
Learning to Solve Game TreesDavid Stern dhs26�
am.a
.ukCambridge University, Cambridge, UKRalf Herbri
h rherb�mi
rosoft.
omThore Graepel thoreg�mi
rosoft.
omMi
rosoft Resear
h Ltd., Cambridge, UKAbstra
tWe apply probability theory to the task ofproving whether a goal
an be a
hieved bya player in an adversarial game. Su
h prob-lems are solved by sear
hing the game tree.We view this tree as a graphi
al model whi
hyields a distribution over the (Boolean) out-
ome of the sear
h before it terminates. Ex-periments show that a best-�rst sear
h al-gorithm guided by this distribution exploresa similar number of nodes as Proof-NumberSear
h to solve Go problems. Knowledge isin
orporated into sear
h by using domain-spe
i�
 models to provide prior distributionsover the values of leaf nodes of the game tree.These are surrogate for the unexplored partsof the tree. The parameters of these mod-els
an be learned from previous sear
h trees.Experiments on Go show that the speed ofproblem solving
an be in
reased by ordersof magnitude by this te
hnique but
are mustbe taken to avoid over-�tting.1. Introdu
tionWe address the issue of proving whether goals
an bea
hieved by a player in an adversarial game. The taskis to prove that a player (the `atta
ker')
an a
hievethe goal whatever the a
tions of the opponent (the`defender'). Su
h problems are solved by sear
hingthe state spa
e (the game tree) (Pearl, 1984; Russell& Norvig, 1995).We assume every node in the game tree has an under-lying `Delphi
' value: the Boolean value that would bereturned by an ora
le with perfe
t knowledge (Palay,Appearing in Pro
eedings of the 24 th International Confer-en
e on Ma
hine Learning, Corvallis, OR, 2007. Copyright2007 by the author(s)/owner(s).

1985). This value is TRUE for a node if the goal
anbe provably a
hieved in the
orresponding position andFALSE if the goal
annot be a
hieved. After fully ex-ploring the tree we
an determine by logi
al dedu
tionthe value of the root node. In this
ase the tree is`solved' and sear
h terminates. During a sear
h thevalues of some nodes are not yet determined and we
an quantify the un
ertainty about these values usingprobabilities. We assign a probability of 1 to everyTRUE node and probability 0 to every FALSE node.All other nodes have some probability between 0 and 1whi
h represents a degree of belief about whether thenode is TRUE (see Se
tion 3).By pla
ing prior distributions on the values of the leafnodes of the game tree we
an in
orporate knowledgeinto sear
h. These distributions are surrogate for theunexplored parts of the tree. As sear
hes are per-formed, nodes be
ome proved as TRUE or FALSE andthese proofs
an be used to update the surrogate dis-tributions so future sear
hes are more e�
ient.A number of approa
hes using probability distribu-tions to guide sear
h in games have been suggested(Palay, 1985; Baum & Smith, 1997; Russell & We-fald, 1991). In these
ases distributions are used tomodel the un
ertainty in the real-numbered value ofgame states. In this work we are
on
erned with bi-nary (WIN/LOSS) games for whi
h the semanti
s ofa real-numbered state-value are un
lear so we assumethe underlying Delphi
 value of a node
an only beTRUE or FALSE.Many individual nodes must be solved re
ursively inorder to solve a game tree so ea
h node represents asear
h problem in its own right. This means that a
omplex problem provides a ri
h sour
e of informationabout problem solving in general. In Se
tion 4 weapply these ideas to the game of Go. A Go position in
onjun
tion with the rules of the game
ontains all theinformation ne
essary for perfe
t play but if we havelimited
omputational resour
es we must take
are to
839

