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Introdu
tionThe fundamental di�eren
e between a system that learns and one that merelymemorizes is that the learning system generalizes to unseen examples. In order tounderstand the performan
e of learning ma
hines, and to gain insight that helpsto design better ones, it is helpful to have theoreti
al bounds on the generalizationability of the ma
hines. The determination of su
h bounds is the subje
t ofthe present arti
le. In order to formulate them it is ne
essary to formalize thelearning problem and turn the question of how well a ma
hine generalizes intoa mathemati
al question. Below we introdu
e one possible formalization | theone adopted in the �eld of statisti
al learning theory.
Formalization of The Learning ProblemIn order to study the learning problem in a mathemati
al framework, we assumethe existen
e of an unknown distribution PXY over an input spa
e X (e.g. Rn) andan output spa
eY (e.g. f0; 1g). We are only given a sample z = ((x1; y1); : : : ; (xm; ym)) 2(X �Y)m = Zm whi
h, is assumed to be drawn iid (independent identi
ally dis-tributed) from PXY; we de�ne PZ := PXY. (In this arti
le, random variables arealways written in sans-serif, e.g. X.)In an attempt to dis
over the unknown relation PYjX=x between inputs andoutputs, a learning algorithm A 
hooses a deterministi
 hypothesis h : X ! Y2



solely based on a given training sample z 2 Zm. Formally,A : 1[i=1Z i !H ;where H � YX is the hypothesis spa
e used by the algorithm. (Re
all YX de-notes the set of maps from X to Y.) Some of the bounds take a

ount of moreinformation regarding A than just H.The performan
e of the learning algorithm is judged a

ording to a loss fun
-tion l : Y�Y ! R+ whi
h measures the 
ost of the predi
tion ŷ if y is the 
orre
toutput. The 
hoi
e of the loss fun
tion is a key part of the formal spe
i�
ation ofthe learning problem. The learning problem is to �nd an hypothesis h : X ! Ysu
h the expe
ted risk, R[h℄ := EXY[l(h(X);Y)℄, is minimized.Pattern re
ognition In this 
ase, jYj < 1. Typi
ally one is interested in themis
lassi�
ation error PXY(h(X) 6= Y). This 
an be modeled by the zero-one loss, l0�1(ŷ; y) := Iŷ6=y. (Here I denotes the indi
ator fun
tion.) More
omplex loss fun
tions are obtained by using a 
ost matrix C 2 RjYj�jYj.Fun
tion learning Here, Y = R. The 
lassi
al regression s
enario utilizessquared loss, l2(ŷ; y) := (ŷ � y)2. Other loss fun
tions are the `1 lossfun
tion, l1(ŷ; y) := jŷ � yj, and the �{insensitive loss, l�(ŷ; y) := maxfjŷ �yj; �g � �.
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If we knew PZ, the solution of the learning problem would be straightforward:hopt(x) := argminy2Y EYjX=x[l(y;Y)℄ : (1)The fa
t that hopt 
an not be identi�ed only on the basis of the training samplez is the motivation for studying theoreti
al bounds on the generalization error oflearning algorithms. These bounds are only valid for most random draws of thetraining sample. Formally, they read as follows:PZm (R[A(Z)℄ � "A(Z; : : : ; Æ)) � 1� Æ : (2)In the analysis of su
h bounds it is 
onvenient to think of the loss fun
tion indu
edfun
tion 
lass LH := f(x; y) 7! l(h(x); y) j h 2 Hg :For simpli
ity we will mostly 
onsider the pattern re
ognition 
ase and the zero-one loss; the reasoning in the fun
tion learning 
ase is 
on
eptually similar.
Consisten
y of Learning AlgorithmsConsisten
y is a property of a learning algorithm that guarantees that in the limitof an in�nite amount of data the learning algorithm will a
hieve the minimumpossible expe
ted risk. The de�nition is relative to a �xed hypothesis spa
e4



