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Abstract

In this short note we will re-derive the Gaussian expectation propagation (Gaussian EP) algorithm as pre-
sented in Minka (2001) and demonstrate an application of Gaussian EP to approximate multi-dimensional
truncated Gaussians.

1 On Gaussian Distributions

Here we will summarise some important equalities about the Gaussian density. A Gaussian density inRn

is defined by

N (x;µ,6) := (2π)− n
2 |6|− 1

2 exp

(
−1

2
(x− µ)T6−1 (x− µ)

)
. (1.1)

We will write x ∼ N (x;µ,6) to both denotex has a distributionP(x) and that the density of this distri-
bution is given by (1.1). We will writeN (x) as a shorthand forN (x;0, I). For t ∈ R, we will denote the
cumulative Gaussian distribution function by8(t;µ, σ 2) which is defined by

8
(
t;µ, σ 2

)
= Px∼N (x;µ,σ2) (x ≤ t) =

∫ t

−∞
N
(

x;µ, σ 2
)

dx . (1.2)

Again, we write8(t) as a shorthand for8(t;0, 1). We will write 〈 f (x)〉x∼P to denote the expectation of
f over the random draw ofx, that is〈 f (x)〉x∼P :=

∫
f (x)d P(x). The following results are given without

proof; for a detailed derivation the reader is referred to Herbrich (2002).

Linear transformation

x ∼ N (x;µ,6) andy = Ax + b⇒ y ∼ N
(
y;Aµ+ b,A6AT

)
.

Convolutions Assume
x ∼ N (x;µ,6) andy|x ∼ N (y;Ax,0) .

Then

x|y ∼ N
(
x;9

(
AT0−1y+6−1µ

)
,9
)
, (1.3)

y ∼ N
(
x;Aµ,0 + A6AT

)
, (1.4)

where9 := (AT0−1A +6−1)−1.

Marginals Let us assume that a random vectorx is composed such that

x ∼ N
([

x1
x2

]
;
[
µ1
µ2

]
,

[
611 612

6T
12 622

])
.
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Then we know

x1 ∼ N (x1;µ1,611) ,

x2 ∼ N (x2;µ2,622) ,

x1|x2 ∼ N
(
x1;µ1+6126

−1
22 (x2− µ2) ,611−6126

−1
226

T
12

)
,

x2|x1 ∼ N
(
x2;µ2+6T

126
−1
11 (x1− µ1) ,622−6T

126
−1
11612

)
.

Rescaling and Symmetry

N (x;µ,6) = |6|− 1
2 ·N

(
6−

1
2 (x− µ)

)

8
(
t;µ, σ 2

)
= 8

(
t − µ
σ

)
,

8 (t) = 1−8(−t) ,

8
(
t;µ, σ 2

)
= 1−8

(
−t;−µ, σ 2

)
.

2 Gaussian Density Filtering

Let us assume that we have a Gaussian belief in some parameterθ , P(θ) = N (θ;µ,6), and that we are
given a likelihoodP(x|θ) which we will view as a functiontx(θ) of the parameter only. Then, in general,
the posteriorP(θ |x) is no longer a Gaussian distribution,

P (θ |x) = tx (θ) P (θ)∫
tx(θ̃)P(θ̃)dθ̃

.

However, under certain conditions on the functiontx we can efficiently find the Gaussian approximation,
N (θ; µ̂x, 6̂x), which minimises the Kullback–Leibler divergence between the true posterior,P(θ |x), and
the itself. This approach is calledGaussian density filtering (GDF)and is a special case of theassumed
density filtering (ADF)approach. Note that the subscriptx indicates that the approximation is optimal for
the givenx. It can be shown that

µ̂x = µ+6gx , 6̂x = 6 −6
(
gxgT

x − 2Gx

)
6 , (2.1)

where the vectorgx and the matrixGx are given by

gx :=
∂ log

(
Zx

(
µ̃, 6̃

))

∂µ̃

∣∣∣∣∣∣
µ̃=µ,6̃=6

, Gx :=
∂ log

(
Zx

(
µ̃, 6̃

))

∂6̃

∣∣∣∣∣∣
µ̃=µ,6̃=6

,

and the functionZx is defined by

Zx (µ,6) :=
∫

tx (θ) ·N (θ;µ,6) dθ = P(x) .

