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Abstract

In this short note we will re-derive the Gaussian expectation propagation (Gaussian EP) algorithm as pre-
sented in Minka (2001) and demonstrate an application of Gaussian EP to approximate multi-dimensional
truncated Gaussians.

1 On Gaussian Distributions

Here we will summarise some important equalities about the Gaussian density. A Gaussian d@sity in
is defined by

n 1
N (X, %) = (1) 2 || eXp(—E x-—mT = tx— u)) . (1.1)
We will write x ~ N'(x; &, ) to both denote has a distributiorP (x) and that the density of this distri-

bution is given by (1.1). We will writeV/(x) as a shorthand fok/(x; 0, 1). Fort € R, we will denote the
cumulative Gaussian distribution function B\(t; 1, %) which is defined by

t

® (t; W, 02) = PN (xipo2) X =D = / N(X; W, 02) dx. 1.2)

—00

Again, we writed(t) as a shorthand fob (t; 0, 1). We will write ( f (X))x~p to denote the expectation of
f over the random draw of, that is( f (x))x~p := | f (x)d P(x). The following results are given without
proof; for a detailed derivation the reader is referred to Herbrich (2002).

Linear transformation

X~ N X 1, X) andy:Ax+b:>y~/\/<y;A;L+b,A):AT>.

Convolutions Assume
X~ N (X; u, T) andy|x ~ N (y; Ax, T) .

Then
Xy ~ N(x; v (ATrly+ z*lu) , \Il) , (1.3)
y ~ N(x; Ap,T +AZAT> , (1.4)
where¥ := (ATT1A + - 1)1,

Marginals Let us assume that a random vectas composed such that

N Xy || m1 Y11 X2
v le e )



Then we know

X1 ~ N (X pp, Z11)
X2 ~ N (X2 pa, X22) ,

Xilx2 ~ N (Xl; ny+ )312)3521 (X2 —m2), X11— 2122521212) ,
Xolx1 ~ N(xz; o+ ELE T 00— py) L Zoa— z{zzgll):lz) .
Rescaling and Symmetry
NoGrE) = [Z72-N (22 x-w)
t —
CD(t;u,aZ) = CD( M>,
o
Pt) = 1-d(-t),
) (t; uw, 02> = 1-9 (—t; -, 02> .

2 Gaussian Density Filtering

Let us assume that we have a Gaussian belief in some parainéét) = N (0; i, X), and that we are
given a likelihoodP (x|#) which we will view as a functior () of the parameter only. Then, in general,
the posteriolP (9 |x) is no longer a Gaussian distribution,

tx (0) P (0)
[tx(@)P(6)d

However, under certain conditions on the functtprwe can efficiently find the Gaussian approximation,
N@; iy, ix), which minimises the Kullback—Leibler divergence between the true postexiérx), and
the itself. This approach is calleégaussian density filtering (GDRnd is a special case of tlessumed
density filtering (ADF)approach. Note that the subscnpindicates that the approximation is optimal for
the givenx. It can be shown that

P @x) =

iy=n+3g  Ix=3-% (ool - 2Gx) %, (2.1)

where the vectogy and the matrixGy are given by

3 log (zX (/1 5:))

op

Ox :=

and the functiorzy is defined by

Zy (1, X) = /tx @) -N(@;pn,X)do =P(x).

3 Gaussian Expectation Propagation

Similar to the last section, let us assume that we have a Gaussian belief in some pafarRefor =
N(@; n, X), and that we are given a likelihod®l(x|#) which has nowm factors, that is

m
Px|0) =] ]tix®) .
i=1



Then, in general, the posteri®(@|x) is no longer a Gaussian distribution,

[Tl1tix (@) - N (6; 1, )

m

[Ttx® N (6:p.%) db
/11 (6:.%)

Zy=P(x)

P@x) =

Moreover, we cannot hope to efficiently find the best approximation in the Kullback—Leibler divergence
between the true posterior and the Gaussian approximation as this requires to have an efficient way to
compute the derivatives of the normalisation constant yerand X which is a sum of products and is

thus subject to theurse of dimensionalityWe can still make progress if we assume that it is possible to
efficiently incorporate ainglefactort; x. This algorithm is known as th@aussian expectation propagation
(Gaussian EPalgorithm which was systematically introduced in Minka (2001).