Learning to Solve Game Treesextra
t only relevant information. The game tree givesthe stru
ture required to extra
t this knowledge.This type of supervised learning is unusual be
ause it isthe agent itself generating the observations. However,as long as we make our inferen
es based entirely onour probabilisti
 model (the sear
h tree) and on whi
hnodes are observed to be TRUE or FALSE we re
eivethe full prote
tion of the likelihood prin
iple (Ma
Kay,2003): it is not possible to bias our models by the fa
twe are sele
tively exploring the state spa
e be
auseall proofs and disproofs we observe are obje
tive fa
tsabout the domain.2. Sear
h in Games2.1. AND / OR Trees1Let the set of possible positions in a game be
N . A problem is de�ned by its `goal', g :
N → {TRUE, FALSE, UNKNOWN}. Ea
h position
n ∈ N has a set of legal su

essor positions, L(n),ea
h of whi
h
an be generated by an a
tion of a player(a move). Two players, `atta
ker' and `defender', takeit in turns to move. We are
on
erned with provingwhether the atta
ker
an rea
h a state in whi
h thegoal is TRUE taking into a

ount all possible a
tionsof `defender'. The (Boolean) result of this proof is theDelphi
 value of the node and is denoted d(n) where
d : N → {TRUE,FALSE}.Starting at a root position r ∈ N we `develop' itby generating ea
h legal su

essor position (its `
hil-dren'). In this way we begin to generate a sear
htree, T := {N , E}, whi
h represents possible (dire
ted)paths through state spa
e. Ea
h edge e ∈ E
orre-sponds to a transition between states (a move). Werefer to the set of
hildren of a node n as ch(n) andthe parent of a node c as pa(c). On
e a position isdeveloped it is
alled an `internal' node otherwise itis a `leaf' node. Leaf nodes, l, where g(l) is TRUEor FALSE are
alled `terminal' nodes. We iterate thepro
ess of developing non-terminal leaf positions to ex-pand the sear
h tree.The values of previously explored paths throughstate spa
e are represented as an AND/OR Tree(AOT) (Nilsson, 1971). Ea
h node n ∈ Nin the AOT is labelled with a value v(n) ∈
{TRUE, FALSE, UNKNOWN}. If v(n) is TRUE orFALSE then node n is `solved' and v(n) = d(n). AnAOT has two types of nodes: OR nodes and AND1We use the
ommon
onvention of referring to the sear
hgraph as a `tree'. In fa
t a game
orresponds to a dire
teda
y
li
 graph be
ause it is possible for the same state to berea
hed via di�erent paths.

TT FT T T T ? FT F ? ? T F FT TFigure 1. And / Or Tree with truth values of nodes labelled.The ar
s underneath some of the nodes indi
ate that they areAND nodes. The other nodes are OR nodes.nodes. For a given tree with values assigned to the leafnodes we determine the values of the internal nodes by:AND node: v(n) =
∧

c∈ch(n)

v(c)OR node: v(n) =
∨

c∈ch(n)

v(c).The AND operator (∧) is de�ned su
h that if any
hildof a node is FALSE then the node is FALSE, oth-erwise if any
hild is UNKNOWN then the node isUNKNOWN, otherwise it is TRUE. The OR opera-tor (∨) is de�ned su
h that if any
hild of a node isTRUE then the node is TRUE, otherwise if any
hildis UNKNOWN the node is UNKNOWN, otherwise itis FALSE; see Figure 1 for an example tree.Ea
h AND node
orresponds to a position in whi
h itis the defender's turn to move (be
ause every defenderresponse must be
onsidered to prove that the goal
anbe a
hieved). Ea
h OR node
orresponds to a positionin whi
h it is the atta
ker's turn to move (be
auseonly one working atta
ker move must be found in ea
hposition along the path to the solution). This s
hemeis equivalent to the minimax algorithm with a binaryvalued evaluation fun
tion (Russell & Norvig, 1995).If the root has value TRUE or FALSE then the tree is`solved' and the value of the tree is the value of its root.If a tree has value TRUE it is `proved', if it has valueFALSE it is `disproved'. If no
hildren
an be added toa leaf node (be
ause no legal moves are available) thenit has value FALSE if it is an AND node and TRUEif it is an OR node.In this work we fo
us on best-�rst sear
h. At ea
hstep in a best-�rst sear
h the most promising node
840