H � YX and requires8� > 0: limm!1PZm �R[A(Z)℄� infh2HR[h℄ > �� = 0 : (3)For the results stated below [15℄, a more 
omplex notion of nontrivial 
onsisten
yis needed. In parti
ular, this notion requires that (3) holds even if H is repla
edbyH
 := fh 2 H j R[h℄ � 
g for all 
 2 R. Note that in this 
ase infh2H
 R[h℄ = 
.It is known that for the 
lass of empiri
al risk minimization (ERM) algorithmsAHERM(z) := argminh2H 1m mXi=1 l(h(xi); yi)| {z }bR[h;z℄ (the empiri
al risk)
onsisten
y is equivalent to uniform one-sided 
onvergen
e of empiri
al risks toexpe
ted risk; that is,8� > 0: limm!1PZm �suph2H�R[h℄� bR[h;Z℄� > �� = 0 : (4)A slightly stronger 
ondition than (4), namely uniform two-sided 
onvergen
e, isequivalent to 8� > 0: limm!1 ln(EZm [N (�;LH;Z)℄)m = 0 (5)where N (�;LH; z) is the 
overing number of LH on the sample z at s
ale �. Thisis the smallest number of fun
tions ĝ : Z ! R su
h that for every indu
ed loss5



fun
tion g 2 LH there exists a fun
tion ĝ with1m mXi=1 jg(zi)� ĝ(zi)j � � :In the 
ase of the zero-one loss, l0�1, the 
overing number N ( 1m ;LH; z) equalsthe number of di�erent error patterns (g(z1); : : : ; g(zm)) 2 f0; 1gm in
urred byindu
ed loss fun
tions g 2 LH.This 
hara
terization result (that 
onsisten
y of AHERM is \almost" equiva-lent to (5)) is the justi�
ation for the 
entral pla
e that 
overing numbers playin statisti
al learning theory. It is important to note that the results are onlyfor AHERM. It is still an open problem to 
hara
terize 
onsisten
y for algorithmsother thanAHERM and thus it is not known what their \right" te
hni
al parametersare.
Theoreti
al Bounds for Learning AlgorithmsThe starting point of all the analysis presented here is the observation that for a�xed hypothesis h : X ! Y (and indu
ed loss fun
tion g, g((x; y)) := l(h(x); y))we know thatPZm �R[h℄� bR[h;Z℄ > �� = PZm  EZ [g(Z)℄� 1m mXi=1 g(Zi) > �!< exp(�
 �m��) (6)6



where 
 is some 
onstant and � 2 [1; 2℄, if the loss is bounded or has boundedmoments. This is due to well known results in large deviation theory (see [5,Chapter 1℄).The se
ond tool is the union bound whi
h states that for events A and B,P(A [ B) = P(A) + P(B)� P(A \ B) � P(A) + P(B) :As a 
onsequen
e, if we 
onsider a hypothesis spa
e of �nite size, say n, then the
han
e that for at least one of the hypotheses the expe
ted risk is larger than theempiri
al risk by more than � is of order n � exp(�m��). The general appli
ationof this simple inequality for learning theory is that given n high-probability bounds�i : Zm � � � � � [0; 1℄! ffalse; trueg su
h that8i 2 f1; : : : ; ng : 8Æ 2 [0; 1℄ : PZm (�i(Z; : : : ; Æ)) � 1� Æ ; (7)then 8Æ 2 [0; 1℄ : PZm ��1�Z; : : : ; Æn� ^ � � � ^ �n�Z; : : : ; Æn�� � 1� Æ :There are two 
on
eptual simpli�
ations that aid the study of the generaliza-tion performan
e of learning algorithms:Algorithm independen
e Motivated by (4), 
onsider the uniform 
onvergen
e7



