
across different positions and search tasks is possible.

4.1. Pattern Matching

Exact local pattern matching gives a rapid and sur-
prisingly accurate Go move predictor (Stern et al.,

715 |7

614]3|4]|6
714 1 4|7
513 | &P iy 3|5
714 1 4|7
614)3|4]6
715|7

Figure 5. The sequence of nested pattern templates T; with ¢ €

{0,...,7}.

2006). In this paper we apply this technique to rep-
resent knowledge in search. A pattern is defined as
the exact arrangement of stones in a sub-region of
the board centred on the empty location of the board
where a move is to be made. We define a set of fixed
nested ‘templates’ T; € 7 (Figure 5). Each template
T; is a mask which determines the sub-region of the
board within which the arrangement of stones (of size
1) must match for the pattern to be present. Size 1
is the smallest template (just the point at which the
move is made) and Size 7 is the largest. Therefore
each move in a Go position corresponds to a stack of
8 patterns of nested sizes. Each pattern maps to an
efficiently generated hash key such that the patterns
are invariant to the 8-fold symmetry of the square. In
contrast to our earlier work, here each pattern vertex
has five states (attacker stone, defender stone, empty
vertex, off-board, goal stone) and the patterns are not
invariant to colour reversal.

Nodes (positions) are mapped to patterns via the move
which generated the node. Let the stack of all patterns
which match for a node n be denoted by m(n). Each
pattern defines a many-to-one mapping from search
tree nodes to a look-up table, H, via the hash key.
This table can be viewed as a partial-transposition ta-
ble. A transposition table (TP) is a tool used in most
practical game search implementations which contains
the values of all board positions that previously ap-
peared in the search so if a position is encountered
again the information already gathered about it can
be exploited (Plaat et al., 1986). In this work we
do not map from positions to TP entries but instead
from patterns (partial positions) to table entries. This
partial matching allows generalisation across different
search tasks which is bought at the cost of uncertainty
- hence the entries in the partial-TP are probability
distributions.

When a node, n, is developed and its children ¢ € L£(n)
are added to the tree then the patterns for each pattern
template T' € 7 centred on the moves which generate
these children are harvested, i.e. added to H.

843



Learning to Solve Game Trees

p(x26]712)

= N (2263 212, 37)

I’(Jflz\l'tm)
:N<w122$00-,£3t21)

p(zo0) = N (200; pto, 03)

Figure 6. Hierarchical Pattern Model. In this case there are 11
patterns in total in the hierarchy in 3 levels. The full system has
8 levels in the hierarchy. The diagram shows 11 observations.

4.2. Surrogate Tree Models

Beta Model Let #(l) denote the largest pattern
(which has been observed at least once before) match-
ing for node [. The prior distribution on the value
of a leaf node, p(d(l)), is distributed according to
a Bernoulli distribution, p(d(1)|gx))= Ber(d(l); ¢z«))-
The parameter ¢ represents a prior belief about the
node being TRUE. We place a Beta prior on gz,
p(gz))= Beta(gzy; @z(1), Bx1y). This gives the pre-
dictive distribution p(d(l)|azay, Bry) = %
and the parameters o) and ;) are pseudo-counts
corresponding to the number of observed proofs and
disproofs respectively of all nodes where 7 (1) is found
to match.

After search termination, the posterior distribution
over the parameter p(ql|d(l)) is Beta(q; o’ g, Bs)
with o/ = a+1if d(l) = TRUE and g/ = 8+ 1 if
d(l) = FALSE. This update is applied for all elements
of w(n) for each solved node, n, in the tree.

Hierarchical Gaussian Model We also considered
a model which takes account of the entire stack of pat-
terns that match at a vertex. Intuitively the evidence
provided by a larger pattern should dominate over the
evidence from a smaller pattern at the same location
because the larger pattern contains all the informa-
tion of the smaller pattern plus additional information.
However, the smaller patterns should be allowed to in-
fluence the value of the larger patterns in cases where
the larger patterns have been seen infrequently.

