THE KERNEL MUTUAL INFORMATION

Arthur Gretton Ralf Herbrich Alexander J. Smola
MPI for Biological Cybernetics Microsoft Research RSISE, MLG
Spemannstr 38 7 JJ Thomson Avenue Australian National University
D-72076 Tubingen - Germany Cambridge CB3 OFB, UK Canberra, Australia
arthur@tuebingen.mpg.de rherb@microsoft.com Alex.Smola@anu.edu.au
ABSTRACT indeed, we demonstrate that the KGV can also be thought of as

a (looser) upper bound on the same Parzen window estimate. An
important advantage of the derivation described hereinjekier,
is that it addresses the behaviour of the contrast funcfamfinite
kernel sizes, rather than relying on a limiting argument hick
the kernel size approaches zero, as in [3]. Our approachathus
lows us to apply well established methods for selectingédesize
as a function of the number of observations; see for instfitje

In Section 2, we introduce the ICA problem, and describe our
terminology. We then introduce the KC and KCC in Section 3,
and derive the KMI and KGV in Section 4. Finally, we show in
Section 5 that the performance of the KMI, when used in ICA, is
competitive with that of the KGV, and that both the KMl and KGV
1. INTRODUCTION outperform many traditional ICA algorithms.

2. ICA: PROBLEM STATEMENT

We introduce a new contrast function, the kernel mutualrinfo

tion (KMI), to measure the degree of independence of contisu
random variables. This contrast function provides an apprate
upper bound on the mutual information, as measured near inde
pendence, and is based on a kernel density estimate of themut
information between a discretised approximation of theicoious
random variables. We show that Bach and Jordan’s kernergene
alised variance (KGV) is also an upper bound on the same kerne
density estimate, but is looser. Finally, we suggest traatidition

of a regularising term in the KGV causes it to approach the KMI
which maotivates the introduction of this regularisation.

The problem of separating mixtures of signals, so as to ecov
the original signals prior to mixing, is a much studied chadle
in signal processing. Methods of solution generally depamthe
nature of the signals, and the manner in which they are mixed;
particular, a criterion known as tl@ntrast functiors required to
determine when the demixing is successful. We assume hatre th
the original signals are generated i.i.d. according to samkeown
probability distributions, and are combined in a scalaringppro- N
cess: demixing is then achieved by ensuring that the reedver f:(5) = Hfsi (si),
signals are statistically independent. This is the franrk\ar in- i=1
stantaneous ICA and has been used successfully in a wide variety )
of problems: for instance, the separation of linearly mizedio wheres; € R. We do not observg however: instead, we observe
signals, and the recovery of evoked potentials from EEGasign  the random vector, such that
(see [10, 4], and references therein). P— Az @2.1)

A measure of statistical independence between two random ’ '

variables is thenutual information(5], which for random vectors  \hereA is an V' x N matri@. Clearly, the components &fwill

X,y is zero if and only if the random vectors are independents Thi ot pe independent unlegs = P'S, whereP is a permutation
may also be interpreted as the KL divergetizer., (fyg||f:fy) be- matrix andS is a diagonal scaling matrix. Our goal is to find an
tween the joint densityy y and the product of the marginal den-  4pproximationV to theinverseof the matri® A, givenm i.i.d.
sitiesf:fy; the latter quantity generalises readily to distributions  samples fronf;, and usingonly the model (2.1) and the fact that
of more than two random variables. We therefore propose two ihe unmixed components are independent. The determination

quantities, based on the mutual information, that may be @se A can only be made within certain identifiability constrajritew-
contrast functions in ICA. The first, which we call the keroet ever; in particular, no more than one source can be Gaussian.

variance (KC), can be shown to be zero if and only if the random Assume we have: observationg := (f1, ..., ). Our first
variables are independent. The second function, the keragial step in computingV is to subtract the mean df from eachf;,
information (KMI), is an upper bound on the Parzen windowest = >
mate of the mutual information, and is also zero if and ontpé

random variables are independent. Both functions bearoagstr 2This corresponds to the number of sources being equal toutire n
resemblance to the kernel canonical correlation (KCC) amded ber of sensors. In fact, it is possible to recover (2.1) whenrtumber of

generalised variance (KGV) introduced by Bach and Jordin [3 sources is less than the number of sensors by a change of &lttsisigh
the presence of noise makes this more difficult.
1We shall in future refer to this problem simply as ICA. 3Up to permutation and scaling.