Learning to Solve Game Trees?[2,2℄?[2,2℄ F [∞,0℄?[1,3℄ ? [1,2℄ T[0,∞℄ ?[1,1℄ ?[1,1℄ F [∞,0℄?[1,1℄ ?[1,1℄ ?[1,1℄ ?[1,1℄ ? [2,1℄ F[∞,0℄ F[∞,0℄?[1,1℄ ?[1,1℄Figure 2. And / Or Tree with proof and disproof numbers la-belled as [PN,DN℄. The path to the most proving leaf is shown.(a

ording to some
riteria) is developed. This is in
ontrast to depth-�rst sear
h where the sear
h treeis enumerated up to some �xed depth. In pra
ti
edepth �rst sear
h has proved mu
h more su

essful ingame playing appli
ations be
ause of the di�
ulty ofmove sele
tion. However, using depth as the
riterionfor terminating sear
h may result in a great deal ofwasted
omputational e�ort by not
on
entrating onimportant lines of play. Both depth-�rst and best-�rstmethods su�er from the horizon e�e
t : important linesof play may be terminated before they are played outleading to a poor estimation of the value of the root(Palay, 1985).2.2. GoAOTs
an be used to des
ribe problems in the gameof Go2. Go is an an
ient oriental board game of twoplayers, `Bla
k' and `White' (Müller, 2002). The play-ers take turns to pla
e stones on the interse
tions ofa grid with the aim of making territory by surround-ing areas of the board. All the stones of ea
h playerare identi
al. On
e pla
ed, a stone is not moved butmay be
aptured (by being surrounded with opponentstones). We fo
us on the task of solving a
lass ofGo problems
alled tesuji3 problems where the goal inea
h
ase is to
apture a parti
ular stone on the board(Davies, 1975) (Figure 7). For these problems g(n) isTRUE if the goal vertex is empty in position n.2 A great deal of information about Go
an be found athttp://www.gobase.org.3A tesuji is the best play in a
ertain lo
al position. Thesemoves have names su
h as the `net', the `ladder', the `
ranesnest' et
. Tesuji problems are used in tea
hing a player thesestandard plays.

?0.5469
?0.5469 F 0.0?0.875 ? 0.625 T1.0 ?0.5 ?0.5 F 0.0?0.5 ?0.5 ?0.5 ?0.5 ? 0.25 F0.0 F0.0?0.5 ?0.5Figure 3. Sear
h tree as Bayesian network. Ea
h node is la-belled with its probability of being TRUE. The estimated pathof best play is also labelled - noti
e it is the same as the pathfollowed by PNS (Figure 2).2.3. Proof Number Sear
hWe
ompare our te
hniques to Proof Number sear
h(PNS) (Allis, 1994), a state-of-the-art best-�rst sear
halgorithm for �nding solutions to problems representedas AOTs. Two numbers are assigned to ea
h node: theproof number (PN) and the disproof number (DN).The PN of a node is de�ned as the minimum numberof nodes that must be developed in order to prove thatnode.

PNn =























∑

c∈ch(n) PNc if internal AND node,minc∈ch(n)PNc if internal OR node,
0 if g(n) = TRUE,

∞ if g(n) = FALSE.

1 if UNKNOWN leaf nodeBy symmetry the rules for propagating DNs are thesame as the rules for PNs if we ex
hange OR for ANDand TRUE for FALSE. Figure 2 shows an AOT withproof and disproof numbers labelled. Given a sear
htree the next node to develop is determined by workingdown the tree from the root, sele
ting the
hild withthe lowest PN at ea
h OR node and the
hild with thelowest DN at ea
h AND node. On
e a leaf is rea
hedit is developed and then the PNs and DNs are prop-agated up to the root. This pro
ess is repeated untilthe tree is solved.3. Sear
h and Inferen
eProbability propagation (PP) applies the rules of prob-ability to
al
ulating a belief distribution over the Del-phi
 values of nodes in the tree. We assume that the
841