3 Gaussian Expectation Propagation

Similar to the last section, let us assume that we have a Gaussian belief in some parameterθ , P(θ) =
N (θ;µ,6), and that we are given a likelihoodP(x|θ) which has nowm factors, that is

P (x|θ) =
m∏

i=1

ti,x (θ) .
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Then, in general, the posteriorP(θ |x) is no longer a Gaussian distribution,

P (θ |x) =
∏m

i=1 ti,x (θ) ·N (θ;µ,6)
∫ m∏

i=1

ti,x(θ̃) ·N
(
θ̃;µ,6

)
dθ̃

︸ ︷︷ ︸
Zx=P(x)

Moreover, we cannot hope to efficiently find the best approximation in the Kullback–Leibler divergence
between the true posterior and the Gaussian approximation as this requires to have an efficient way to
compute the derivatives of the normalisation constant w.r.t.µ and6 which is a sum of products and is
thus subject to thecurse of dimensionality. We can still make progress if we assume that it is possible to
efficiently incorporate asinglefactorti,x. This algorithm is known as theGaussian expectation propagation
(Gaussian EP)algorithm which was systematically introduced in Minka (2001).

Approximation Model In its most general form, suppose the thei th factor in the likelihood is some
function of a low-dimensional projection ofθ , that is

ti,x (θ) = h
(
AT

i θ
)
.

Then we use the followingm functions fi in place of them factorsti,x 1

fi (θ) := si exp

(
−1

2

(
AT

i θ − µi

)T
5i

(
AT

i θ − µi

))
,

and definef0(θ) := N (θ;µ,6). The approximation,̂P(θ |x), of the posterior,P(θ |x), is assumed to have
the samefunctionalform, that is,

P̂ (θ |x) =
∏m

i=0 fi (θ)∫ m∏

i=0

fi (θ̃) dθ̃

︸ ︷︷ ︸
Ẑx=P̂(x)

= N
(
θ; µ̂, 6̂

)
. (3.1)

Note that due to the projection the functionZi :=
∫

ti,x(θ)·N (θ;µ,6) dθ , the vectorgi := ∂ log(Zi (µ̃, 6̃))/∂µ̃

and the matrixGi := ∂ log(Zi (µ̃, 6̃))/∂6̃ have the following functional form

Zi (µ,6) =
∫

h (y)N
(

y;AT
i µ,A

T
i 6Ai

)
dy , (3.2)

gi (µ,6) = Ai

[
αi

(
AT

i µ,A
T
i 6Ai

)]
,

gi (µ,6)gT
i (µ,6)− 2Gi (µ,6) = Ai

[
0i

(
AT

i µ,A
T
i 6Ai

)]
AT

i , (3.3)

whereαi is vector valued function and0i is a matrix valued function for thei th factor.

Algorithmic Overview At the beginning, we assume thatµi = 0, 5i = 0 andsi = 1 which implies
that fi is the constant unit function and thusµ̂ = µ, 6̂ = 6 and Ẑx = 1. The idea of the Gaussian EP
algorithm is to pick a factor, sayt j , and improve the corresponding approximationf j via adjustments to
the parameterssj , µ j and5 j . In order to perform this improvement, the EP algorithm:

1Note that we have not used the Gaussian densityN (AT
i θ;µi ,5

−1
i ) in the approximationfi as these approximations are not

required to be densities, that is,5i does not have to be a positive-semidefinite matrix andfi does not need to integrate to unity over
θ .
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1. Computes the parametersµ\ j ,6\ j of the Gaussian approximation of the posteriorwithoutthe factor
t j but keeping all other factors to their current value,

P\ j (θ |x) = N
(
θ;µ\ j ,6\ j

) =
∏

i 6= j fi (θ)
∫ ∏

i 6= j fi
(
θ̃
)

dθ̃
.

2. Employs the Gaussian density filtering approximation outlined in Section 2 to obtain the new Gaus-
sian approximation of the posterior,P̂(θ |x), where

P̂ (θ |x) = N
(
θ; µ̂, 6̂

)
≈ t j,x (θ) ·N

(
θ;µ\ j ,6\ j

)
∫

t j,x(θ̃) ·N (θ̃;µ\ j ,6\ j ) dθ̃
.

