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ABSTRACT

We introduce a new contrast function, the kernel mutual informa-
tion (KMI), to measure the degree of independence of continuous
random variables. This contrast function provides an approximate
upper bound on the mutual information, as measured near inde-
pendence, and is based on a kernel density estimate of the mutual
information between a discretised approximation of the continuous
random variables. We show that Bach and Jordan’s kernel gener-
alised variance (KGV) is also an upper bound on the same kernel
density estimate, but is looser. Finally, we suggest that the addition
of a regularising term in the KGV causes it to approach the KMI,
which motivates the introduction of this regularisation.

1. INTRODUCTION

The problem of separating mixtures of signals, so as to recover
the original signals prior to mixing, is a much studied challenge
in signal processing. Methods of solution generally dependon the
nature of the signals, and the manner in which they are mixed;in
particular, a criterion known as thecontrast functionis required to
determine when the demixing is successful. We assume here that
the original signals are generated i.i.d. according to someunknown
probability distributions, and are combined in a scalar mixing pro-
cess: demixing is then achieved by ensuring that the recovered
signals are statistically independent. This is the framework for in-
stantaneous ICA1, and has been used successfully in a wide variety
of problems: for instance, the separation of linearly mixedaudio
signals, and the recovery of evoked potentials from EEG signals
(see [10, 4], and references therein).

A measure of statistical independence between two random
variables is themutual information[5], which for random vectors~x;~y is zero if and only if the random vectors are independent. This
may also be interpreted as the KL divergenceDKL (f~x;~yjjf~xf~y) be-
tween the joint densityf~x;~y and the product of the marginal den-
sities f~xf~y; the latter quantity generalises readily to distributions
of more than two random variables. We therefore propose two
quantities, based on the mutual information, that may be used as
contrast functions in ICA. The first, which we call the kernelco-
variance (KC), can be shown to be zero if and only if the random
variables are independent. The second function, the kernelmutual
information (KMI), is an upper bound on the Parzen window esti-
mate of the mutual information, and is also zero if and only ifthe
random variables are independent. Both functions bear a strong
resemblance to the kernel canonical correlation (KCC) and kernel
generalised variance (KGV) introduced by Bach and Jordan [3]:

1We shall in future refer to this problem simply as ICA.

indeed, we demonstrate that the KGV can also be thought of as
a (looser) upper bound on the same Parzen window estimate. An
important advantage of the derivation described herein, however,
is that it addresses the behaviour of the contrast functionsfor finite
kernel sizes, rather than relying on a limiting argument in which
the kernel size approaches zero, as in [3]. Our approach thusal-
lows us to apply well established methods for selecting kernel size
as a function of the number of observations; see for instance[14].

In Section 2, we introduce the ICA problem, and describe our
terminology. We then introduce the KC and KCC in Section 3,
and derive the KMI and KGV in Section 4. Finally, we show in
Section 5 that the performance of the KMI, when used in ICA, is
competitive with that of the KGV, and that both the KMI and KGV
outperform many traditional ICA algorithms.

2. ICA: PROBLEM STATEMENT

We begin by introducing the ICA problem.The discussion draws
on the numerous existing surveys of ICA and related methods;see
for instance [10, 4]. Suppose we have a random vector~s of di-
mensionN , with independent identically distributed (i.i.d.) com-
ponents (we use the sans serif to indicate random variables);f~s (~s) = NYi=1 fsi (si) ;
wheresi 2 R. We do not observe~s, however: instead, we observe
the random vector~t, such that~t = A~s; (2.1)

whereA is anN �N matrix2. Clearly, the components of~t will
not be independent unlessA = PS, whereP is a permutation
matrix andS is a diagonal scaling matrix. Our goal is to find an
approximationV to the inverseof the matrix3 A, givenm i.i.d.
samples fromf~t, and usingonly the model (2.1) and the fact that
the unmixed components are independent. The determinationofA can only be made within certain identifiability constraints, how-
ever; in particular, no more than one source can be Gaussian.

