Learning and Generalization: Theoretical Bounds

Ralf Herbrich* Robert C. Williamson
Microsoft Research Australian National University
CB3 0FB Cambridge Canberra 0200
United Kingdom Australia
rherb@microsoft.com Bob. Williamson@anu.edu.au

*Corresponding author. Tel: +44 1223 479803, Fax: +44 1223 479999

1

Introduction

The fundamental difference between a system that learns and one that merely
memorizes is that the learning system generalizes to unseen examples. In order to
understand the performance of learning machines, and to gain insight that helps
to design better ones, it is helpful to have theoretical bounds on the generalization
ability of the machines. The determination of such bounds is the subject of
the present article. In order to formulate them it is necessary to formalize the
learning problem and turn the question of how well a machine generalizes into
a mathematical question. Below we introduce one possible formalization — the

one adopted in the field of statistical learning theory.

Formalization of The Learning Problem

In order to study the learning problem in a mathematical framework, we assume
the existence of an unknown distribution Pxy over an input space X (e.g. R*) and
an output spacey (e.g. {0,1}). We are only given a sample z = ((x1,41), - -+, (Tm, Ym)) €
(X x Y)™ = Z™ which, is assumed to be drawn #id (independent identically dis-
tributed) from Pxy; we define Pz := Pxy. (In this article, random variables are
always written in sans-serif, e.g. X.)

In an attempt to discover the unknown relation Pyjx—, between inputs and

outputs, a learning algorithm A chooses a deterministic hypothesis h: X — Y

solely based on a given training sample z € Z™. Formally,

A: G Zt S H,
i=1
where H C Y% is the hypothesis space used by the algorithm. (Recall Y de-
notes the set of maps from X’ to).) Some of the bounds take account of more
information regarding A than just H.

The performance of the learning algorithm is judged according to a loss func-
tionl: Y x Y — R* which measures the cost of the prediction 7 if y is the correct
output. The choice of the loss function is a key part of the formal specification of
the learning problem. The learning problem is to find an hypothesis h: X — Y

such the ezpected risk, R[h] := Exy[l(h(X),Y)], is minimized.

Pattern recognition In this case, || < oo. Typically one is interested in the
misclassification error Pxy(h(X) # Y). This can be modeled by the zero-
one loss, lo_1(9,y) = Iyz,. (Here I denotes the indicator function.) More

complex loss functions are obtained by using a cost matrix C € RYI*MI.

Function learning Here,) = R. The classical regression scenario utilizes
squared loss, lo(7,y) = (y — y)®. Other loss functions are the ¢; loss

function, (9, y) := |y — y|, and the e-insensitive loss, l.(7,y) := max{|j —

y|7€} — €

If we knew Pz, the solution of the learning problem would be straightforward:

hopt () == argg)l}in Evix=[l(y,Y)]. (1)

The fact that hgpy can not be identified only on the basis of the training sample
z is the motivation for studying theoretical bounds on the generalization error of
learning algorithms. These bounds are only valid for most random draws of the

training sample. Formally, they read as follows:

Pzn (RIA(Z)] <ey(Z,...,0)) >1-9. (2)

In the analysis of such bounds it is convenient to think of the loss function induced

function class

Ly = {(w,y) = U(h(x),y) | h e H}.

For simplicity we will mostly consider the pattern recognition case and the zero-

one loss; the reasoning in the function learning case is conceptually similar.

Consistency of Learning Algorithms

Consistency is a property of a learning algorithm that guarantees that in the limit
of an infinite amount of data the learning algorithm will achieve the minimum

possible expected risk. The definition is relative to a fixed hypothesis space

H C YV and requires

Ve >0: lim Pzm (R[A(Z)] — inf R[h] > e) 0. (3)

m—00 heH

For the results stated below [15], a more complex notion of nontrivial consistency
is needed. In particular, this notion requires that (3) holds even if H is replaced
by H.:={h € H | R[h] > ¢} for all c € R. Note that in this case inf,c3,, R[h] =

It is known that for the class of empirical risk minimization (ERM) algorithms

A = argmin — I(h
Hru(2) = }%E% mz

J

~”