Learning to Solve Game Trees

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
0

10
1

10
2

10
3

10
4

10
5

10
6

PNS Nodes

P
P

N
od

es

Figure 4. Comparing the number of nodes developed in orderto solve a set of tesuji Go problems.value of ea
h
hild of a node is distributed indepen-dently of the states of its siblings. This assumptionmay frequently be violated (for example in a game treethe values of siblings are likely to be
orrelated as on
ethe player is in a strong position there are likely to bemany good moves available). This seems more likelyto be a problem for global (strategi
) sear
h of thegame tree rather than lo
al, ta
ti
al sear
h, to whi
hthe ideas presented here seem more appli
able.For ea
h node, n, we store the probability of it be-ing TRUE: Pn := P (d(n) = TRUE) , n ∈ N . If anode has value FALSE the probability Pn = 0, if ithas value TRUE then Pn = 1. If the node is UN-KNOWN then the probability represents our degreeof belief about the value of the node being TRUE. In-feren
e is a
hieved by simple propagation rules (Pearl,1984; Chi & Nau, 1988):
AND :Pn = P





∧

c∈ch(n)

d(c)



 =
∏

c∈ch(n)

Pc (1)
OR :Pn = P





∨

c∈ch(n)

d(c)



 = P



¬
∧

c∈ch(c)

¬d(c)





= 1 −
∏

c∈ch(c)

(1 − Pc). (2)The Bayesian network for the model is shown in Figure3. The joint distribution of the Delphi
 values of allnodes in the game tree is:
P (N) =

∏

n∈N\F

P
(

d(n)| {d(c)}c∈ch(n)

)

∏

l∈F

P (d(l))(3)

where F is the set of leaves (the sear
h fron-tier). For an AND node, P (d(n)| {d(c)}c∈ch(n)) =

I(d(n) =
∧

c∈ch(n) d(c)) and for an OR node
P (d(n)| {d(c)}c∈ch(n)) = I(d(n) =

∨

c∈ch(n) d(c)). ForTRUE or FALSE nodes the priors on the leaf val-ues, P (d(l)) are set to 1 or 0 respe
tively. For UN-KNOWN leaves the priors represent our prior beliefabout whether the node is TRUE or FALSE (set to0.5 in initial experiments).The Algorithm The game tree is explored by thebest-�rst sear
h pro
edure des
ribed in the algorithmboxes. At ea
h step the best node to expand is se-le
ted by starting at the top of the tree and workingdownwards following the path of best play (a

ordingto
urrent beliefs). There are two ways in whi
h newobservations
an
hange the planned sequen
e of a
-tions - by redu
ing the value of the
urrent plan or byin
reasing the value other a
tions so as to make thempreferable (Russell & Wefald, 1991). Our method ex-plores the �rst of these possibilities.To implement the propagation rules we represent theprobabilities as log-odds ratios, logodds(p) := L(p) :=
ln(p

1−p). This uses the full �oating point range to rep-resent L(p), with high pre
ision at both ends of therange (
orresponding to probabilities
lose to 1 or 0).The log-probability domain is not suitable as it haspoor a

ura
y for probabilities
lose to 1 whi
h arereadily generated by the OR rule in large problems.Algorithm 1 FindBestNode(n)if n is leaf thenreturn nelse if n is AND node thenreturn FindBestNode(argminc∈ch(n){Pc})elsereturn FindBestNode(argmaxc∈ch(n){Pc})end ifAlgorithm 2 UpdateBeliefs(n)if n is AND node thenCal
ulate Pn via (1)elseCal
ulate Pn via (2)end ifUpdateBeliefs(pa(n))Experiments (See Se
tion 5.1 and Figure 4) show thatPP and PNS must expand roughly the same number ofnodes to solve Go problems. Comparing �gures 2 and3 it
an be seen that PP and PNS are similar strate-gies. Both methods avoid exploring bran
hes of the
842

Learning to Solve Game TreesAlgorithm 3 Develop(n)
ch(n) := L(n)for all c ∈ ch(n) doif g(c) TRUE then