Assume we havem observationst := (~t1; : : : ;~tm). Our first
step in computingV is to subtract the mean oft from each~ti,
and to whiten it,~~t = Q~t; such that the new observations~~t have

2This corresponds to the number of sources being equal to the num-
ber of sensors. In fact, it is possible to recover (2.1) when the number of
sources is less than the number of sensors by a change of basis, although
the presence of noise makes this more difficult.

3Up to permutation and scaling.



a unit covariance matrix. Our estimate of the demixing matrix
then becomesV := WQ; whereW is an orthogonal matrix; our

estimate of~s is ~x := W~~t. Although the determination ofW
remains difficult, there are onlyN (N � 1) degrees of freedom
involved in this problem, as opposed to theN2 degrees of freedom
present in the estimation ofV.

3. THE KERNEL COVARIANCE AND CORRELATION

We now describe the kernel covariance, which is proposed as a
measure of statistical independence of the random vectors~x and~y,
defined onX := Rnx andY := Rnx . The generalisation to more
than two vectors is addressed in [8]. We define the vectorsx andy
and the random vectorsx andy in the feature spacesFX andFY ,
and the mappings�x : X ! FX and�y : Y ! FY such thatx := �x (~x) and y := �y (~y) :
The feature spaces may be the reproducing kernel Hilbert spaces
(and subspaces of̀12 ) associated with particular kernels, which
represent the inner products4 onFX andFY . We defineCxy := Ex;y �(x� Ex (x)) (y � Ey (y))>� ; (3.1)C := � Cxx CxyC>xy Cyy � ; (3.2)

whereCxx andCyy are given by analogy. We observem i.i.d.
samples of data;z = ((x1;y1); : : : ; (xm;ym)), wherexi 2 FX
andyi 2 FY .

We may also define theGram matricesK(x)mm, K(y)mm of in-
ner products between the mapped observations above, in the case
whereFX andFY are reproducing kernel Hilbert spaces (RKHSs)
with associated kernelsk (~xi; ~xj) := x>i xj = (K(x)mm)i;j andk (~yi; ~yj) := y>i yj = (K(y)mm)i;j . According to [13], Gram
matrices for the variables centredin feature spaceare eK(x)mm :=HK(x)mmH, eK(y)mm := HK(y)mmH, whereH = Im �m�11m1>m;
and1m is anm� 1 vector of ones.

We can now introduce the kernel covariance (KC). In the pop-
ulation case, the KC isI = supf2 eFX ; g2 eFY jE~x;~y [f(~x)g(~y)℄� E~y [f(~x)℄E~y [g(~y)℄j ;
where eFX := ff 2 FX : kfkFX � 1g, and eFY is analogous.
An empirical estimateI(z) may be obtained from the finite samplez, using the representer theorem (Schölkopfet al. [12]) to replacef (~x) = mXl=1 
lk (~x; ~xl) = mXl=1 
lx>xl; (3.3)

with a similar replacement forg (~y); it follows thatI(z) := maxi 
i,
where
i are the eigenvalues of" eK(x)mm 00 eK(y)mm #�1 " 0 eK(x)mm eK(y)mmeK(y)mm eK(x)mm 0 #
We now describe the link between the kernel covariance and inde-
pendence; details are given in [8].

4To be a kernel associated with a RKHS,k (~xi; ~xj) must satisfy the
Mercer conditions [1]; these hold for Gaussian and Laplace kernels, among
(many) others. Note also that the argument of the kernel specifies whether
the kernel pertains toFX or FY , although these kernels are identical in
the present study.

Theorem 1 (Kernel covariance and independence). I = 0 if
and only ifx; y are independent.

Finally, we introduce the canonical correlation, as described in
[7, 3, 11]; the final reference is a particularly insightful investiga-
tion of the canonical correlation in high dimensional spaces (such
as RKHSs). We first define the canonical correlation in the gen-
eral case, without reference to its interpretation whenFX ;FY are
RKHSs. We would like to find vectors�i;�i onto whichx andy respectively project, such that thecorrelation �i between these
projections is a stationary point with respect to�i;�i. The canon-
ical correlations,�i, are thus given by�i := �>i Cxy�iq��>i Cxx�i� ��>i Cyy�� : (3.4)

WhenFX andFY are RKHSs, then care must be taken when find-
ing empirical estimates of the canonical correlates, to ensure that
these estimates are data dependent. This may be done by con-
fining �i;�i to subspaces of the space spanned by the sample inFX ;FY , as in Kuss [11], or by regularising, as in [3]; in the lat-
ter case, the largest kernel canonical correlation may be used as a
contrast function for ICA.