First we define a hierarchical model of the value of Go
moves. Let the set of the values of all the (infinite)
possible observations of all possible Go moves in all
possible positions be ). Also, let the set of (latent)
values of all possible patterns of all sizes be X. Each

member of X shall be denoted x;; where z;; is the
value of the jth pattern of size i. The index of the
smallest pattern size is 0 so the value of the smallest
(zero sized) pattern is zgp. The largest pattern size
is m (in the experiments here m = 7). An observed
value, y; € ), is the kth observation of the jth full
board position. The joint distribution is:

pIV,X) = p(X)- p(YX)
= plaoo) [T [T I]pCnilzn-1)
h=1 k j
'HHp(yqilan)
q 1
where  p(xi;|Ti—1);) N(xij;x(i_l)j,ﬂffl),

PWijlani) = N(yijizni1) and  p(re) =
N (xoo; pto,03).  Figure 6 shows a corresponding
graphical model with m = 3. The variance param-
eters, 32, correspond to the variability of the latent
value of patterns of sizes ¢ + 1 about the value of the
size ¢ pattern that also matches and are estimated
empirically. The predictive (Gaussian) distribution
over the move-value y;; is determined by belief
propagation (MacKay, 2003).

In order to use this model as a prior over the proba-
bility of a leaf node, n, being TRUE in the search tree
we introduce the conditional distribution p(d(n)|y) =
fswiten(d(n), y) = 1((y > 0)Ad(n)) +1((y < 0) A~d(n))
(we observe the constraint that a TRUE node has posi-
tive value and a FALSE node has negative value). This
corresponds to letting the probability of a node being
proved TRUE be the area under the positive orthant
of the Gaussian belief: p(d(n)|u,o) = Ber(d(n),1 —
®(0; 1, 0?)) for p(y) = N(y; u,0). After search termi-
nation, for a node with value d(n) and a belief from
the hierarchical model of A (y; i, 0?) the update is:

_ fswiten(d(n), ) 'N(y;,u,az).

This is non-Gaussian so we approximate it by the
Gaussian closest in terms of KL divergence. Following
this approximation inference is by belief propagation.

5. Experiments: PNS vs PP

PNS and PP are applied to the task of solving a set
of Go problems which we know in advance all have a
TRUE solution. A disproof criterion was defined based
on the liberty count of the goal stone. The number of
liberties of a stone is the minimum number of stones
that must be played to capture it. The goal function

844



Learning to Solve Game Trees

W o
Tée {igf
2

-

[

The Knight’s-Move Tesuji The Nose Tesuji

Figure 7. Example tesuji capture problems (Davies, 1975). The
goal is to capture the stones marked with a triangle.

was set as
TRUE if goal vertex empty,
(n) = TRUE if a ladder works,
g\ = FALSE if liberties of goal > L,
UNKNOWN otherwise

If search terminates with value FALSE then L is in-
cremented and the search repeated. This process is
repeated until the search terminates with value TRUE.

5.1. No Knowledge

Firstly the performance of PNS and PP with an ig-
norant prior (p(d(l)) = 0.5,] € F) are compared on
a set of 192 Go capture problems® (see Figure 4). In
most problems the two algorithms perform similarly
as discussed in Section 3.

5.2. Learning

In a second set of experiments we include additional
problems that could not be solved by PNS. These are
randomly divided into a training set (289 problems)
and a test set (145 problems). The pattern table, H,
is initially empty. During learning the searcher har-
vests patterns continuously. The prior distribution for
each new node is assigned using one of the surrogate
models described in Section 4.2, using the patterns to
determine the parameters of the models. Learning is
carried out by updating the posteriors over the param-
eters of the surrogate models after search termination
for moves leading to TRUE and FALSE nodes.

A time-out of 120s is set for each problem. The
searcher iterates over the training set re-attempting
problems that previously failed until as many prob-
lems as possible are solved. The result plots are gen-
erated by timing the solver on the test set and com-
paring these times with the time taken by PNS. Time
is used for comparison so additional cost associated

4These are also available at http://t-t.dk/madlab thanks to
Thomas Thomsen.

with pattern matching and inference is taken account
of. Problems that are solved after learning but could
not be solved by PNS are labelled as crosses on the
plots. Problems which could be solved by PNS but
not PP are labelled as circles on the plots. The dots
correspond to problems that could be solved by both
algorithms. Problems which could be solved by neither
algorithm are omitted.

The Beta model is tested (Figure 8 top) with two dif-
ferent initial settings for the prior parameters (o and
(). Learning improves the speed of problem solving,
sometimes by orders of magnitude. However, there
are a number of problems which fail after learning but
were able to be solved before learning suggesting over-
fitting. This problem is ameliorated by using a peaked
prior (Figure 8 right). The hierarchical model per-
forms somewhat better with less over-fitting (Figure 8
bottom). The left plot corresponds to an initial setting
of zero previous observations. The plot on the right
was generated by assigning prior beliefs as if a num-
ber of previous observations of p(d(l)) = 0.5 had been
made (compare with initialising the pseudo counts of
a Beta distribution).