and bound this probability. This automati
ally gives a bound whi
h holdsfor all hypotheses, in
luding the one learned with a given learning algorithm.Although this is a very 
rude step, it has largely dominated statisti
allearning theory for the last 30 years; the whole analysis is independent ofthe learning algorithm used ex
ept via H.Data independen
e If the training sample is entering the bound only via theempiri
al risk we 
all the analysis sample independent as we are unable toexploit the serendipity of the training sample to obtain a better bound.Algorithm Independent BoundsAlgorithm independent analysis has histori
ally been the most 
ommon. Belowwe examine the VC framework, data-dependent stru
tural risk minimization andthe PAC-Bayesian framework.The VC FrameworkThe VC (Vapnik-Chervonenkis) framework was established in 1971 and stud-ies AHERM via uniform 
onvergen
e (see [15, 1℄ for more details). The bounds aresample independent in the sense used above. The only extra tool required is thebasi
 lemma. This result makes pre
ise the idea that whenever it is likely thattwo empiri
al risks measured on a training and a ghost sample (another sampleof the same size drawn independently) are 
lose to ea
h other than it must also8



be likely that the empiri
al risk on a training sample is 
lose to the expe
ted risk.A result of this is a generalization bound in terms of EZ2m �N � 12m ;LH;Z�� wherethe 2m is a 
onsequen
e of the basi
 lemma. However this is still not really usefulsin
e 
omputing EZ2m �N � 12m ;LH;Z�� requires knowledge of the distribution PZ.For l0�1 loss use is made of the inequalitiesEZ2m �N � 12m;LH;Z�� � supz2Z2mN � 12m;LH; z� � �2emdH �dH ;where dH is known as the VC dimension of H:dH := max�m 2 N ���� supz2ZmN � 1m;LH; z� = 2m� :The generalization bound for the zero-one loss l0�1 then reads as follows: Withprobability at least 1 � Æ over the random draw of the training sample z 2 Zm,for all hypotheses h 2 H, R[h℄ � "VC(z; dH; Æ) where"VC(z; dH; Æ) := bR[h; z℄ +s 8m � dH ln�2emdH �| {z }e�e
tive 
omplexity+ ln�4Æ��: (8)
The key term in this bound is labeled the e�e
tive 
omplexity and in this 
aseis essentially determined by the VC-dimension dH. Note that for general lossfun
tions l : Y � Y ! R+ similar results are obtained by studying the family9



f(ŷ; y) 7! Il(ŷ;y)>� j � 2 Rg of zero-one loss fun
tions.There are many results bounding the VC dimension for spe
i�
 hypothesisspa
es (see Vapnik Chervonenkis dimension of Neural Networks andPAC Learning and Neural Networks). Sin
e the result in (8) is uniform,it automati
ally provides a bound on the generalization error of any algorithmthat 
hooses its hypotheses from some �xed hypothesis spa
e H.Data-Dependent Stru
tural Risk MinimizationAn appli
ation of the union bound allows the 
ombination of several VC boundsfor di�erent hypothesis spa
es H1 � H2 � � � � � Hk � YX . This is the ideaunderlying stru
tural risk minimization (SRM): Using the 
ombination of VCbounds, an SRM algorithm aims to minimize the bound dire
tly. It is thus appli-
able to regularized risk minimization learning algorithms. The bound, however,requires that the series of hypothesis spa
es must be de�ned independent of thetraining sample. Hen
e, we 
annot dire
tly use the training sample to 
ontrolthe e�e
tive 
omplexity (only impli
itly via the resulting training error).We 
an relax this assumption by introdu
ing an ordering among the hypothe-ses to be 
overed for a given sample z 2 Zm. Su
h a fun
tion, L : [1i=1Z i�H ! R,is 
alled a lu
kiness (see [14℄). For ea
h lu
kiness fun
tion it is required that avalue measured on the training sample allows one to bound the 
overing numberon the training and ghost sample of hypotheses whi
h in
rease the lu
kiness. Thisproperty is 
alled probable smoothness w.r.t. a fun
tion ! : R � N � [0; 1℄! N .10