We begin by introducing the ICA problem.The discussion draw
on the numerous existing surveys of ICA and related methsmis;
for instance [10, 4]. Suppose we have a random veZwir di-
mensionN, with independent identically distributed (i.i.d.) com-
ponents (we use the sans serif to indicate random variables)

and to whiten iti’ = Qf, such that the new observatiofifiave




a unit covariance matrix. Our estimate of the demixing matri
then become¥ := WQ, whereW is an orthogonal matrix; our

estimate of7 is # := Wi. Although the determination oV
remains difficult, there are onlyv (N — 1) degrees of freedom
involved in this problem, as opposed to tNé degrees of freedom
present in the estimation &f.

3. THE KERNEL COVARIANCE AND CORRELATION

Theorem 1 (Kernel covariance and independence). J = 0 if
and only ifx, y are independent.

Finally, we introduce the canonical correlation, as désatiin
[7, 3, 11]; the final reference is a particularly insightfovéstiga-
tion of the canonical correlation in high dimensional spgasich
as RKHSs). We first define the canonical correlation in the gen
eral case, without reference to its interpretation witan Fy are
RKHSs. We would like to find vectore;, 8, onto whichx and

We now describe the kernel covariance, which is proposed as ay respectively project, such that tkerrelation p; between these

measure of statistical independence of the random vegamsly,
defined on¥ := R"* and) := R"=. The generalisation to more
than two vectors is addressed in [8]. We define the vest@nsdy
and the random vectossandy in the feature spaceBx andFy,
and the mappingg,, : X — Fx and¢, : Y — Fy such that

x:=¢, (&) and y:=¢,(¥).

The feature spaces may be the reproducing kernel Hilbecespa
(and subspaces @£°) associated with particular kernels, which
represent the inner produttsn Fx andFy. We define

Coy = By (x—E()(y—E()T), (1)
o - [& &l 62

whereC,, andC,, are given by analogy. We obserwe i.i.d.
samples of dataz = ((x1,y1), .-, (Xm,ym)), Wherex; € Fx
andy; € Fy.

We may also define th&ram matricesK %), K, of in-
ner products between the mapped observations above, iraiee ¢
whereFx andFy are reproducing kernel Hilbert spaces (RKHSs)
with associated kernels (Z;, &;) = x; x; = (Kfff?ﬂ)i,j and
k(7)) = yiy; = (K¥h)i;. According to [13], Gram
matrices for the variables centréufeature spacare K{Z), :
HK,H,KY), .= HKY), H, whereH = I, — m~'1,,1],
and1,, isanm x 1 vector of ones.

We can now introduce the kernel covariance (KC). In the pop-
ulation case, the KC is

|Ezy [f(X)9(¥)] - Ey

J= sup

fefx,gef-‘y

[FR]Es [l

whereZx := {f € Fx : fllz, <1} andFy is analogous.
An empirical estimaté(z) may be obtained from the finite sample
z, using the representer theorem (Schélketpdl. [12]) to replace

F@ =) ak(@ @) =) ax x, (3.3)
=1 =1

with a similar replacement far (%); it follows thatJ(z) := max; ~;,
where-; are the eigenvalues of

~ -1 ~ ~
Ko 0 0 KK,
o K, KK, 0

We now describe the link between the kernel covariance atet in
pendence; details are given in [8].