By assumption, this can be done efficiently for every single factort j,x.

3. Updates the parameterssj , µ j and5 j of the factor f j such that

N
(
θ; µ̂, 6̂

)
= f j (θ) ·N

(
θ;µ\ j ,6\ j

)
∫

f j (θ̃) ·N
(
θ̃;µ\ j ,6\ j

)
dθ̃
, , (3.4)

and, at the same time,∫
f j (θ̃) ·N

(
θ̃;µ\ j ,6\ j

)
dθ̃ =

∫
t j,x(θ̃) ·N

(
θ̃;µ\ j ,6\ j

)
dθ̃ . (3.5)

Note that (3.4) alone is not sufficient to update all parameters becausesj appears both in the numer-
ator and denominator of the l.h.s. of (3.4).

Central Relations In order to derive the remove and update equations for thej th function, we use (1.3)
in (3.4),

6̂
−1
µ̂ = A j5 jµ j +6−1

\ j µ\ j , 6̂
−1 = A j5 j AT

j +6−1
\ j . (3.6)

Moreover, by virtue of (1.4) we have
∫

f j

(
θ̃
)
·N

(
θ̃;µ\ j ,6\ j

)
dθ̃ = sj (2π)

n
2
∣∣5 j

∣∣− 1
2 N

(
µ j ;AT

j µ\ j ,5
−1
j + AT

j6\ j A j

)
(3.7)

In the following we will derive efficient and numerically stable removal and update equations using the
shorthand notations

U j := 6̂A j , C j := AT
j U j , m j := AT

j µ̂ , D j := C j5 j , (3.8)

E j :=
(
I − D j

)−1
, F j :=

(
I − DT

j

)−1
= I +5 j E j C j , (3.9)

where the expression forF j follows from the Woodbury formula. The full algorithm is given in Algo-
rithm 1 on the following page. In the case of rank 1 update, that is,Ai = ai the EP algorithm can be done
without ever computing an inverse and is given in Algorithm 2.

Remove Equations In order to remove thej th function, we use the Woodbury formula and exploit the
symmetry of6̂ to get

6\ j =
(
6̂
−1− A j5 j AT

j

)−1

= 6̂ +
(
6̂A j

)
5 j

(
I − AT

j 6̂A j5 j

)−1 (
AT

j 6̂
)
, (3.10)

µ\ j = 6\ j

(
6̂
−1
µ̂− A j5 jµ j

)

= µ̂+6\ j A j5 j

(
AT

j µ̂− µ j

)
(3.11)

= µ̂+
(
6̂A j5 j

) (
I − AT

j 6̂A j5 j

)−1 (
AT

j µ̂− µ j

)
. (3.12)
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Algorithm 1 General Gaussian EP algorithm
Require: Prior meanµ and covariance6.
Require: A set ofm matricesAi and a function for which we can efficiently evaluateZi (AT

i µ,A
T
i 6Ai ),

αi (AT
i µ,A

T
i 6Ai ) and0(AT

i µ,A
T
i 6Ai ) (see (3.2)–(3.3)).

Require: A termination criterion.

{Initialisation}
Setµi = 0,5i = 0 andsi = 1 for i ∈ {1, . . . ,m}. Setµ̂ = µ, 6̂ = 6 and Ẑ = 1.
repeat

Pick an indexj ∈ {1, . . . ,m}.
{Pre-computations for thej th factor}
ComputeU j = 6̂A j , C j = AT

j U j , m j = AT
j µ̂ andD j = C j5 j .

ComputeE j = (I − D j )
−1 andF j = I +5 j E j C j .

Computeφ j = m j + D j E j (m j − µ j ) and9 j = E j C j .
Computeα j = α j (φ j ,9 j ) and0 j = 0 j (φ j ,9 j ).
{ADF update}
Computeµ̂← µ̂+ U j

(
5 j E j (m j − µ j )+ F jα j

)
and6̂ = 6̂ + U j

(
5 j − F j0 j

)
E j UT

j .
{Factor update}
Compute5 j ← (0−1

j −9 j )
−1 andµ j ← 0−1

j α j + φ j .