Pc := 1.0else if g(c) FALSE then
Pc := 0.0else
Pc := p(d(c)) (prior)end ifend forAlgorithm 4 Sear
hwhile proot < 1.0 do

n = FindBestNode(root)Develop(n)UpdateBeliefs(pa(n))end whiletree leading to AND nodes with many
hildren (dueto the fa
t that a proof of su
h a bran
h would involveproving more nodes in total). PP di�ers from PNS inthat it has an a�nity for developing OR nodes withmany
hildren (due to the fa
t that ea
h
hild of anOR node represents an independent additional
han
eof �nding a proof of the parent). That is, PP tends toexplore parts of the sear
h tree where player has moremoves available and opponent has fewer moves avail-able. Thus PP seems to re
over an intuitive heuristi
:mobility.4. Sear
h and KnowledgeSear
h is a pro
ess of observation. The sear
h algo-rithm is initialised with some prior beliefs about theleafs of the tree. These prior distributions are surro-gate for the as-yet unexplored parts of the tree. Thereis a trade-o� between sear
h and knowledge: the morea

urate the prior beliefs the fewer states the sear
hermust explore to �nd a proof. When sear
h termi-nates the parameters ea
h surrogate prior distribution,
p(d(l))
an be updated a

ording to the �nal value ofthe node, d(l), determined by the sear
h. If the ve
tor
l denotes all of the nodes in all of the sear
hes then thejoint likelihood is given by p(d(l)|q) =

∏

i p(d(li)|q).The parameters q are shared a
ross nodes (dependingon whi
h
ommon patterns mat
h) so generalisationa
ross di�erent positions and sear
h tasks is possible.4.1. Pattern Mat
hingExa
t lo
al pattern mat
hing gives a rapid and sur-prisingly a

urate Go move predi
tor (Stern et al.,

7

5

7

6

4

3

4

6

7

4

2

1

2

4

7

5

3

1

0

1

3

5

7

4

2

1

2

4

7

6

4

3

4

6

7

5

7

Figure 5. The sequen
e of nested pattern templates Ti with i ∈

{0, . . . , 7}.2006). In this paper we apply this te
hnique to rep-resent knowledge in sear
h. A pattern is de�ned asthe exa
t arrangement of stones in a sub-region ofthe board
entred on the empty lo
ation of the boardwhere a move is to be made. We de�ne a set of �xednested `templates' Ti ∈ T (Figure 5). Ea
h template
Ti is a mask whi
h determines the sub-region of theboard within whi
h the arrangement of stones (of size
i) must mat
h for the pattern to be present. Size 1is the smallest template (just the point at whi
h themove is made) and Size 7 is the largest. Thereforeea
h move in a Go position
orresponds to a sta
k of8 patterns of nested sizes. Ea
h pattern maps to ane�
iently generated hash key su
h that the patternsare invariant to the 8-fold symmetry of the square. In
ontrast to our earlier work, here ea
h pattern vertexhas �ve states (atta
ker stone, defender stone, emptyvertex, o�-board, goal stone) and the patterns are notinvariant to
olour reversal.Nodes (positions) are mapped to patterns via the movewhi
h generated the node. Let the sta
k of all patternswhi
h mat
h for a node n be denoted by π(n). Ea
hpattern de�nes a many-to-one mapping from sear
htree nodes to a look-up table, H, via the hash key.This table
an be viewed as a partial-transposition ta-ble. A transposition table (TP) is a tool used in mostpra
ti
al game sear
h implementations whi
h
ontainsthe values of all board positions that previously ap-peared in the sear
h so if a position is en
ounteredagain the information already gathered about it
anbe exploited (Plaat et al., 1986). In this work wedo not map from positions to TP entries but insteadfrom patterns (partial positions) to table entries. Thispartial mat
hing allows generalisation a
ross di�erentsear
h tasks whi
h is bought at the
ost of un
ertainty- hen
e the entries in the partial-TP are probabilitydistributions.When a node, n, is developed and its
hildren c ∈ L(n)are added to the tree then the patterns for ea
h patterntemplate T ∈ T
entred on the moves whi
h generatethese
hildren are harvested, i.e. added to H.