6. Conclusions

Probability propagation as a means to solve Go prob-
lems appears to perform similarly to best-first proof-
number search. Experiments suggest it is possible to
learn from previous searches how to search faster by or-
ders of magnitude. However, great care must be taken
to prevent over-fitting.

Acknowledgements

We would like to thank David MacKay, Tom Minka and
Thomas Thomsen for interesting discussions. This work
was supported by a grant from Microsoft Research.

References

Allis, V. L. (1994). Searching for solutions in games
and artificial intelligence. Doctoral dissertation,
University of Limburg.

Baum, E. B., & Smith, W. D. (1997). A bayesian
approach to relevance in game playing. Artificial
Intelligence.

Chi, P., & Nau, D. (1988). Comparison of the minimax
and product back-up rules in a variety of games.
Search in Artificial Intelligence.

Davies, J. (1975).
pany.

Tesugi. Kiseido Publishing Com-

845



Learning to Solve Game Trees

10 10
+ All problems + All problems
X Newly Solved Problems X Newly Solved Problems
O Newly Failed Problems O Newly Failed Problems
10° O @ 000 OO OO OCwrmm 4 10° OO0 CO. 00 O O o0 i
. e X
x £
X
10 E 10°F y E
[} x %)
° k]
c c
[} X o
o o X
Q3 Q3
£ 10°F E 9 10°F E
s x =
o a8
o 2 o 2
10°F El 10°F E|
10 E 10 4
0 0
10 I I I I I 10 I I I I I
10° 10* 10° 10° 10* 10° 1 10° 10* 10° 10° 10* 10° 10°
PNS Milliseconds PNS Milliseconds
10° 10°
+ All problems * All problems
% Newly Solved Problems| % Newly Solved Problems|
O Newly Failed Problems O Newly Failed Problems
10° CCO@O® OO0 O U 4 10° [exeNye] O Og 4
4 T
10k E| 10k X e
[%) %) .
° ° ot
c <
[=] Q
g ; g :
® 10° % 4 n 10°% il
= x = .t .
= =
o a8 v
o, o, o
10°F . E 10°F . E
.
10t E 10 4
0 0
10 I I I I I 10 I I I I I
10° 10* 10° ° 10* 10° 1 10° 10* 10° ° 10* 10° 10°

10 10
PNS Milliseconds PNS Milliseconds

Figure 8. Time taken to solve Go problems - PNS vs PP. Top Left: Beta model. prior ag = 1,80 = 1 (27 problems newly failed,
6 problems newly solved, mean speedup factor: 45.9); Top Right: Beta model, prior ag = 1000, 89 = 1000 (13 problems newly
failed, 8 newly solved, speed, mean speedup factor: 30.7). Bottom Left: Hierarchical , uniform prior (21 newly failed, 5 newly
solved, mean speedup factor: 135.5); Bottom Right: Hierarchical model, prior hand tuned to reduce learning rate (5 newly failed,
14 newly solved, mean speedup factor: 8.8).

MacKay, D. J. C. (2003). Information theory, infer- Proceedings of the Thirteenth National Conference
ence and learning algorithms. Cambridge University on Artificial Intelligence (AAAI-96) (pp. 234-239).
Press. Portland, OR.

Miiller, M. (2002). Computer Go. Artificial Intelli-  Russell, S., & Norvig, P. (1995). Artificial intelligence:
gence, 134, 145-179. A modern approach. Prentice Hall.

Nilsson, N. J. (1971). Problem solving in artificial in-  Russell, S., & Wefald, E. (1991). Do the right thing:
telligence. McGraw-Hill. Studies in limited rationality. The MIT Press.

Palay, A. J. (1985). Searching with probabilities. Pit- Stern, D., Herbrich, R., & Graepel, T. (2006).
man Publishing Ltd. Bayesian pattern ranking for move prediction in the

o ) game of Go. ICML °06: Proceedings of the 23rd

Pea.rl, J. (1984). Heuristics: Inte.llzgent .siear(:h strate- international conference on Machine learning (pp.

gies for computer problem solving. Assison-Wesley. 873-880). New York, NY, USA: ACM Press.

Plaat, A., Schaeffer, J., Pijls, W., & de Bruin, A.
(1986). Exploiting graph properties of game trees.

846