Computesj = Z j · exp(1
2α

T
j 0
−1
j α j )/

√|I − 0 j9 j |.
until termination criterion is fulfilled

ComputeẐ = (∏m
i=1 si ) ·

√
|6̂6−1| · exp(−1

2(
∑m

i=1µ
T
i 5iµi + µT6−1µ− µ̂T

6̂
−1
µ̂))

return Meanµ̂, covariance6̂ and normalisation constantẐ.

where (3.11) follows by insertingA j5 j AT
j +6−1

\ j for 6̂
−1

(see (3.6)) and (3.12) follows by left-multiplying
(3.10) withA j and inserting it into (3.11). Thus, using the notation in (3.8) the removal equation can also
be written as

µ\ j = µ̂+ U j5 j E j
(
m j − µ j

)
, 6\ j = 6̂ + U j5 j E j UT

j .

We notice that all further equations based onµ\ j and6\ j only depend onAT
j µ\ j andAT

j6\ j A j . Using
(3.10) and (3.12) and the shorthand notations in (3.8) and (3.9) these two quantities are given by

φ j := AT
j µ\ j = m j + D j E j

(
m j − µ j

)
, 9 j := AT

j6\ j A j = E j C j . (3.13)

GDF Update Equations According to (2.1), the update equations after removing thej th factor are
straightforward and are given by

µ̂new = µ\ j +6\ j A j
[
α j
(
φ j ,9 j

)]
,

6̂new = 6\ j −6\ j A j
[
0 j
(
φ j ,9 j

)]
AT

j6\ j , (3.14)

whereφ j and9 j are given by (3.13). Inserting (3.10) and (3.12) forµ\ j and6\ j and using the notation
introduced in (3.8) and (3.9) we see that

µ̂new = µ̂+ U j
[
5 j E j

(
m j − µ j

)+ F j · α j
(
φ j ,9 j

)]

6̂new = 6̂ + U j
[
5 j − F j · 0 j

(
φ j ,9 j

)]
E j UT

j .

Factor Update Equations We can use the Woodbury formula in (3.14) to derive an inverse of the new
covariance matrix̂6new,

6̂
−1
new = 6−1

\ j + A j

(
0−1

j

(
φ j ,9 j

)−9 j

)−1
AT

j .
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Algorithm 2 Rank 1 Gaussian EP algorithm
Require: Prior meanµ and covariance6.
Require: A set of m vectorsai and a function for which we can efficiently evaluateZi (aT

i µ, a
T
i 6ai ),

αi (aT
i µ,a

T
i 6ai ) andγi (aT

i µ,a
T
i 6ai ) (see (3.2)–(3.3)).

Require: A termination criterion.

{Initialisation}
Setµi = 0,πi = 0 andsi = 1 for i ∈ {1, . . . ,m}. Setµ̂ = µ, 6̂ = 6.
repeat

Pick an indexj ∈ {1, . . . ,m}.
{Pre-computations for thej th factor}
Computeu j = 6̂a j , c j = aT

j u j , m j = aT
j µ̂, d j = π j c j andej = 1/(1− d j ).

Computeφ j = m j + d j ej
(
m j − µ j

)
andψ j = ej c j .

Computeα j = α j (φ j , ψ j ) andγ j = γ j (φ j , ψ j ).
{ADF update}
Updateµ̂← µ̂+ ej

(
π j
(
m j − µ j

)+ α j
) · u j and6̂← 6̂ + e2

j

(
π j
(
1− d j

)− γ j
) · u j uT

j .
{Factor update}
Updateπ j ← 1/(γ−1

j − ψ j ) andµ j ← α j /γ j + φ j .

Updatesj ← Z j (φ j , ψ j ) · exp(α2
j /(2γ j ))/

√
1− ψ j γ j .

until termination criterion is fulfilled

ComputeẐ = (∏m
i=1 si ) ·

√
|6̂6−1| · exp(−1

2(
∑m

i=1πiµ
2
i + µT6−1µ− µ̂T

6̂
−1
µ̂))

return Meanµ̂, covariance6̂ and normalisation constantẐ.

Furthermore, we can express6̂
−1
newµ̂new similarly,

6̂
−1
newµ̂new= 6−1

\ j µ\ j + A j

[[
0−1

j

(
φ j ,9 j

)−9 j

]−1 [
0−1

j

(
φ j ,9 j

) · α j
(
φ j ,9 j

)+ φ j

]]
.