R[h,z] (the empirical risk)

consistency is equivalent to uniform one-sided convergence of empirical risks to
expected risk; that is,

Ve>0: lim Pzm <sup (R[h] — R, Z]) > 6> ~0. (4)

m— o0 heH

A slightly stronger condition than (4), namely uniform two-sided convergence, is

equivalent to

Ves0: lim Ezn V(e Ly, Z)))

m—00 m

—0 (5)

where N (e, Ly, z) is the covering number of L3, on the sample z at scale e. This

is the smallest number of functions g: Z — R such that for every induced loss

function g € L4 there exists a function g with

lZ|9(Zz) —g(z)] <e.

m <
=1

In the case of the zero-one loss, lo_i, the covering number N (=, Ly, z) equals
the number of different error patterns (g(z1),...,9(zm)) € {0,1}™ incurred by
induced loss functions g € L.

This characterization result (that consistency of A¥.,, is “almost” equiva-
lent to (5)) is the justification for the central place that covering numbers play
in statistical learning theory. It is important to note that the results are only
for A¥.\;. Tt is still an open problem to characterize consistency for algorithms
other than A¥g,; and thus it is not known what their “right” technical parameters

are.

Theoretical Bounds for Learning Algorithms

The starting point of all the analysis presented here is the observation that for a
fized hypothesis h: X —) (and induced loss function g, g((z,v)) := l(h(z),y))

we know that

Pz (R[N~ RIh,Z) > ¢) = P (EZ[Q(Z)]—% g<zz~>>e)

i=1

< exp(—c-meé’) (6)

where ¢ is some constant and 3 € [1,2], if the loss is bounded or has bounded

moments. This is due to well known results in large deviation theory (see [5,
Chapter 1]).

The second tool is the union bound which states that for events A and B,
P(AUB)=P(A)+P(B)—P(ANnB) <P(A)+P(B).

As a consequence, if we consider a hypothesis space of finite size, say n, then the
chance that for at least one of the hypotheses the expected risk is larger than the
empirical risk by more than € is of order n - exp(—me®). The general application
of this simple inequality for learning theory is that given n high-probability bounds

T;: 2™ x --- x [0,1] — {false, true} such that

Vie{l,...,n}: ¥ €[0,1]: Pzu(Yi(Z,...,0)) >1—-90, (7)

then

welt P (Ti(Zo 2 neat (2o)) 210,
n n

There are two conceptual simplifications that aid the study of the generaliza-

tion performance of learning algorithms:

Algorithm independence Motivated by (4), consider the uniform convergence

and bound this probability. This automatically gives a bound which holds
for all hypotheses, including the one learned with a given learning algorithm.
Although this is a very crude step, it has largely dominated statistical
learning theory for the last 30 years; the whole analysis is independent of

the learning algorithm used except via H.

Data independence If the training sample is entering the bound only via the
empirical risk we call the analysis sample independent as we are unable to

exploit the serendipity of the training sample to obtain a better bound.

Algorithm Independent Bounds

Algorithm independent analysis has historically been the most common. Below
we examine the VC framework, data-dependent structural risk minimization and

the PAC-Bayesian framework.

The VC Framework

The VC (Vapnik-Chervonenkis) framework was established in 1971 and stud-
ies Ak via uniform convergence (see [15, 1] for more details). The bounds are
sample independent in the sense used above. The only extra tool required is the
basic lemma. This result makes precise the idea that whenever it is likely that
two empirical risks measured on a training and a ghost sample (another sample

of the same size drawn independently) are close to each other than it must also

be likely that the empirical risk on a training sample is close to the expected risk.
A result of this is a generalization bound in terms of Ez2n [N (ﬁ, Ly, Z)] where
the 2m is a consequence of the basic lemma. However this is still not really useful

since computing Ez2m [/\/ (#, Ly, Z)] requires knowledge of the distribution P.