4To be a kernel associated with a RKHS(F;, #;) must satisfy the
Mercer conditions [1]; these hold for Gaussian and Laplaradls, among
(many) others. Note also that the argument of the kernelifsgeavhether
the kernel pertains tx or Fy, although these kernels are identical in
the present study.

projections is a stationary point with respecbig 3,. The canon-
ical correlationsp;, are thus given by

azT Czy.Bi
V(@7 Cecas) (87 C,8)

WhenFx andFy are RKHSs, then care must be taken when find-
ing empirical estimates of the canonical correlates, taenthat
these estimates are data dependent. This may be done by con-
fining a;, 3; to subspaces of the space spanned by the sample in
Fx,Fy, as in Kuss [11], or by regularising, as in [3]; in the lat-
ter case, the largest kernel canonical correlation may bé as a
contrast function for ICA.

4. UPPER BOUNDSON MUTUAL INFORMATION

(3.4)

We now apply both these definitions to derive an approximatfo
the mutual information between random variablesdy, defined
on the respective bounded intervalsand ) on R. Full details
of the proofs, and a generalisation to more than two randaim va
ables, may be found in [8]. We begin by introducing the Gaussi
mutual information, and its relation with the canonicalretation.

If X&, Yo are Gaussian random variablesRifr , RPv respectively,
then according to [3] the mutual information between themloa
written

min(pz,py )

I1

i=1

L. 1
I(%;¥a) = =5 log (1-p7) ], (4.1)

where thep; are given by the canonical correlations in (3.4).
Next, consider a grid of sizg, x p, over X and) respec-
tively. Let the indices, j denote the poinfg;,r;) € X x Y on
this grid, and lelg := (g1,...,qp,),7 == (r1,...,mp,) be the
grid coordinates. The spacing between points alongrthady
axes is respectivelA, andA,. We define two multinomial ran-
dom variable, y with a distributionP; ; (i, j) over the grid (we
write the complete, x p, matrix of such probabilities aB..,),

where
o qi +Ag ri+Ay
Peg i) = [ [ by @adudy,
a; rj

Thus Py (i, ) is a discretisation oP,,. We denote ap. the
vector for which(pz ), = Px(4), with a similarp, definition. We
may always writePs ; (¢, j) = Px (i) Py (5) (1 + €;,;) for an ap-
propriate choice of; ;. If €;,; is small, we approximate

1G9~ 3 YN P@P )y (42)

i=1j=1

It is well known (see [5]) thaf (x, y) represents the upper bound
onI (x;y) as the discretisation becomes infinitely fine.



We next define an equivalent multidimensional represemtati
X,y of %,y in the previous section, wheiee RP* andy € RPv,
such thati = i is equivalent tdZ); = 1 and(Z);.;»; = 0. Using

Exy (777) =Pay, B =ps, Ex(3%")
whereD, = diag (p.), itis possible to define covariances

(4.3)

D.,

Coy =Poy — pmp;—a Cor =D, — pzp;—~

We define the Gaussian random varialdesyq to have the same
covariance structure &Y, and with mutual information given by
(4.1). The mutual information for this Gaussian case may tie
approximated by (4.2) near independence; see [3, 8].

Given that we are not provided with the distributiBg; (7, 5),
but rather a finite sample of sizem, we make use of a kernel den-
sity estimate of the mutual information for the discretiseddom
variables. A detailed discussion of the properties and\iebaof
such estimates may be found in [14], and previous work o thei
application to the computation of entropies in [9]. The letioien-
sity (Parzen window) estimates fifandf. , are

NE

fx(x) k(z1, ),

3|~
I

~

fX,y (1‘, y)

3=

NE

k(rl’r)k(yhy)~
!