The main result (whi
h is data dependent in the sense used above) for the zero-one loss l0�1 reads as follows: For all lu
kiness fun
tions L whi
h are probablysmooth w.r.t. !, with probability at least 1 � Æ over the random draw of thetraining sample z 2 Zm, for all hypotheses h 2 H su
h that bR[h; z℄ = 0, R[h℄ �"DSRM(z; h; !; L; Æ) where"DSRM(z; h; !; L; Æ) := 2m �log2�!�L(h; z); m; Æ2m��| {z }e�e
tive 
omplexity + log2�2mÆ �� : (9)
The result 
an also be stated for non-zero training error and general loss fun
-tions [8℄. Ea
h probably smooth lu
kiness fun
tion de�nes a data-dependentstru
turing H1(z) � H2(z) � � � � � Hm(z) � H of the hypothesis spa
e H byHi(z) := �h 2 H ���� !�L(h; z); m; Æ2m� � 2i� :The 
hoi
e of the lu
kiness fun
tion is not unique; it is best 
ompared to the 
hoi
eof a prior in a Bayesian analysis (see Bayesian Methods for SupervisedNeural Networks).PAC-Bayesian FrameworkThe PAC-Bayesian framework [11℄ studies only Bayesian learning algorithms.The main ideas are very similar to the lu
kiness framework. One of the motiva-11



tions is to 
apture an important feature of Bayesian 
on�den
e intervals | theirwidth depends on the sample itself and not just its size.A dire
t appli
ation of the union bound with fa
tors di�erent from 1n leads tothe following result: For all measures PH and PZ, with probability at least 1� Æover the random draw of the training sample z 2 Zm, for all hypotheses h 2 Hsu
h that PH(h) > 0, R[h℄ � "PB(z; h;PH; Æ) where"PB(z; h;PH; Æ) := bR[h; z℄ +s 12m �ln� 1PH(h)�| {z }e�. 
omplexity+ ln�1Æ�� :
If the likelihood fun
tion PZjH=h((x; y)) equals Ih(x)=y then the bound maximizeris given by the maximum a posteriori estimator hMAP := argmax h2H PHjZm=z(h).Using a tool known as the quanti�er reversal lemma it is possible to studythe Gibbs 
lassi�
ation strategy whi
h uses a randomly drawn hypothesis for ea
hnew data point to be 
lassi�ed:AHGibbs(x) := h(x) ; h � PHjH2H :The quanti�er reversal lemma is a high-probability equivalent of the union bound:Given n high-probability bounds �i (see (7)) and any distribution PI over the

12



numbers f1; : : : ; ng,8� 2 [0; 1℄ : 8Æ 2 [0; 1℄ : PZm (PI(�I (Z; : : : ; �Æ) � 1� �) � 1� Æ :The proof is very simple and makes use of Markov's inequality. Noti
ing that forall loss fun
tions l : Y � Y ! [0; 1℄,R[AHGibbs℄ = EHjH2H [R[H℄℄ � 
 � PHjH2H(R[H℄ � 
) + 1 � PHjH2H(R[H℄ > 
)it is possible to prove the following result: Given a prior measure PH, with prob-ability at least 1 � Æ over the random draw of the training sample z 2 Zm, forall subsets H � H, the generalization error of the Gibbs 
lassi�
ation strategyAHGibbs satis�esR �AHGibbs(z)� � EHjH2H h bR[H; z℄i+s 12m � ln� 1PH(H)�| {z }e�e
tive 
omplexity+ ln�m2Æ ��+ 1m :
The e�e
tive 
omplexity s
ales inversely with PH(H) whi
h in the 
ase of thelikelihood fun
tion PZjH=h((x; y)) = Ih(x)=y and the Bayesian posterior PHjZm=zequals the eviden
e EH[PZmjH=h(z)℄ (see Bayesian Methods for SupervisedNeural Networks). The 
omplexity term is minimized if we 
hoose H su
hthat PH(H) = 1. However, for a small overall bound value it is also required13