For [y_; loss use is made of the inequalities

1 1 2em \
EZ2m |:N <—7[’7{72>:| < sup N <—7[’7{7z> < <ﬂ>)
2m z€Z2m 2m d’H
where dy is known as the VC dimension of H.:

dy == max{m eN

1
sup N(—,E;{,z> = 2’"} .
zEZm m

The generalization bound for the zero-one loss [y_; then reads as follows: With
probability at least 1 — & over the random draw of the training sample z € Z™,

for all hypotheses h € H, R[h] < evc(z,dy, §) where

sttty =i 5 (o (22) (1)) ©
S\

effective complexity

The key term in this bound is labeled the effective complexity and in this case
is essentially determined by the VC-dimension dy. Note that for general loss

functions /:) x Y — R* similar results are obtained by studying the family

{(7,y) = Liggy)>o | & € R} of zero-one loss functions.

There are many results bounding the VC dimension for specific hypothesis
spaces (see VAPNIK CHERVONENKIS DIMENSION OF NEURAL NETWORKS and
PAC LEARNING AND NEURAL NETWORKS). Since the result in (8) is uniform,
it automatically provides a bound on the generalization error of any algorithm

that chooses its hypotheses from some fixed hypothesis space .

Data-Dependent Structural Risk Minimization

An application of the union bound allows the combination of several VC bounds
for different hypothesis spaces H; C Ho C -+- C Hj, C Y. This is the idea
underlying structural risk minimization (SRM): Using the combination of VC
bounds, an SRM algorithm aims to minimize the bound directly. It is thus appli-
cable to regularized risk minimization learning algorithms. The bound, however,
requires that the series of hypothesis spaces must be defined independent of the
training sample. Hence, we cannot directly use the training sample to control
the effective complexity (only implicitly via the resulting training error).

We can relax this assumption by introducing an ordering among the hypothe-
ses to be covered for a given sample 2 € Z™. Such a function, L: U2, Z'xH — R,
is called a luckiness (see [14]). For each luckiness function it is required that a
value measured on the training sample allows one to bound the covering number
on the training and ghost sample of hypotheses which increase the luckiness. This

property is called probable smoothness w.r.t. a function w: R x N x [0,1] — N.

10

The main result (which is data dependent in the sense used above) for the zero-
one loss [y_; reads as follows: For all luckiness functions L which are probably
smooth w.r.t. w, with probability at least 1 — § over the random draw of the
training sample z € Z™, for all hypotheses h € H such that R[h, z] = 0, R[h] <

epsrm (2, hyw, L, §) where

cpsra(2, By w, L, 0) 1= % <10g2 (w (L(h, z),m,%)) +log, (27"‘)))

(. S

effective E(r)mplexity

The result can also be stated for non-zero training error and general loss func-
tions [8]. Each probably smooth luckiness function defines a data-dependent

structuring Hq(z) C Ha(2z) C --- C Hpn(z) € H of the hypothesis space H by

W <L(h,z),m,%> < 22'} .

The choice of the luckiness function is not unique; it is best compared to the choice

Hi(z) = {h eEH

of a prior in a Bayesian analysis (see BAYESIAN METHODS FOR SUPERVISED

NEURAL NETWORKS).

PAC-Bayesian Framework

The PAC-Bayesian framework [11] studies only Bayesian learning algorithms.

The main ideas are very similar to the luckiness framework. One of the motiva-

11

tions is to capture an important feature of Bayesian confidence intervals — their
width depends on the sample itself and not just its size.

A direct application of the union bound with factors different from % leads to
the following result: For all measures Py and Pz, with probability at least 1 —
over the random draw of the training sample z € Z™, for all hypotheses h € H

such that Py(h) > 0, R[h] < epp(2, h,Pn,d) where

izt Poct) = R [(i () 4 (2))

eff. complexity

If the likelihood function Pzjy—y((x,y)) equals I(z)=, then the bound maximizer
is given by the mazimum a posteriori estimator hyap 1= argmax ;4 PH‘Zm:z(h).

Using a tool known as the quantifier reversal lemma it is possible to study
the Gibbs classification strategy which uses a randomly drawn hypothesis for each

new data point to be classified:

Agibbs(x) = h(z), h~ I:’H|HeH-

The quantifier reversal lemma is a high-probability equivalent of the union bound:

Given n high-probability bounds Y; (see (7)) and any distribution Py over the

12

numbers {1,...,n},

Va € 10,1]: V6 € [0,1]: Pza (P(Y(Z,...,a0) >1—a)>1—-9.