Approximation Model In its most general form, suppose the fltle factor in the likelihood is some
function of a low-dimensional projection @f that is

tx®) =h(AT0) .
Then we use the following functions f; in place of them factorst; x 1
1 T
@) i=5 exp(~ (AT~ i) 1 (W0~ 1))

and definefp(#) := N(#; u, X). The approximationl,s(0|x), of the posteriorP (8 |x), is assumed to have
the samdunctionalform, that is,

m X
P (@|x) = M =N(e; i, ):) . (3.1)
/1_[ fi (0~) dé
i=0

Zx=P(x)

Note that due to the projection the functidn:= fti,X(O)J\/(o; i, X)do, the vectog; := dlog(Z; (i, 5:))/3,1
and the matr>xG; := a log(Z; (it, )3))/853 have the following functional form

Zw3) = / h) A (v: ATk ATEA) dy, (32)
6w = Ao (ATeATEA )],
6 DG 2 -26 B = A [N (AT ATEA)]AT, (3.3)

whereq; is vector valued function anK; is a matrix valued function for thigh factor.

Algorithmic Overview At the beginning, we assume that = 0, II; = 0 ands = 1 which implies
that f; is the constant unit function and thjis= pu, ¥ =¥ and 2X = 1. The idea of the Gaussian EP
algorithm is to pick a factor, saty, and improve the corresponding approximatinvia adjustments to
the parameters;j, u; andIj. In order to perform this improvement, the EP algorithm:

INote that we have not used the Gaussian den‘s’l(#\iTo; i, Hfl) in the approximationf; as these approximations are not
required to be densities, that H; does not have to be a positive-semidefinite matrix §ndoes not need to integrate to unity over
0.



1. Computes the parametgrs;, X\ j of the Gaussian approximation of the postevigthoutthe factor
tj but keeping all other factors to their current value,

ni;ﬁj fi (0)
SThizj fi () dé

2. Employs the Gaussian density filtering approximation outlined in Section 2 to obtain the new Gaus-
sian approximation of the posterid?(#|x), where

5 A ti x (@) - 0: 1. X
POk =N (0:2,5) ~ jx 0) - N (6: ;. Zyj)
S 1ix(@) - N(0; pyj, Z\j) do

By assumption, this can be done efficiently for every single fagtar

P (B1X) =N (85}, B0j) =

3. Updates the parametesjs u; andIl; of the factorf; such that

. fi @) -N(0; i, X\

N (0:8,8) = 1O N Emg 20) (3.4)
S 1@ N (8. 2y ) 0O

and, at the same time,
/ fj(é)-N(é;[L\j,Z\j) d6 = /t]‘,x(é)-N(é;IL\j,z\O dé . (3.5)

Note that (3.4) alone is not sufficient to update all parameters bespagpears both in the numer-
ator and denominator of the .h.s. of (3.4).

Central Relations In order to derive the remove and update equations foj théunction, we use (1.3)
in (3.4),
s&—1a -1 &1 T -1
Lop=Ap 4+ X0, L =AMA; + X (3.6)
Moreover, by virtue of (1.4) we have
; o G 9 -3 T —1 AT
/ f(8) N (8o 20) 08 =55 @0 [ 2N (j: Ay IT +ATEGA) B)
In the following we will derive efficient and numerically stable removal and update equations using the
shorthand notations
Uj==%A;, Cj=AJUj, mj:=Ali, Dj:=CjIj, (3.8)
-1 -1
Ej=(-D)". Fi=(1-D]) =I+MEC;, (3.9)
where the expression fd¥; follows from the Woodbury formula. The full algorithm is given in Algo-
rithm 1 on the following page. In the case of rank 1 update, th&iiss a; the EP algorithm can be done
without ever computing an inverse and is given in Algorithm 2.

Remove Equations In order to remove thgth function, we use the Woodbury formula and exploit the
symmetry ofX to get

5 = (i_l—AjnjAJT)_l
= £+ (A M (l—Aij:Ajnj)_l(AJTi), (3.10)
mi = 2y (3 a-Am)
= A+ E AT (AR - uy) (3.11)
- ,2+(§:A,-n,-)(|—AjTiAjnj)fl(AJTﬁ—uj). (3.12)
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Algorithm 1 General Gaussian EP algorithm

Require: Prior mearu and covariance.

Require: A set ofm matricesA; and a function for which we can efficiently evalua'iﬁ(AiTu, AiT):Ai),
ai (AT, ATZA)) andT(AT e, ATZA)) (see (3.2)—(3.3)).

Require: A termination criterion.