Il
—

The kernels must be non-negative and continuous, with otet i
gral w.r.t. to its two arguments. We require approximatitmthe
covariance matrices in the Gaussian mutual informationdeas
scribed in (4.3). We therefore define the vectprs p,, and the
matrix f’my, using the expectations computed with these kernel
expressions;

E, (zyT)

Let Kj(fi,i be the matrix of inner products ifx between the grid

points and sample, Witﬂ(z(% defined by analogy; we assume
p= > m andp, > m. The first subscript specifies whether
the grid @ or r) or the sample# or y) is used in the rows of
this matrix, and the second subscript whether the grid optaim
used in the columns. By analogy, we may also define the matrice
K KE), KW KY), . In the limit whereA,, A, are small
(and thus, by implicationp, > m, p, > m, ¢ > A,, and

o > Ay, whereo defines the kernel size), we make the approxi-

mations
(st (i) - xciten (02) ).

=~ . Az A
sz*PmP;— ===
m
Ay AL T
=2 diag (K1) = T2 ding (K5 (152) "1,
The kernel density approximation to the discretised muinfak-
mation is then found by replacing tipe in (4.1) with

el (Pay —p:by )

~

= szz

D..

]SI: =

d;

(4.4)

This cannot easily be computed, however, since it is contipata
ally prohibitive to evaluate the Gram matrices on a suffittjeiine
grid. Noting that

.
el Ky < el aiog (K (KE2) "1, ) e (49

wherev, = minjeqi. .3 >0, k (21,4;), we replace the ma-
trix termin D, by the left hand expression in (4.5), yielding a new
quantity|¥;| > |ps|; it follows that replacings; with 4; yields an
upper bound on (4.1). In fac¥; is simply the kernel covariance,
but with the additional requirement that the functighg be pro-
jected in their respective feature spaces onto the basmeday
the columns of the grid, », as well as an added scaling factor
U.. We use this insight to replaég in (4.1) with an appropriately
scaledy;, and v, With ve := minjeqi. my > ooy k (21, 25), tO
obtain the empiricakernel mutual informatioKMI),

M (2) = 3 log ([T~ (ora) KELELL[), (a6)
which is also an upper bound on (4.1). It follows from Theorem
1 that the random variablesy are independent if and only if the
populationKMI satisfiesM = 0.

Bach and Jordan [3] propose a related quantity as a contrast
function for ICA: the kernel generalised variance (KGV) faat,
the latter quantity may also be derived by finding an uppentou
on (4.1): this is a different approach to the proof in [3], efhuses
a limit as the kernel becomes infinitely small. Using

T T
el ki) (162 e < el aiag (52 (k62) 1, ) e

we replace the right hand term in the above with the left hanaht

in the denominator of (4.4) to get a set of kernel canonicaieta-
tionsp; > pi, restricted to the basis spanned by the grid. The mu-
tual information computed using the unrestricted kernabeécal
correlationsp; is therefore an upper bound on (4.1). The contrast
function thus derived is never used in practice, since ifinite;

in other words, the approximation we made above is too lolise.
we instead make the replacement

m

~ T
BBt e (elK;aaz (k%) + e%Kgy)
wheref; > 0, 6> > 0, andf; + 6> < 1, we recover an expression
which, for correct choice of, 62, yields theregularisedKGV
proposed in [3. We therefore expect the performance of both the
KGV and KMI to be very similar when used for ICA: this is indeed
the case in our experimental results.

We now briefly address the generalisation of the kernel ¢covar
ance] to the case ofV random variables; on bounded subsets
X; C R, by analogy with derivation of [3]; this can be used to
measure the pairwise independence of our estimatiethe inde-
pendent componeng The KC is the largest eigenvalue of

B

KK — [ . J ci=\; (diag(ﬁ)ci
~Ky

4.7
Whereci = (Ci,l, Ceey Ci,N)T andI~{ = [Kl, Kg, . RN]T(. )
reduce computational cost, we use a reduced rank approgimat
of I~<j, via an incomplete Cholesky factorization with appromiat
pivoting [6] (that is K; ~ Z;Z] with Z; € R™*? andd < m).

5Specifically, the parameter denoting the amount of regaidn in [3]
can be writterk = 02vz /601, although we must be careful in our choice
of 01, 6> to ensure we still have an upper bound; see [8] for details.