The proof is very simple and makes use of Markov’s inequality. Noticing that for

all loss functions [: Y x Y — [0, 1],

R AGips] = Evpnen[RH]] < ¢ Punen(RH] < ¢) + 1- Pujpen(R[H] > ¢)

it is possible to prove the following result: Given a prior measure Py, with prob-
ability at least 1 — & over the random draw of the training sample z € Z™, for
all subsets H C H, the generalization error of the Gibbs classification strategy

Al e satisfies

R[AZ,, (2)] < Enpen [E[H,z]] + \/i (In (PiH)) +In (”%2» +%.

effective complexity

The effective complexity scales inversely with Py(H) which in the case of the
likelihood function Pzjp—p((2,y)) = Ihm)=y and the Bayesian posterior Pyjzm—,
equals the evidence Ey[Pzmn=n(z)] (see BAYESIAN METHODS FOR SUPERVISED
NEURAL NETWORKS). The complexity term is minimized if we choose H such

that Py(H) = 1. However, for a small overall bound value it is also required

13

~

that the expected empirical risk Epnen[R[H, 2]] is small. It is worth mentioning
that the results are still algorithm independent since they not only hold for the

Bayesian posterior but for all hypotheses h € H and all subsets H C H.

Algorithm Dependent Bounds

We now summarize three distinct but related approaches to the analysis of learn-
ing algorithms that utilize particular properties of the algorithm apart from the

space H it draws its hypotheses from.

The Compression Framework

The compression framework [6] is based on the idea that a good learning algorithm
is able to reconstruct its hypothesis using only a small fraction of the training

sample z. It is assumed that the learning algorithm can be written as

A(Z) = ’R(zc(z)) (10)

where C: UYX_, Z™ — T maps the training sample to indices i € Z, 7T =
{(i1, .. in) | n € Nyiy # -+ Fin}, 21 = (21),...,2,), and R: UL, Z™ — P¥
computes the final hypothesis using only the subsample indexed by C(z). A
typical example of such an algorithm is the perceptron learning algorithm (see
PERCEPTRONS, ADALINES, AND BACKPROPAGATION) which can reconstruct

its hypothesis using only the training patterns on which it needed to update the

14

weight vector.
The mathematical tool needed to study this class of learning algorithms is

again the union bound:

P2 (RIA(Z) - RIA(Z),Z] > ¢) < Pz (3i€T: RIR(Z))] - RIR(Z:),2] >)

< Y Pu (RR(Z) - BIR(Z:),Z) >).

ieZ

Interestingly, for any index vector i the sample z \ z; is an iid test sample on
which the fixed hypothesis R(z;) is assumed to have a difference in empirical
and expected risk of more than e. Using (6) — which holds independent of i —
and the fact that there are no more than () < (“%)¢, d = |i|, many different
index sets for a training sample z of size m, leads to the main result of the
compression framework: For the zero-one loss lo_1 and any learning algorithm

that can be written as (10), with probability at least 1 — & over the random draw

of the training sample z € Z™, R[A(2)] < e (2, |C(2)|,0) where for d = |C(2)|

ca(z,d,6) = ﬁ-ﬁ[A(z),z]—i—\/Zml_d < dIn (%) +1n (m;» (11)

eff. complexity

A similar result can be stated for general loss functions. Note that this bound is
data-dependent since |C(z)| depends both on the learning algorithm A and the

training sample z.

15

The compression framework has its roots in the theory of on-line learning [10].
An on-line learning algorithm proceeds in trials. In each trial, the algorithm is
presented with a training sample z; € and makes a prediction § € Y. It then
receives the desired output y; € y and incurs a mistake whenever g # y;. The
performance measure of an on-line learning algorithm is the number of mistakes it
incurs on a training sample z. If the on-line algorithm is mistake driven, that is,
it only updates the hypothesis whenever a mistake is incurred, then any mistake
bound is also an upper bound on |C(z)|. This scheme allows the determination
of generalization error bounds for on-line learning algorithms applied in batch

mode (see for example [3]).