{Initialisation}
Setu; =0, M; =0ands = 1fori e {1,...,m}. Seti = pu, £ = T andZ = 1.
repeat
Pick anindexj € {1, ..., m}.
{Pre-computations for thith facton
ComputeUj = XAj, Cj =AJ-TUj,mj =A-jrﬁ andDj = CjIIj.
ComputeEj = (I — Dj)~"tandFj = | + IIE;C;.
Computep; = mj + DjEj(mj — u;) and¥j = E;C;.
Computenj = aj(¢j, ¥j) andl'j = Tj($;, ¥j).
{ADF update o
Computeii < fi + Uj (IEj(Mj — pj) + Fjej) and® = ¥ + Uj (I — FTj) EjUT.
{Factor update
Computellj « (I‘j_1 —¥p~tandp; « l"j_lozj + ;.
Computesj = Z; -exp(%aJTrflocj)/Ju —T;¥].
until termination criterion is ful%illed
ComputeZ = ([T™18) - VIZZ Y - exp— 3 (XM wf Wi + nTEp — 472
return Meanji, covarianceX and normalisation constadt

i)

where (3.11) follows by inserting HJ—AJT—i-Z\*I-l for )3_1 (see (3.6)) and (3.12) follows by left-multiplying
(3.10) withAjand inserting it into (3.11). Thus, using the notation in (3.8) the removal equation can also
be written as )

pj =R +UiIE; (mj —pj), X\ =2+ U E;U].

We notice that all further equations basedjop and =\ only depend orAT,j andAT X\ jA;. Using
(3.10) and (3.12) and the shorthand notations in (3.8) and (3.9) these two quantities are given by

¢j =Alm; =mj; +DjE; (mj —pj) . ¥j:=A]Z\jA] =ECj. (3.13)

GDF Update Equations According to (2.1), the update equations after removing jtthefactor are
straightforward and are given by

Pnew = M+ Z\jAj [aj (¢J" ‘I’I)] )
Thew = Z\j — Z\jA] [T (8. ¥))]ATE,;, (3.14)

where¢; and ¥ are given by (3.13). Inserting (3.10) and (3.12) far, and X, and using the notation
introduced in (3.8) and (3.9) we see that

finew = R+Uj[IE; (M) —pj) +Fj-aj(¢;, ¥)]
Zhew = E+Uj[Ij—Fj-Tj(¢;.¥j)]E;U].

Factor Update Equations We can use the Woodbury formula in (3.14) to derive an inverse of the new
covariance matrixt new,

&1 -1 -1 N
Yoew = 2:\j +Aj (Fj (¢j»‘I’j)_‘I’j> Aj'



Algorithm 2 Rank 1 Gaussian EP algorithm

Require: Prior mearu and covariance.

Require: A set of m vectorsa; and a function for which we can efficiently evalua'te(aiT;L, aiTZai),
ai (@ ., &l Tay) andy (@' u, al Za) (see (3.2)—(3.3)).

Require: A termination criterion.

{Initialisation}
Setuj = 0,7 =0ands = 1fori e {1,....,m}. Seti = pu, £ = =.
repeat
Pick anindexj € {1, ..., m}.
{Pre-computations for thgth factor
Computeuj = $aj, ¢j = ajuj, mj = al &, dj = 7j¢j andej = 1/(1—dj).
Computep; = mj + djej (mj — ij) andyj = ejcj.
Computexj = o (¢, ¥j) andyi =vj(@j, ¥j).
{ADF updaté . A
Updateit < i +ej (j (Mj — 1)) +aj) -uj andE < X+ () (1 —dj) —yj) - uju].
{Factor update
Updaterj < 1/(y;* — ¥j) anduj < aj/vj + ¢;.
Updatesj < Z;(¢;, ¥j) - exp(@/(2y}))/y/1 = jyj.
until termination criterion is fulfilled
ComputeZ = ([TL;8) - IZZ 7 - exp—3 (UL mip? + n = —
return Meanji, covariance® and normalisation constait

A1, -
Furthermore, we can expreEs,qilnew Similarly,

A—1 . _ _ '
Znelwﬂnewz 2:\jlﬂ\j +A; |:[rj 1(¢j"l’i) _‘I’j] [Fj 1(¢J"Ilj) T (¢J'"I’J')+¢J']i| :

Now, we exploit (3.6) and (3.7) to obtain the update equation foij théactor

Ojnew = (rj_l((bj"lli)_\llj) ’
Rijnew = rj_l(d’jv‘l’j)'ai (¢j"l’j)+¢1’

_1 1 -
Sinew = Zj (¢, %)) [ =T (), %)) ¥ 29XP<§“JT(¢J'"I’1)'r11(¢j»‘1’j)-ai (¢j"1’j))-

Approximate Normalisation ~ The normalisatior?x = P(x) of the approximation oP(x) can easily be
computed from (3.1) using = 0O resulting in

m ks m

, /1% 1 4 aTa-l.