We setd; = [¢],Z1,...
multi) as

L [21Z
77 - - d; = \idi, (4.8)
ZNZN

whereZ = [Z1,Z»,...Zy]" . This transformation takes care of
the nullspace inherent ig; ZJ-T and reduces the eigenproblem to

dN dimension&. Finally, the KMI for more than two variables is

M(z) = —% log (H Vz)\i>

wherev, = min; v,; (in our experiments, we simply set =
1/m; the performance remained satisfactory).

,ci vZn]T, and rewrite (eq:geneigen-

(4.9)

5. EXPERIMENTAL RESULTS

We now apply the KGV and KMl to the problem of ICA. Since the
main purpose is to compare the performance with that regpamte
[3], we use identical settings and data. The mixing ma&ixvas
chosen randomly, with condition number betweeand2. We
used the Gaussian RBF kerne(z, z') = exp(— 51z ||z — 2'||%),
with o> = 1 andx = 2 x 107 for the KGV, except in the case
of the 250 point sample, wheee = 1 andk = 2 x 10~ 2. We
only useds?® = 1 for the KMI. The orthogonal componeiv

of the demixing matrix was found using gradient descent en th
manifold of orthogonal matrices; see [3]. In order to meaghe
distance between the trud (') and approximateW Q) demix-
ing matrices, we used themari divergencd4]. This metric is in
the interval[0, 100], is equal to zero if and only iA ~', WQ are
piecewise identical, and is invariant to permutation aralisg of
AL WQ.

Our experiment consisted in de-mixing data drawn indepen-
dently from2 — 16 distributions, chosen at random with replace-
ment from 18 possible options; these include signals witth bo
positive and negative kurtosis, and are described in detgd| 8].
Table 1 summarises our results; the KMl seems somewhatr bette
in the case of largein and N, although further refinement of the
parameter choices in both methods might be possible. Fueihe
periments are described in [8], most notably addressingtbie-
lem of recovering signals in the presence of noise, and icdlse
of low kurtosis. In these cases, the KMI and KGV again yield th
best observed performance.

6. CONCLUSIONS

We have presented a novel derivation of several kernel based
trast functions for ICA (the KMI, KGV, and related), whichejils
useful insight both into the problem of model selection, &mel
function of the regularising term in these contrasts. Thel &kt
KGV are comparable in performance, and substantially autpe
form several alternative ICA approaches. Further work feitus
on the application of kernel based contrasts to convolutive
ing, and to the recovery of random processes that are raht an
application to graphical model estimation is given in [2].

6Note that there is no reason why @} should have the same dimen-
sionality: it may in fact be more computationally efficientsome circum-
stances to use different decompositions for differgnt

Table 1. lllustration of the demixing ofN randomly chosen
signals; comparison with fast ICA, Jade, and extended lafom
The best result is in boldface.

[ N]m [ Rep] fICA | Jade | Imax | KGV [ KMI ]
2 | 250 | 1000 11.6£| 10.6+| 46.7£| 5.4+ | 6.2+
0.4 0.4 0.9 0.2 0.2
2 | 1000 1000 6.2+ | 4.8+ | 10.9£| 2.5+ | 2.8 &
0.2 0.2 0.6 0.1 0.1
4 | 1000 100 | 6.0£ | 5.5+ | 10.7£| 3.5+ | 3.7%
0.4 0.4 0.9 0.4 0.7
4 | 4000 100 | 3.3+ | 2.7+ | 6.2+ | 1.4+ | 1.4+
0.2 0.1 0.7 0.1 0.05
8 | 2000 50 40+ | 394+ | 82+ | 3.7+ | 2.9+
0.2 0.3 0.8 0.9 0.4
8 | 4000 50 30£ | 25+ | 56+ | 1.5+ | 1.3%
0.3 0.1 0.7 0.1 0.04
16| 4000 28 3.1+ | 33+ | 11.1£| 3.1+ | 2.2+
0.2 0.2 1.1 0.9 0.3
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