that the expe
ted empiri
al risk EHjH2H [ bR[H; z℄℄ is small. It is worth mentioningthat the results are still algorithm independent sin
e they not only hold for theBayesian posterior but for all hypotheses h 2 H and all subsets H � H.Algorithm Dependent BoundsWe now summarize three distin
t but related approa
hes to the analysis of learn-ing algorithms that utilize parti
ular properties of the algorithm apart from thespa
e H it draws its hypotheses from.The Compression FrameworkThe 
ompression framework [6℄ is based on the idea that a good learning algorithmis able to re
onstru
t its hypothesis using only a small fra
tion of the trainingsample z. It is assumed that the learning algorithm 
an be written asA(z) := R(zC(z)) (10)where C : [1m=1 Zm ! I maps the training sample to indi
es i 2 I, I =f(i1; : : : ; in) j n 2 N ; i1 6= � � � 6= ing, zi := (zi1 ; : : : ; zin), and R : [1m=1 Zm ! YX
omputes the �nal hypothesis using only the subsample indexed by C(z). Atypi
al example of su
h an algorithm is the per
eptron learning algorithm (seePer
eptrons, Adalines, and Ba
kpropagation) whi
h 
an re
onstru
tits hypothesis using only the training patterns on whi
h it needed to update the14



weight ve
tor.The mathemati
al tool needed to study this 
lass of learning algorithms isagain the union bound:PZm �R[A(Z)℄� bR[A(Z);Z℄ > �� � PZm �9i 2 I : R[R(Zi)℄� bR[R(Zi);Z℄ > ��� Xi2I PZm �R[R(Zi)℄� bR[R(Zi);Z℄ > �� :Interestingly, for any index ve
tor i the sample z n zi is an iid test sample onwhi
h the �xed hypothesis R(zi) is assumed to have a di�eren
e in empiri
aland expe
ted risk of more than �. Using (6) | whi
h holds independent of i |and the fa
t that there are no more than �md � � ( emd )d, d = jij, many di�erentindex sets for a training sample z of size m, leads to the main result of the
ompression framework: For the zero-one loss l0�1 and any learning algorithmthat 
an be written as (10), with probability at least 1� Æ over the random drawof the training sample z 2 Zm, R[A(z)℄ � "
r(z; jC(z)j; Æ) where for d = jC(z)j"
r(z; d; Æ) := mm� d � bR[A(z); z℄+s 12m� d � d ln�emd �| {z }e�. 
omplexity+ ln�m2Æ �� : (11)
A similar result 
an be stated for general loss fun
tions. Note that this bound isdata-dependent sin
e jC(z)j depends both on the learning algorithm A and thetraining sample z. 15



The 
ompression framework has its roots in the theory of on-line learning [10℄.An on-line learning algorithm pro
eeds in trials. In ea
h trial, the algorithm ispresented with a training sample xi 2 x and makes a predi
tion ŷ 2 Y. It thenre
eives the desired output yi 2 y and in
urs a mistake whenever ŷ 6= yi. Theperforman
e measure of an on-line learning algorithm is the number of mistakes itin
urs on a training sample z. If the on-line algorithm is mistake driven, that is,it only updates the hypothesis whenever a mistake is in
urred, then any mistakebound is also an upper bound on jC(z)j. This s
heme allows the determinationof generalization error bounds for on-line learning algorithms applied in bat
hmode (see for example [3℄).The Algorithmi
 Stability FrameworkIn the algorithmi
 stability framework [2℄, it is assumed that any additionaltraining example has a limited in
uen
e on the fun
tion learned insofar as thepredi
tion on any possible test point is 
on
erned. Su
h algorithms are 
alleduniformly stable and have the property that for all i 2 f1; : : : ; mg:8z 2 Zm : 8(x; y) 2 Z : jl(A(z)(x); y)� l(A(zni)(x); y)j � �(m) ;where zni := (z1; : : : ; zi�1; zi+1; : : : ; zm). The �(�){stability of learning algorithms
an be determined if the loss fun
tion is Lips
hitz 
ontinuous with (Lips
hitz)
onstant Cl: the di�eren
e jl(ŷ; �)� l(~y; �)j is bounded from above by Cl � jŷ� ~yj.16