Zx = <H3> %'eer(—E(E P (RS S A > u)) (3.15)
i=1 i=1



4 Redctified Truncated Gaussians

4.1 One Dimensional Rectified Truncated Gaussians

We say thaix is distributed according to eectified doubly truncated Gaussidfor shortrectified Gaus-
sian), x ~ R(x; u, 02,1, u), if the density ofx is given by

N (x; 1. 0?)

. 2 | = I .

R (X, w, o, ,u) xe(l,u) @ (u; i, 02) —_® (|; I, 02)
N ()

(4.1)

erl,u' .
e (o) - ()

We will write R(x; i, o2, 1) to denote lim_, 100 R(X; i, o2, 1, u); this distribution is sometimes referred
to simply as a rectified Gaussian. Note that the class of rectified Gaussian contains the Gaussian family as
a special case, that is,

lim R (X; w, o, I) =N (X; i, 02) .
|——00
We have the following properties for the mean and variance of the double rectified Gaussian (see Figure
4.1).

Proposition 1 (Rectified Gaussian Mean and Variance)The mean and variance of the rectified Gaus-
sian are given by

X)x~r = u+0-v<ﬁ, l—,E> , (4.2)
oo’ o
2 2 _ 2 (e Lu
<X >x~R — (Xhem) = 0% (1 v (U’ o’ a)) ’ (4-3)

where the functions and w are given by

sl = NI-t)—=N@u-1t) (4.4)
o T du—-tH—dd-t)’ '

U—t)- Nu-t)—(-t)-N{d -1
dUu—t)—d(—1) '

Proof. In order to derive the first and second moment of a rectified Gaussian we exploit the symmetry of
the function® in its first two arguments, that is

<D<U_M>=<I>(u;u,02)=1—<b(,u;u,02>. (4.6)

g

wt,l,u = vl u)+ (4.5)

The exact equation for the first moment is then obtained by considering the first deriva@\(é*—}if) —

<I>("T") with respect tqu; the exact equation for the second moment follows from considering the second
derivative with respect ta.

First moment Following the symmetry shown in (4.6) we note

9 (q) (554) - (l_TM)) _ f“ IN (x; . 0?) dx

-2
= X — ~TR .
an o o | WY x~R

At the same time

9 ((D (u;_u) - (I_T)) 0 (<I> (,u; I,az) — (,u; u, 02))
I I
N(,u;l,02> —N(/L; u,az) .
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Figure 4.1: The probability density, additiye correction and multiplicatives? correction as given in
(4.1)—(4.3).(First column) The special case of a single-sided rectified Gaussiany i-e.+oc. (Second
column) The special case of a symmetrical rectified Gaussiar, e = —¢.

Since the first line must equal the second line we conclude that

N(M;l,az)—/\/(ﬂi U,UZ)
N (w31, 02) = N (s u.0?)
2.
n+o q>(u;u,02)—q>(|§,u,02)'

(X)x~R

This expression is (4.2) when using the functioas defined in (4.4).



Second Moment In order to derive the second moment we appeal again to (4.6) and see that

(e -o () o) Nixmo?)

o2 = / dx

ou

- U_4<(X_'U“)2_02>x~7z'

At the same time we have
92 (cb (5H) - (I_TM>) AW (131, 02) = N (5 u, 02))
Ipu? B I
= o2 [(u — U)N(u; u,oz) — (n —I)N<u; |,02>] :
Combining these two lines we obtain

, (W—U N (usu,02) —(u—1)-N(ul,02)
=0 .
X~R D (U p,02) — @ (I; 1, 02)

<x2 — 2Xu + Mz - 02>

2 2 2 _(H+U)'N(M§U,02)—(/L+|)'N(u;|,02)
<X >x~72_'u to (1 dD(u;u,oz)—CD(l;,u,az)

Variance The variance of a rectified Gaussian is simply given as the difference of the second moment
and the squared first moment,

— . . 2\ _ _ . . 2
02(1_1,2(& 1 u>+(u w-N(usu,0%) — (=1 /\/(M,Lg)).

oo o D (U, 02) — @ (I; p, 0?)