4. UPPER BOUNDS ON MUTUAL INFORMATION

We now apply both these definitions to derive an approximation of
the mutual information between random variablesx andy, defined
on the respective bounded intervalsX andY on R. Full details
of the proofs, and a generalisation to more than two random vari-
ables, may be found in [8]. We begin by introducing the Gaussian
mutual information, and its relation with the canonical correlation.
If ~xG;~yG are Gaussian random variables inRpx ;Rpy respectively,
then according to [3] the mutual information between them can be
writtenI (~xG;~yG) = �12 log0B�min(px;py)Yi=1 �1� �2i �1CA ; (4.1)

where the�i are given by the canonical correlations in (3.4).
Next, consider a grid of sizepx � py overX andY respec-

tively. Let the indicesi; j denote the point(qi; rj) 2 X � Y on
this grid, and letq := (q1; : : : ; qpx) ; r := �r1; : : : ; rpy� be the
grid coordinates. The spacing between points along thex andy
axes is respectively�x and�y. We define two multinomial ran-
dom variableŝx; ŷ with a distributionPx̂;̂y (i; j) over the grid (we
write the completepx � py matrix of such probabilities asPxy),
where Px̂;̂y (i; j) := Z qi+�xqi Z rj+�yrj fx;y(x; y)dxdy:
ThusPx̂;̂y (i; j) is a discretisation ofPx;y. We denote aspx the
vector for which(px)i = Px̂(i), with a similarpy definition. We
may always writePx̂;̂y (i; j) = Px̂ (i)Pŷ (j) (1 + �i;j) for an ap-
propriate choice of�i;j . If �i;j is small, we approximateI (x̂; ŷ) � 12 pxXi=1 pyXj=1 Px̂ (i)Pŷ (j) �2i;j ; (4.2)

It is well known (see [5]) thatI(x; y) represents the upper bound
on I (x̂; ŷ) as the discretisation becomes infinitely fine.



We next define an equivalent multidimensional representation~x;~y of x̂; ŷ in the previous section, where~x 2 Rpx and~y 2 Rpy ,
such that̂x = i is equivalent to(~x)i = 1 and(~x)j : j 6=i = 0. UsingEx;y �~x~y>� = Pxy; Ex (~x) = px; Ex �~x~x>� = Dx;
whereDx = diag (px), it is possible to define covariancesCxy = Pxy � pxp>y ; Cxx = Dx � pxp>x : (4.3)

We define the Gaussian random variables~xG;~yG to have the same
covariance structure as~x;~y, and with mutual information given by
(4.1). The mutual information for this Gaussian case may then be
approximated by (4.2) near independence; see [3, 8].

Given that we are not provided with the distributionPx̂;̂y (i; j),
but rather a finite samplez of sizem, we make use of a kernel den-
sity estimate of the mutual information for the discretisedrandom
variables. A detailed discussion of the properties and behaviour of
such estimates may be found in [14], and previous work on their
application to the computation of entropies in [9]. The kernel den-
sity (Parzen window) estimates offx andfx;y arebfx(x) := 1m mXl=1 k (xl; x) ;bfx;y(x; y) := 1m mXl=1 k (xl; x)k (yl; y) :
The kernels must be non-negative and continuous, with unit inte-
gral w.r.t. to its two arguments. We require approximationsto the
covariance matrices in the Gaussian mutual information, asde-
scribed in (4.3). We therefore define the vectorsp̂x; p̂y, and the
matrix bPxy, using the expectations computed with these kernel
expressions;bExy �~x~y>� = bPxy; bEx (~x) = p̂x; bEx �~x~x>� = bDx:
LetK(x)pm be the matrix of inner products inFX between the grid
points and sample, withK(y)pm defined by analogy; we assumepx � m and py � m. The first subscript specifies whether
the grid (q or r) or the sample (x or y) is used in the rows of
this matrix, and the second subscript whether the grid or sample is
used in the columns. By analogy, we may also define the matricesK(x)pp ;K(x)mm;K(y)pp ;K(y)mm. In the limit where�x;�y are small
(and thus, by implication,px � m, py � m, � � �x, and� � �y, where� defines the kernel size), we make the approxi-
mationsbPxy�p̂xp̂>y = �x�ym �K(x)pm �K(y)pm�> � 1mK(x)pm1m �K(y)pm1m�>� ;bDx = �xm diag �K(x)pm1m� = �2xm diag�K(x)pm �K(x)pm�> 1px� :
The kernel density approximation to the discretised mutualinfor-
mation is then found by replacing the�i in (4.1) with�̂i := 
̂>i �bPxy � p̂xp̂>y � d̂iq
̂>i bDx
̂i d̂>i bDyd̂i : (4.4)