The Algorithmic Stability Framework

In the algorithmic stability framework [2], it is assumed that any additional
training example has a limited influence on the function learned insofar as the
prediction on any possible test point is concerned. Such algorithms are called

uniformly stable and have the property that for all i € {1,... ,m}:

Vze ZM:V(r,y) € 2. |I(A(2)(x),y) — I(A(2\)(7),y)| < B(m),

where z\; := (21,...,%i-1, Zi41,- - ., Zm). The B(-)-stability of learning algorithms
can be determined if the loss function is Lipschitz continuous with (Lipschitz)

constant Cj: the difference |I(y,-) — I(g,-)| is bounded from above by C; - |g — g].

16

The ¢, loss [; and the e—insensitive loss [, are both Lipschitz continuous with the
constant C; = 1.

Given a Lipschitz continuous loss function [and a reproducing kernel Hilbert
space H with kernel k: X x X — R, the class of regularized risk minimization

learning algorithms

AQQM = ar}%min (]/%[h, z| +)\||h||2)

EH

are ((-)-stable with B(m) < Cjsup,cy k(z, z)/2Am. Intuitively, the larger A > 0
the smaller the influence of the empirical term R[h, 2] and hence the more stable
the learning algorithm (see also GENERALIZATION AND REGULARIZATION IN
NONLINEAR LEARNING SYSTEMS).

In order to exploit the 3(-)—stability of a learning algorithm, a result from the
theory of large deviations of functions of random variables known as McDiarmid’s
inequality [5] is used. This inequality asserts that the probability of a deviation
of € between the value of a function f of m iid variables and the expected value
of that function decays as exp(—e?/mc?®) where ¢ is the maximal deviation of
the functions value when exchanging one variable. In this sense, McDiarmid’s
inequality is a generalization of (6) for non-pointwise loss functions. Considering
the deviation between the expected risk and the empirical risk of the function
learned by A as a function of m iid random variables leads to the following

result: For any ((-)-stable learning algorithm A and a bounded loss function

17

[: Y xY — [0,1], with probability at least 1 — § over the random draw of the

training sample z € 2™, R[A(z)] < eas(z, 3,0), where

2 (48(m) -m +1)"In (1) |

eas(z, 8,0) := RIA(2), z] + 26(m) + \/ (12)

There are three interesting observations to make:

1. In order for the result to be non-trivial, it is required that §(m) decays
faster than 1/m. This readily tells us the range of A values to consider for

H,A
ARRM :

2. The result as stated in (12) is not directly applicable to the zero-one loss
lo—1 as the difference in the latter cannot decay at a rate of 1/m but is fixed
to the values {0,1}. Noticing that in practice we often use thresholded
real-valued functions h(-) = sign(f(+)) for classification, it is possible to
overcome this limitation by bounding the zero-one loss function from above.

In particular, if Y = {—1,+1} then

lmargin(f(x)a y) = min(maX(O, - yf(x))ﬂ 1) Z l[)fl(f(flf), y) =]ny(:c)§07

that is, any upper bound on the expected risk Exy [lmargin (f(X), Y)] is by def-
inition an upper bound on R][h] for the zero-one loss ly_; and the associated

binary classification function h.

3. The result is data-independent as the stability 5(m) needs to be known

18

before the training samples arrives. Recent developments in this area aim
to overcome this problem by the notion of a stability measured on the given

training sample.

The Algorithmic Luckiness Framework

Finally, we present a recently developed algorithm-dependent framework [8] which
builds on ideas of the data-dependent structural risk minimization framework.
The key observation is that the basic lemma is not only true when considering the
maximum deviation between the expected and empirical risk but is also true for
the deviation between the expected and empirical risk of the one function learned
using a fixed learning algorithm A. As a consequence, for any double sample
zz' € Z®™ (training sample z and ghost sample 2’) one only needs to consider
the set H C Y of functions which can be learned by a fixed learning algorithm
A from any subsample of size m. If the learning algorithm under consideration is
permutation-invariant then this set cannot be larger than |H| < 2?™ regardless
of the loss function considered.