This expression is (4.3) when using the functioms defined in (4.5).

O
For the limit ofu — +o00 we note that the function andw reduce to
, . Nit-D
vt ) = ul')q_"oov(t,',u)— ma 4.7)
wt,) = Im wl,uwy=vt,h -, H+a-=1). (4.8)
u—+4o0

Note that the functiorw is always bounded bj0, 1] whereasv grows roughly likel —t fort < | and
quickly approaching zero fdr> I. Furthermore, tha function is a smooth approximation to the indicator
functionl; <.

4.2 Multidimensional Rectified Truncated Gaussians

We say thatx is distributed according to eectified truncated Gaussiatfor short rectified Gaussiahn
X~ R(X; u, X, 1, u), if the density ofx is given by

[ <x<u 'N(X; n,X)
,[H|<5(<u N(X’ ®, E) dx

R p, X, lu) =

There are no efficient analytic expressions for both the normalisation constant and any moments of this
distribution. However, we can use Gaussian EP to compute both the mean, covariance and normalisation
constant of this distribution. In order to see this, note that the deRsitgin be written as

nin=1 Hli<xi<ui 'N(X; n,X)
fl—[{]:lﬂ|i<)~(i<ui N(Y(, o, Z) dx ’

RX p, X, 1,u) =
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Algorithm 3 Approximation algorithm for truncated Gaussians

Require: Meanu € R" and covarianc& € R™" of (non-truncated) Gaussian.
Require: Lower and upper truncation poinis¢ R", u € R".

Require: Efficient method to compute(-) andw(.) (see (4.4) and (4.5)).
Require: A termination criterion.

{Initialisation} .
Setuj = 0,7 =0ands = 1fori € {1,...,n}. Seti =pu, X = X.

repeat
Pick anindexj € {1, ..., n}.
{Pre-computations for thgth factor
Computetj = [211_ izj ..... f)nj]T d =7tjﬁj j andej = 1/(1 —d;j).

Computep; = ij + dj€j(j — nj) andyj = £j jej.

Computequ—qu/\/» Vi = w,/f,l _IJ//»andu =uj/J/¥j.

Computexj = v(¢], I}, U )//¥j andgj = w(@, 15, up/yj.
{ADF updaté

Updateit < i +ej (7j (i) — 1)) +aj) - tj andE < £ + (JTjeJ' - ef,Bj) ~tjtJT

{Factor update

Updaterj < 1/(8]* — ) andpj < «j/Bj + ¢;.

Updatesj < (@ (U] — ¢)) — (] — ¢})) - exp(a/(28)))/ /1~ ¥ Bj.
until termination criterion is fulfilled

A ~ ~ 1,

ComputeZ = ([T18) -/ IZZ Y - exp— (X mipl? + 1 TZ e — T2 ).
return Meanij, covariance® and normalisation constait

All that remains is to derive the exact equationsZptu, X), «j (1, X) andy; (., X) where

al i
dlog(Z) _ )
o
dlog(z)][dlog(zn 1" dlog(Z;) S
[ o M p }_2'3—2 np X ag .

To this end, we shall assume that the individual factors have the form
60 =1 arxey, -
The exact form follows by setting = g . It will be useful to use the following two shorthand notations
di=an, Ui =al Ty .
Using (1.2) we have foEZ; (u, X),

i — @i li —¢i
Zi(n, )= |t Nxp X)d =/]Ii<<i./\/ s i, vi)d =<D<ul—>—®(—).
(1. %) /(x) % 1. 5) dx = [ T oyeu N (¥: 5. Yi) dy T o

Let us start by considering the derivative of {@g(x, X))w.r.t. w. Using the chain rule, we have

P li—¢i li—¢i i—&i
gz ) 1 () - (") 4p 1 ,N(W)‘N(”m),&
0 Zi (n, X i i U—¢i) _ ¢ (liz¢

" (1, E) o BV e (uzt) o (o)
Thus, using the function defined in (4.4) we have
iorn) = o (e S L)
N W AN TN
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In order to derive; we will consider the derivative of lq@; (¢, X)) w.r.t. X. Using the chain rule, we see

that
sogz wzy _ 1 (%) () an
)5 Zi(w,2) FIv
UL e
IR R
Thus, fory; we obtain
M(¢i,1ﬂi)=%'w<%,l—ipi,%>.

The full algorithm is given in Algorithm 3.
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