Now, we exploit (3.6) and (3.7) to obtain the update equation for thej th factor

5 j,new =
(
0−1

j

(
φ j ,9 j

)−9 j

)−1
,

µ j,new = 0−1
j

(
φ j ,9 j

) · α j
(
φ j ,9 j

)+ φ j ,

sj,new = Z j
(
φ j ,9 j

) · ∣∣I − 0 j
(
φ j ,9 j

) ·9 j
∣∣− 1

2 exp

(
1

2
αT

j

(
φ j ,9 j

) · 0−1
j

(
φ j ,9 j

) · α j
(
φ j ,9 j

))
.

Approximate Normalisation The normalisation̂Zx = P̂(x) of the approximation ofP(x) can easily be
computed from (3.1) usingθ = 0 resulting in

Ẑx =
(

m∏

i=1

si

)
·
√
|6̂|
|6| · exp

(
−1

2

(
m∑

i=1

µT
i 5iµi + µT6−1µ− µ̂T

6̂
−1
µ̂

))
. (3.15)
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4 Rectified Truncated Gaussians

4.1 One Dimensional Rectified Truncated Gaussians

We say thatx is distributed according to arectified doubly truncated Gaussian(for shortrectified Gaus-
sian), x ∼ R(x;µ, σ 2, l , u), if the density ofx is given by

R
(

x;µ, σ 2, l ,u
)
= Ix∈(l ,u) ·

N (
x;µ, σ 2

)

8
(
u;µ, σ 2

)−8 (l ;µ, σ 2
)

= Ix∈(l ,u) ·
N ( x−µ

σ

)

σ ·
(
8
(u−µ
σ

)−8
(

l−µ
σ

)) . (4.1)

We will write R(x;µ, σ 2, l ) to denote limu→+∞R(x;µ, σ 2, l , u); this distribution is sometimes referred
to simply as a rectified Gaussian. Note that the class of rectified Gaussian contains the Gaussian family as
a special case, that is,

lim
l→−∞

R
(

x;µ, σ 2, l
)
= N

(
x;µ, σ 2

)
.

We have the following properties for the mean and variance of the double rectified Gaussian (see Figure
4.1).

Proposition 1 (Rectified Gaussian Mean and Variance).The mean and variance of the rectified Gaus-
sian are given by

〈x〉x∼R = µ+ σ · v
(
µ

σ
,

l

σ
,

u

σ

)
, (4.2)

〈
x2
〉
x∼R
− (〈x〉x∼R)2 = σ 2 ·

(
1− w

(
µ

σ
,

l

σ
,

u

σ

))
, (4.3)

where the functionsv andw are given by

v (t, l ,u) := N (l − t)−N (u− t)

8 (u− t)−8(l − t)
, (4.4)

w (t, l ,u) := v2 (t, l , u)+ (u− t) ·N (u− t)− (l − t) ·N (l − t)

8 (u− t)−8(l − t)
. (4.5)

Proof. In order to derive the first and second moment of a rectified Gaussian we exploit the symmetry of
the function8 in its first two arguments, that is

8

(
u− µ
σ

)
= 8

(
u;µ, σ 2

)
= 1−8

(
µ; u, σ 2

)
. (4.6)

The exact equation for the first moment is then obtained by considering the first derivative of8(
u−µ
σ
) −

8(
l−µ
σ
) with respect toµ; the exact equation for the second moment follows from considering the second

derivative with respect toµ.

First moment Following the symmetry shown in (4.6) we note

∂
(
8
(u−µ
σ

)−8
(

l−µ
σ

))

∂µ
=
∫ u

l

∂N (
x;µ, σ 2

)

∂µ
dx = σ−2 〈x − µ〉x∼R .

At the same time

∂
(
8
(u−µ
σ

)−8
(

l−µ
σ

))

∂µ
= ∂

(
8
(
µ; l , σ 2

)−8 (µ; u, σ 2
))

∂µ

= N
(
µ; l , σ 2

)
−N

(
µ; u, σ 2

)
.
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l = ε, u→+∞ l = −u = −ε
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Figure 4.1: The probability density, additiveµ correction and multiplicativeσ 2 correction as given in
(4.1)–(4.3).(First column) The special case of a single-sided rectified Gaussian, i.e.u→ +∞. (Second
column) The special case of a symmetrical rectified Gaussian, i.e.l = −β = −ε.