843

Learning to Solve Game Trees
x00

p(x00) = N (x00; µ0, σ
2
0)

0

x101

1

0

1

1 x11 x12

p(x12|x00)

= N (x12; x00, β
2
0)

x20
2

1

2

1

0

1

2

1

2

x21 x22 x23 x24 x25 x26

p(x26|x12)

= N (x26; x12, β
2
1)

y00 y01 y10 y11 y20 y40 y50 y51 y60 y61 y62

Figure 6. Hierar
hi
al Pattern Model. In this
ase there are 11patterns in total in the hierar
hy in 3 levels. The full system has8 levels in the hierar
hy. The diagram shows 11 observations.4.2. Surrogate Tree ModelsBeta Model Let π̂(l) denote the largest pattern(whi
h has been observed at least on
e before) mat
h-ing for node l. The prior distribution on the valueof a leaf node, p(d(l)), is distributed a

ording toa Bernoulli distribution, p(d(l)|qπ̂(l))= Ber(d(l); qπ̂(l)).The parameter q represents a prior belief about thenode being TRUE. We pla
e a Beta prior on qπ̂(l),
p(qπ̂(l))= Beta(qπ̂(l);απ̂(l), βπ̂(l)). This gives the pre-di
tive distribution p(d(l)|απ̂(l), βπ̂(l)) =

απ̂(l)

απ̂(l)+βπ̂(l)and the parameters απ̂(l) and βπ̂(l) are pseudo-
ounts
orresponding to the number of observed proofs anddisproofs respe
tively of all nodes where π̂(l) is foundto mat
h.After sear
h termination, the posterior distributionover the parameter p(ql|d(l)) is Beta(ql;α
′
π̂(l), β

′
π̂(l))with α′ = α + 1 if d(l) = TRUE and β′ = β + 1 if

d(l) = FALSE. This update is applied for all elementsof π(n) for ea
h solved node, n, in the tree.Hierar
hi
al Gaussian Model We also
onsidereda model whi
h takes a

ount of the entire sta
k of pat-terns that mat
h at a vertex. Intuitively the eviden
eprovided by a larger pattern should dominate over theeviden
e from a smaller pattern at the same lo
ationbe
ause the larger pattern
ontains all the informa-tion of the smaller pattern plus additional information.However, the smaller patterns should be allowed to in-�uen
e the value of the larger patterns in
ases wherethe larger patterns have been seen infrequently.First we de�ne a hierar
hi
al model of the value of Gomoves. Let the set of the values of all the (in�nite)possible observations of all possible Go moves in allpossible positions be Y. Also, let the set of (latent)values of all possible patterns of all sizes be X . Ea
h

member of X shall be denoted xij where xij is thevalue of the jth pattern of size i. The index of thesmallest pattern size is 0 so the value of the smallest(zero sized) pattern is x00. The largest pattern sizeis m (in the experiments here m = 7). An observedvalue, yjk ∈ Y, is the kth observation of the jth fullboard position. The joint distribution is:
p(Y,X) = p(X) · p(Y|X)

= p(x00)

m
∏

h=1

∏

k

∏

j

p(xhj |x(h−1)k)

... ·
∏

q

∏

i

p(yqi|xnq)where p(xij |x(i−1)j) = N (xij ;x(i−1)j , β
2
i−1),

p(yij |xni) = N (yij ;xni, 1) and p(x00) =
N (x00;µ0, σ

2
0). Figure 6 shows a
orrespondinggraphi
al model with m = 3. The varian
e param-eters, β2

i ,
orrespond to the variability of the latentvalue of patterns of sizes i + 1 about the value of thesize i pattern that also mat
hes and are estimatedempiri
ally. The predi
tive (Gaussian) distributionover the move-value yij is determined by beliefpropagation (Ma
Kay, 2003).In order to use this model as a prior over the proba-bility of a leaf node, n, being TRUE in the sear
h treewe introdu
e the
onditional distribution p(d(n)|y) =
fswitch(d(n), y) = I((y > 0)∧d(n))+I((y < 0)∧¬d(n))(we observe the
onstraint that a TRUE node has posi-tive value and a FALSE node has negative value). This
orresponds to letting the probability of a node beingproved TRUE be the area under the positive orthantof the Gaussian belief: p(d(n)|µ, σ) = Ber(d(n), 1 −
Φ(0;µ, σ2)) for p(y) = N (y;µ, σ). After sear
h termi-nation, for a node with value d(n) and a belief fromthe hierar
hi
al model of N (y;µ, σ2) the update is:

p(y|d(n)) =
fswitch(d(n), y) · N (y;µ, σ2)