This cannot easily be computed, however, since it is computation-
ally prohibitive to evaluate the Gram matrices on a sufficiently fine
grid. Noting that��x
̂>i K(x)pp 
̂i � 
̂>i diag�K(x)pm �K(x)pm�> 1p� 
̂i; (4.5)

where��x := minj2f1:::pxgPml=1 k (xl; qj), we replace the ma-

trix term in bDx by the left hand expression in (4.5), yielding a new
quantityj~
ij � j�̂ij; it follows that replacinĝ�i with ~
i yields an
upper bound on (4.1). In fact,~
i is simply the kernel covariance,
but with the additional requirement that the functionsf; g be pro-
jected in their respective feature spaces onto the basis spanned by
the columns of the gridq; r, as well as an added scaling factor��x. We use this insight to replace~
i in (4.1) with an appropriately
scaled
i, and ��x with �x := minj2f1:::mgPml=1 k (xl; xj), to
obtain the empiricalkernel mutual information(KMI),M (z) := �12 log ����I� (�x�y) eK(x)mm eK(y)mm���� ; (4.6)

which is also an upper bound on (4.1). It follows from Theorem
1 that the random variablesx; y are independent if and only if the
populationKMI satisfiesM = 0.

Bach and Jordan [3] propose a related quantity as a contrast
function for ICA: the kernel generalised variance (KGV). Infact,
the latter quantity may also be derived by finding an upper bound
on (4.1): this is a different approach to the proof in [3], which uses
a limit as the kernel becomes infinitely small. Using
̂>i K(x)pm �K(x)pm�> 
̂i � 
̂>i diag�K(x)pm �K(x)pm�> 1px� 
̂i;
we replace the right hand term in the above with the left hand term
in the denominator of (4.4) to get a set of kernel canonical correla-
tions ~�i � �̂i, restricted to the basis spanned by the grid. The mu-
tual information computed using the unrestricted kernel canonical
correlations�i is therefore an upper bound on (4.1). The contrast
function thus derived is never used in practice, since it is infinite;
in other words, the approximation we made above is too loose.If
we instead make the replacementm�2x 
̂>i bDx
̂i ) 
̂>i ��1K(x)pm �K(x)pm�> + �2�xK(x)pp � 
̂i;
where�1 � 0, �2 � 0, and�1+ �2 � 1, we recover an expression
which, for correct choice of�1; �2, yields theregularisedKGV
proposed in [3]5. We therefore expect the performance of both the
KGV and KMI to be very similar when used for ICA: this is indeed
the case in our experimental results.

We now briefly address the generalisation of the kernel covari-
anceI to the case ofN random variablesxj on bounded subsetsXj � R, by analogy with derivation of [3]; this can be used to
measure the pairwise independence of our estimate~x of the inde-
pendent components~s. The KC is the largest eigenvalue�i of0�eK eK> � 24 eK1 eK1 . . . eKN eKN 351A 
i = �i �diag( eK)
i � ;

(4.7)
where
i = (
i;1; : : : ; 
i;N )> and eK = [ eK1; eK2; : : : eKN ℄>. To
reduce computational cost, we use a reduced rank approximation
of eKj , via an incomplete Cholesky factorization with appropriate
pivoting [6] (that is,eKj � ZjZ>j with Zj 2 Rm�d andd� m).