Since the first line must equal the second line we conclude that

〈x − µ〉x∼R = σ 2 · N
(
µ; l , σ 2

)−N (
µ;u, σ 2

)

8
(
u;µ, σ 2

)−8 (l ;µ, σ 2
) ,

〈x〉x∼R = µ+ σ 2 · N
(
µ; l , σ 2

)−N (
µ;u, σ 2

)

8
(
u;µ, σ 2

)−8 (l ;µ, σ 2
) .

This expression is (4.2) when using the functionv as defined in (4.4).
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Second Moment In order to derive the second moment we appeal again to (4.6) and see that

∂2
(
8
(u−µ
σ

)−8
(

l−µ
σ

))

∂µ2
=

u∫

l

∂
(

x−µ
σ2

)
·N (

x;µ, σ 2
)

∂µ
dx

= σ−4
〈
(x − µ)2− σ 2

〉
x∼R

.

At the same time we have

∂2
(
8
(u−µ
σ

)−8
(

l−µ
σ

))

∂µ2
= ∂

(N (
µ; l , σ 2

)−N (
µ; u, σ 2

))

∂µ

= σ−2
[
(µ− u)N

(
µ; u, σ 2

)
− (µ− l )N

(
µ; l , σ 2

)]
.

Combining these two lines we obtain

〈
x2− 2xµ+ µ2− σ 2

〉
x∼R
= σ 2 · (µ− u) ·N (

µ; u, σ 2
)− (µ− l ) ·N (

µ; l , σ 2
)

8
(
u;µ, σ 2

)−8 (l ;µ, σ 2
)

〈
x2
〉
x∼R
= µ2+ σ 2

(
1− (µ+ u) ·N (

µ; u, σ 2
)− (µ+ l ) ·N (

µ; l , σ 2
)

8
(
u;µ, σ 2

)−8 (l ;µ, σ 2
)

)

Variance The variance of a rectified Gaussian is simply given as the difference of the second moment
and the squared first moment,

σ 2

(
1− v2

(
µ

σ
,

l

σ
,

u

σ

)
+ (µ− u) ·N (

µ; u, σ 2
)− (µ− l ) ·N (

µ; l , σ 2
)

8
(
u;µ, σ 2

)−8 (l ;µ, σ 2
)

)
.

This expression is (4.3) when using the functionw as defined in (4.5).

For the limit ofu→+∞ we note that the functionv andw reduce to

v (t, l ) := lim
u→+∞ v (t, l , u) =

N (t − l )

8 (t − l )
, (4.7)

w (t, l ) := lim
u→+∞w (t, l , u) = v (t, l ) · (v (t, l )+ (t − l )) . (4.8)

Note that the functionw is always bounded by[0,1] whereasv grows roughly likel − t for t < l and
quickly approaching zero fort > l . Furthermore, thew function is a smooth approximation to the indicator
functionIt≤l .

4.2 Multidimensional Rectified Truncated Gaussians

We say thatx is distributed according to arectified truncated Gaussian(for short rectified Gaussian),
x ∼ R(x;µ,6, l, u), if the density ofx is given by

R (x;µ,6, l,u) = Il<x<u ·N (x;µ,6)∫
Il<x̃<u ·N

(
x̃;µ,6) dx̃

.

There are no efficient analytic expressions for both the normalisation constant and any moments of this
distribution. However, we can use Gaussian EP to compute both the mean, covariance and normalisation
constant of this distribution. In order to see this, note that the densityR can be written as

R (x;µ,6, l, u) =
∏n

i=1 Il i<xi<ui ·N (x;µ,6)∫ ∏n
i=1 Il i<x̃i<ui ·N

(
x̃;µ,6) dx̃

.
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Algorithm 3 Approximation algorithm for truncated Gaussians

Require: Meanµ ∈ Rn and covariance6 ∈ Rn×n of (non-truncated) Gaussian.
Require: Lower and upper truncation points,l ∈ Rn, u ∈ Rn.
Require: Efficient method to computev(·) andw(.) (see (4.4) and (4.5)).
Require: A termination criterion.