Z(µ, σ2, d(n))
.This is non-Gaussian so we approximate it by theGaussian
losest in terms of KL divergen
e. Followingthis approximation inferen
e is by belief propagation.5. Experiments: PNS vs PPPNS and PP are applied to the task of solving a setof Go problems whi
h we know in advan
e all have aTRUE solution. A disproof
riterion was de�ned basedon the liberty
ount of the goal stone. The number ofliberties of a stone is the minimum number of stonesthat must be played to
apture it. The goal fun
tion

844

Learning to Solve Game Trees����������
����
�
�
�
����
�
�
�
�
������
�����
�
��������������������������The Knight's-Move Tesuji
�����������������
�
�����
�
�
������
�
����
��
�
������
�
�����
�
�����������The Nose TesujiFigure 7. Example tesuji
apture problems (Davies, 1975). Thegoal is to
apture the stones marked with a triangle.was set as

g(n) =















TRUE if goal vertex empty,
TRUE if a ladder works,
FALSE if liberties of goal > L,

UNKNOWN otherwiseIf sear
h terminates with value FALSE then L is in-
remented and the sear
h repeated. This pro
ess isrepeated until the sear
h terminates with value TRUE.5.1. No KnowledgeFirstly the performan
e of PNS and PP with an ig-norant prior (p(d(l)) = 0.5, l ∈ F) are
ompared ona set of 192 Go
apture problems4 (see Figure 4). Inmost problems the two algorithms perform similarlyas dis
ussed in Se
tion 3.5.2. LearningIn a se
ond set of experiments we in
lude additionalproblems that
ould not be solved by PNS. These arerandomly divided into a training set (289 problems)and a test set (145 problems). The pattern table, H,is initially empty. During learning the sear
her har-vests patterns
ontinuously. The prior distribution forea
h new node is assigned using one of the surrogatemodels des
ribed in Se
tion 4.2, using the patterns todetermine the parameters of the models. Learning is
arried out by updating the posteriors over the param-eters of the surrogate models after sear
h terminationfor moves leading to TRUE and FALSE nodes.A time-out of 120s is set for ea
h problem. Thesear
her iterates over the training set re-attemptingproblems that previously failed until as many prob-lems as possible are solved. The result plots are gen-erated by timing the solver on the test set and
om-paring these times with the time taken by PNS. Timeis used for
omparison so additional
ost asso
iated4These are also available at http://t-t.dk/madlab thanks toThomas Thomsen.