5Specifically, the parameter denoting the amount of regularisation in [3]
can be written� = �2�x=�1, although we must be careful in our choice
of �1; �2 to ensure we still have an upper bound; see [8] for details.



We setdi = [
>i;1Z1; : : : ; 
>i;NZN ℄>, and rewrite (eq:geneigen-
multi) as ZZ> � " Z>1 Z1 . . . Z>NZN #!di = �idi; (4.8)

whereZ = [Z1;Z2; : : :ZN ℄>. This transformation takes care of
the nullspace inherent inZjZ>j and reduces the eigenproblem todN dimensions6. Finally, the KMI for more than two variables isM(z) := �12 log NYi=1 �z�i! (4.9)

where�z = minj �xj (in our experiments, we simply set�z =1=m; the performance remained satisfactory).

5. EXPERIMENTAL RESULTS

We now apply the KGV and KMI to the problem of ICA. Since the
main purpose is to compare the performance with that reported in
[3], we use identical settings and data. The mixing matrixA was
chosen randomly, with condition number between1 and2. We
used the Gaussian RBF kernel,k(x; x0) = exp(� 12�2 kx� x0k2),
with �2 = 14 and� = 2 � 10�3 for the KGV, except in the case
of the 250 point sample, where�2 = 1 and� = 2 � 10�2. We
only used�2 = 1 for the KMI. The orthogonal componentW
of the demixing matrix was found using gradient descent on the
manifold of orthogonal matrices; see [3]. In order to measure the
distance between the true (A�1) and approximate (WQ) demix-
ing matrices, we used theAmari divergence[4]. This metric is in
the interval[0; 100℄, is equal to zero if and only ifA�1;WQ are
piecewise identical, and is invariant to permutation and scaling ofA�1;WQ.

Our experiment consisted in de-mixing data drawn indepen-
dently from2 � 16 distributions, chosen at random with replace-
ment from 18 possible options; these include signals with both
positive and negative kurtosis, and are described in detailin [3, 8].
Table 1 summarises our results; the KMI seems somewhat better
in the case of largerm andN , although further refinement of the
parameter choices in both methods might be possible. Further ex-
periments are described in [8], most notably addressing theprob-
lem of recovering signals in the presence of noise, and in thecase
of low kurtosis. In these cases, the KMI and KGV again yield the
best observed performance.

6. CONCLUSIONS

We have presented a novel derivation of several kernel basedcon-
trast functions for ICA (the KMI, KGV, and related), which yields
useful insight both into the problem of model selection, andthe
function of the regularising term in these contrasts. The KMI and
KGV are comparable in performance, and substantially outper-
form several alternative ICA approaches. Further work willfocus
on the application of kernel based contrasts to convolutivemix-
ing, and to the recovery of random processes that are not i.i.d.; an
application to graphical model estimation is given in [2].

6Note that there is no reason why allZj should have the same dimen-
sionality: it may in fact be more computationally efficient in some circum-
stances to use different decompositions for differentxj .

Table 1. Illustration of the demixing ofN randomly chosen
signals; comparison with fast ICA, Jade, and extended Infomax.
The best result is in boldface.N m Rep. fICA Jade Imax KGV KMI

2 250 1000 11:6�0:4 10:6�0:4 46:7�0:9 5:4�0:2 6:2�0:2
2 1000 1000 6:2�0:2 4:8�0:2 10:9�0:6 2:5�0:1 2:8�0:1
4 1000 100 6:0�0:4 5:5�0:4 10:7�0:9 3:5�0:4 3:7�0:7
4 4000 100 3:3�0:2 2:7�0:1 6:2�0:7 1:4�0:1 1:4�0:05
8 2000 50 4:0�0:2 3:9�0:3 8:2�0:8 3:7�0:9 2:9�0:4
8 4000 50 3:0�0:3 2:5�0:1 5:6�0:7 1:5�0:1 1:3�0:04
16 4000 28 3:1�0:2 3:3�0:2 11:1�1:1 3:1�0:9 2:2�0:3
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