{Initialisation}
Setµi = 0,πi = 0 andsi = 1 for i ∈ {1, . . . , n}. Setµ̂ = µ, 6̂ = 6.
repeat

Pick an indexj ∈ {1, . . . , n}.
{Pre-computations for thej th factor}
Computet j = [6̂1, j , 6̂2, j , . . . , 6̂n, j ]T, d j = π j 6̂ j, j andej = 1/(1− d j ).
Computeφ j = µ̂ j + d j ej (µ̂ j − µ j ) andψ j = 6̂ j, j ej .
Computeφ′j = φ j /

√
ψ j , ψ ′j = ψ j /

√
ψ j , l ′j = l j /

√
ψ j andu′j = u j /

√
ψ j .

Computeα j = v(φ′j , l ′j , u′j )/
√
ψ j andβ j = w(φ′j , l ′j , u′j )/ψ j .

{ADF update}
Updateµ̂← µ̂+ ej

(
π j (µ̂ j − µ j )+ α j

) · t j and6̂← 6̂ +
(
π j ej − e2

jβ j

)
· t j tTj .

{Factor update}
Updateπ j ← 1/(β−1

j − ψ j ) andµ j ← α j /β j + φ j .

Updatesj ← (8(u′j − φ′j )−8(l ′j − φ′j )) · exp(α2
j /(2β j ))/

√
1− ψ jβ j .

until termination criterion is fulfilled

ComputeẐ = (∏n
i=1 si ) ·

√
|6̂6−1| · exp(−1

2(
∑n

i=1πiµ
2
i + µT6−1µ− µ̂T

6̂
−1
µ̂)).

return Meanµ̂, covariance6̂ and normalisation constantẐ.

All that remains is to derive the exact equations forZi (µ,6), αi (µ,6) andγi (µ,6) where

∂ log(Zi )

∂µ
= αi (µ,6) · ai ,

[
∂ log(Zi )

∂µ

] [
∂ log(Zi )

∂µ

]T

− 2 · ∂ log(Zi )

∂6
= γi (µ,6) · ai aT

i .

To this end, we shall assume that the individual factors have the form

ti (x) = Il i<aT
i x<ui

.

The exact form follows by settingai = ei . It will be useful to use the following two shorthand notations

φi := aT
i µ , ψi := aT

i 6ai .

Using (1.2) we have forZi (µ,6),

Zi (µ,6) =
∫

ti (x)N (x;µ,6) dx =
∫
Il i<y<uiN (y;φi , ψi ) dy= 8

(
ui − φi√

ψi

)
−8

(
l i − φi√
ψi

)
.

Let us start by considering the derivative of log(Zi (µ,6))w.r.t.µ. Using the chain rule, we have

∂ log(Zi (µ,6))

∂µ
= 1

Zi (µ,6)
·
∂8

(
ui−φi√
ψi

)
−8

(
l i−φi√
ψi

)

∂φi
· ∂φi

µ
= 1√

ψi
·
N
(

l i−φi√
ψi

)
−N

(
ui−φi√
ψi

)

8
(

ui−φi√
ψi

)
−8

(
l i−φi√
ψi

) · ai .

Thus, using the functionv defined in (4.4) we have

αi (φi , ψi ) =
1√
ψi
· v
(
φi√
ψi
,

l i√
ψi
,

ui√
ψi

)
.
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In order to deriveγi we will consider the derivative of log(Zi (µ,6)) w.r.t.6. Using the chain rule, we see
that

∂ log(Zi (µ,6))

∂6
= 1

Zi (µ,6)
·
∂8

(
ui−φi√
ψi

)
−8

(
l i−φi√
ψi

)

∂ψi
· ∂ψi

µ

= 1

8
(

ui−φi√
ψi

)
−8

(
l i−φi√
ψi

) ·
∂8

(
ui−φi√
ψi

)
−8

(
l i−φi√
ψi

)

∂ψi
· ai aT

i ,

= 1

2ψi
·
N
(

l i−φi√
ψi

)
· l i−φi√

ψi
−N

(
ui−φi√
ψi

)
· ui−φi√

ψi

8
(

ui−φi√
ψi

)
−8

(
l i−φi√
ψi

) · ai aT
i

Thus, forγi we obtain

γi (φi , ψi ) =
1

ψi
· w

(
φi√
ψi
,

l i√
ψi
,

ui√
ψi

)
.

The full algorithm is given in Algorithm 3.
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