with pattern mat
hing and inferen
e is taken a

ountof. Problems that are solved after learning but
ouldnot be solved by PNS are labelled as
rosses on theplots. Problems whi
h
ould be solved by PNS butnot PP are labelled as
ir
les on the plots. The dots
orrespond to problems that
ould be solved by bothalgorithms. Problems whi
h
ould be solved by neitheralgorithm are omitted.The Beta model is tested (Figure 8 top) with two dif-ferent initial settings for the prior parameters (α and
β). Learning improves the speed of problem solving,sometimes by orders of magnitude. However, thereare a number of problems whi
h fail after learning butwere able to be solved before learning suggesting over-�tting. This problem is ameliorated by using a peakedprior (Figure 8 right). The hierar
hi
al model per-forms somewhat better with less over-�tting (Figure 8bottom). The left plot
orresponds to an initial settingof zero previous observations. The plot on the rightwas generated by assigning prior beliefs as if a num-ber of previous observations of p(d(l)) = 0.5 had beenmade (
ompare with initialising the pseudo
ounts ofa Beta distribution).6. Con
lusionsProbability propagation as a means to solve Go prob-lems appears to perform similarly to best-�rst proof-number sear
h. Experiments suggest it is possible tolearn from previous sear
hes how to sear
h faster by or-ders of magnitude. However, great
are must be takento prevent over-�tting.A
knowledgementsWe would like to thank David Ma
Kay, Tom Minka andThomas Thomsen for interesting dis
ussions. This workwas supported by a grant from Mi
rosoft Resear
h.Referen
esAllis, V. L. (1994). Sear
hing for solutions in gamesand arti�
ial intelligen
e. Do
toral dissertation,University of Limburg.Baum, E. B., & Smith, W. D. (1997). A bayesianapproa
h to relevan
e in game playing. Arti�
ialIntelligen
e.Chi, P., & Nau, D. (1988). Comparison of the minimaxand produ
t ba
k-up rules in a variety of games.Sear
h in Arti�
ial Intelligen
e.Davies, J. (1975). Tesuji. Kiseido Publishing Com-pany.

845

Learning to Solve Game Trees

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
0

10
1

10
2

10
3

10
4

10
5

10
6

PNS Milliseconds

P
P

 M
ill

is
ec

on
ds

All problems
Newly Solved Problems
Newly Failed Problems

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
0

10
1

10
2

10
3

10
4

10
5

10
6

PNS Milliseconds

P
P

 M
ill

is
ec

on
ds

All problems
Newly Solved Problems
Newly Failed Problems

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
0

10
1

10
2

10
3

10
4

10
5

10
6

PNS Milliseconds

P
P

 M
ill

is
ec

on
ds

All problems
Newly Solved Problems
Newly Failed Problems

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
0

10
1

10
2

10
3

10
4

10
5

10
6

PNS Milliseconds

P
P

 M
ill

is
ec

on
ds

All problems
Newly Solved Problems
Newly Failed Problems

Figure 8. Time taken to solve Go problems - PNS vs PP. Top Left: Beta model. prior α0 = 1, β0 = 1 (27 problems newly failed,6 problems newly solved, mean speedup fa
tor: 45.9); Top Right: Beta model, prior α0 = 1000, β0 = 1000 (13 problems newlyfailed, 8 newly solved, speed, mean speedup fa
tor: 30.7). Bottom Left: Hierar
hi
al , uniform prior (21 newly failed, 5 newlysolved, mean speedup fa
tor: 135.5); Bottom Right: Hierar
hi
al model, prior hand tuned to redu
e learning rate (5 newly failed,14 newly solved, mean speedup fa
tor: 8.8).Ma
Kay, D. J. C. (2003). Information theory, infer-en
e and learning algorithms. Cambridge UniversityPress.Müller, M. (2002). Computer Go. Arti�
ial Intelli-gen
e, 134, 145�179.Nilsson, N. J. (1971). Problem solving in arti�
ial in-telligen
e. M
Graw-Hill.Palay, A. J. (1985). Sear
hing with probabilities. Pit-man Publishing Ltd.Pearl, J. (1984). Heuristi
s: Intelligent sear
h strate-gies for
omputer problem solving. Assison-Wesley.Plaat, A., S
hae�er, J., Pijls, W., & de Bruin, A.(1986). Exploiting graph properties of game trees.

Pro
eedings of the Thirteenth National Conferen
eon Arti�
ial Intelligen
e (AAAI-96) (pp. 234�239).Portland, OR.Russell, S., & Norvig, P. (1995). Arti�
ial intelligen
e:A modern approa
h. Prenti
e Hall.Russell, S., & Wefald, E. (1991). Do the right thing:Studies in limited rationality. The MIT Press.Stern, D., Herbri
h, R., & Graepel, T. (2006).Bayesian pattern ranking for move predi
tion in thegame of Go. ICML '06: Pro
eedings of the 23rdinternational
onferen
e on Ma
hine learning (pp.873�880). New York, NY, USA: ACM Press.
846