The `1 loss l1 and the �{insensitive loss l� are both Lips
hitz 
ontinuous with the
onstant Cl = 1.Given a Lips
hitz 
ontinuous loss fun
tion l and a reprodu
ing kernel Hilbertspa
e H with kernel k : X � X ! R, the 
lass of regularized risk minimizationlearning algorithms AH;�RRM := argminh2H � bR[h; z℄ + �khk2�are �(�){stable with �(m) � Cl supx2X k(x; x)=2�m. Intuitively, the larger � > 0the smaller the in
uen
e of the empiri
al term bR[h; z℄ and hen
e the more stablethe learning algorithm (see also Generalization and Regularization inNonlinear Learning Systems).In order to exploit the �(�){stability of a learning algorithm, a result from thetheory of large deviations of fun
tions of random variables known asM
Diarmid'sinequality [5℄ is used. This inequality asserts that the probability of a deviationof � between the value of a fun
tion f of m iid variables and the expe
ted valueof that fun
tion de
ays as exp(��2=m
2) where 
 is the maximal deviation ofthe fun
tions value when ex
hanging one variable. In this sense, M
Diarmid'sinequality is a generalization of (6) for non-pointwise loss fun
tions. Consideringthe deviation between the expe
ted risk and the empiri
al risk of the fun
tionlearned by A as a fun
tion of m iid random variables leads to the followingresult: For any �(�){stable learning algorithm A and a bounded loss fun
tion17



l : Y � Y ! [0; 1℄, with probability at least 1 � Æ over the random draw of thetraining sample z 2 Zm, R[A(z)℄ � "AS(z; �; Æ), where"AS(z; �; Æ) := bR[A(z); z℄ + 2�(m) +s2 (4�(m) �m + 1)2 ln �1Æ�m : (12)There are three interesting observations to make:1. In order for the result to be non-trivial, it is required that �(m) de
aysfaster than 1=m. This readily tells us the range of � values to 
onsider forAH;�RRM.2. The result as stated in (12) is not dire
tly appli
able to the zero-one lossl0�1 as the di�eren
e in the latter 
annot de
ay at a rate of 1=m but is �xedto the values f0; 1g. Noti
ing that in pra
ti
e we often use thresholdedreal-valued fun
tions h(�) = sign(f(�)) for 
lassi�
ation, it is possible toover
ome this limitation by bounding the zero-one loss fun
tion from above.In parti
ular, if Y = f�1;+1g thenlmargin(f(x); y) := min(max(0; 1� yf(x)); 1) � l0�1(f(x); y) := Iyf(x)�0 ;that is, any upper bound on the expe
ted risk EXY[lmargin(f(X);Y)℄ is by def-inition an upper bound on R[h℄ for the zero-one loss l0�1 and the asso
iatedbinary 
lassi�
ation fun
tion h.3. The result is data-independent as the stability �(m) needs to be known18



before the training samples arrives. Re
ent developments in this area aimto over
ome this problem by the notion of a stability measured on the giventraining sample.The Algorithmi
 Lu
kiness FrameworkFinally, we present a re
ently developed algorithm-dependent framework [8℄ whi
hbuilds on ideas of the data-dependent stru
tural risk minimization framework.The key observation is that the basi
 lemma is not only true when 
onsidering themaximum deviation between the expe
ted and empiri
al risk but is also true forthe deviation between the expe
ted and empiri
al risk of the one fun
tion learnedusing a �xed learning algorithm A. As a 
onsequen
e, for any double samplezz0 2 Z2m (training sample z and ghost sample z0) one only needs to 
onsiderthe set H � YX of fun
tions whi
h 
an be learned by a �xed learning algorithmA from any subsample of size m. If the learning algorithm under 
onsideration ispermutation-invariant then this set 
annot be larger than jHj � 22m regardlessof the loss fun
tion 
onsidered.The notion of lu
kiness 
hanges in that it now maps a given learning algorithmA and a given training sample z to a real value whi
h e�e
tively measures theextent to whi
h the given data aligns with an en
oded prior belief. In a

ordan
ewith the data-dependent stru
tural risk minimization framework, it is requiredthat the measured value of the lu
kiness on a random training sample z 
an beused to upper bound the number of subsets of a double sample whi
h will lead to19



an in
rease in the lu
kiness value. This rather te
hni
al 
ondition is known as !{smallness and is best 
ompared to the probable smoothness of lu
kiness fun
tionsearlier. Using the union bound together with the re�ned basi
 lemma leads tothe following generalization error bound for all loss fun
tion l : Y � Y ! [0; 1℄:For all algorithmi
 lu
kiness fun
tions L whi
h are !{small, with probability atleast 1 � Æ over the random draw of the training sample z 2 Zm, R[A(z)℄ �"AL(z;A; !; L; Æ)"AL(z;A; !; L; Æ) := bR[A(z); z℄+s 8m �log2 �!�L(A; z); Æ2m��| {z }e�e
tive 
omplexity + log2�2mÆ �� :
The main di�eren
e to (9) is in the de�nition of the lu
kiness fun
tion. In 
ontrastto (9), we 
an now exploit properties of the learning algorithm in the de�nition ofthe !{smallness. As an easy example, 
onsider the lu
kiness fun
tion L0(A; z) :=�jC(z)j for algorithms of the form (10). Then, given a value d = �L0(A; z) of thelu
kiness fun
tion on any training sample, there 
annot be more than �2md � distin
tsubsets of the training and ghost sample whi
h shows that !(L0; m; Æ) = � 2m�L0�is a valid ! fun
tion. Note that this example removes the fa
tor mm�d in front ofthe empiri
al term in (11) at the 
ost 2m rather than m in the 
omplexity termd ln(2emd ).

20



Dis
ussionOur presentation of the theory of learning and generalization is non-standardsin
e we aimed to present many, seemingly di�erent approa
hes. For standardpresentations with more details the interested reader is referred to [4, 15, 1, 7,13℄. A fairly 
omprehensive overview is given in [9℄. In this 
hapter, we wereassuming that the genuine interest is in bounds on the generalization error (see(2)). It is worth mentioning that another way to quantify generalization behaviorof learning algorithms is in terms of bounds on the leave-one-out error (for furtherdetails, the interested reader is referred to [4℄).Although we would like to use theoreti
al bounds dire
tly for model sele
tionand model validation, it 
urrently seems that the potential value of these resultsis to provide insight into the design of learning algorithms. For example, thequestion of 
onsisten
y says that 
overing numbers are the \right" quantities tolook at for ERM algorithms.However, for other algorithms the situation is less 
lear, though now there areseveral variants on 
lassi
al VC analysis methods using the same formal learningproblem setup. The various bounds we presented ("VC(z; dH; Æ), "DSRM(z; h; !; L; Æ),"PB(z; h;PH; Æ), "
r(z; jC(z)j; Æ), "AS(z; �; Æ), "AL(z;A; !; L; Æ)) were in terms of arange of parameters; we still do not really know what the \right" ones are. Re
entwork [12℄ has shown the power of alternate geometri
 approa
hes to develop 
er-tain 
lasses of generalization bounds. We expe
t that these and other approa
hes21



will lead to deeper understanding of the generalization ability of learning ma-
hines.
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