The notion of luckiness changes in that it now maps a given learning algorithm
A and a given training sample z to a real value which effectively measures the
extent to which the given data aligns with an encoded prior belief. In accordance
with the data-dependent structural risk minimization framework, it is required
that the measured value of the luckiness on a random training sample z can be

used to upper bound the number of subsets of a double sample which will lead to

19

an increase in the luckiness value. This rather technical condition is known as w—
smallness and is best compared to the probable smoothness of luckiness functions
earlier. Using the union bound together with the refined basic lemma leads to
the following generalization error bound for all loss function I: Y x Y — [0, 1]:
For all algorithmic luckiness functions L which are w—small, with probability at
least 1 — & over the random draw of the training sample z € Z™, R[A(z)] <

ean(z, A w, L,0)

can(z, A, w, L, 6) = E[A(z),z]+\/% <1og2 <w <L(A, 2), %)) +log, (%m)) |

. S

effective E(,)mplexity

The main difference to (9) is in the definition of the luckiness function. In contrast
to (9), we can now exploit properties of the learning algorithm in the definition of
the w—smallness. As an easy example, consider the luckiness function Ly (A, 2) :=
—|C(z)] for algorithms of the form (10). Then, given a value d = —Ly(.A, z) of the
luckiness function on any training sample, there cannot be more than (2;") distinct
subsets of the training and ghost sample which shows that w(Lg, m,d) = (_QTO)

is a valid w function. Note that this example removes the factor —- in front of

the empirical term in (11) at the cost 2m rather than m in the complexity term

dln(%Tm).

20

Discussion

Our presentation of the theory of learning and generalization is non-standard
since we aimed to present many, seemingly different approaches. For standard
presentations with more details the interested reader is referred to [4, 15, 1, 7,
13]. A fairly comprehensive overview is given in [9]. In this chapter, we were
assuming that the genuine interest is in bounds on the generalization error (see
(2)). It is worth mentioning that another way to quantify generalization behavior
of learning algorithms is in terms of bounds on the leave-one-out error (for further
details, the interested reader is referred to [4]).

Although we would like to use theoretical bounds directly for model selection
and model validation, it currently seems that the potential value of these results
is to provide insight into the design of learning algorithms. For example, the
question of consistency says that covering numbers are the “right” quantities to
look at for ERM algorithms.

However, for other algorithms the situation is less clear, though now there are
several variants on classical VC analysis methods using the same formal learning
problem setup. The various bounds we presented (eyc(z, dyy, 0), epsrm (2, b, w, L, §),
epg(2, h, Py,), £e:(2,|C(2)],0), eas(z, 5,9), ear(z, A, w, L, 0)) were in terms of a
range of parameters; we still do not really know what the “right” ones are. Recent
work [12] has shown the power of alternate geometric approaches to develop cer-

tain classes of generalization bounds. We expect that these and other approaches

21

will lead to deeper understanding of the generalization ability of learning ma-

chines.

22

*

References

1]

[5]

M. Anthony and P. Bartlett. Neural Network Learning: Theoretical Foun-

dations. Cambridge University Press, 1999.

O. Bousquet and A. Elisseeff. Algorithmic stability and generalization per-
formance. In T. K. Leen, T. G. Dietterich, and V. Tresp, editors, Advances
in Neural Information Processing Systems 13, pages 196-202. MIT Press,

2001.

N. Cesa-Bianchi, Y. Freund, D. Haussler, D. P. Helmbold, R. E. Schapire,
and M. K. Warmuth. How to use expert advice. Journal of the ACM,

44(3):427-485, 1997.

L. Devroye, L. Gyorfi, and G. Lugosi. A Probabilistic Theory of Pattern
Recognition. Number 31 in Applications of Mathematics. Springer, New

York, 1996.

L. Devroye and G. Lugosi. Combinatorial Methods in Density Estimation.

Springer, 2001.

S. Floyd and M. Warmuth. Sample compression, learnability, and the Vapnik

Chervonenkis dimension. Machine Learning, 27:1-36, 1995.

R. Herbrich. Learning Kernel Classifiers: Theory and Algorithms. MIT

Press, 2002.

23

8]

[10]

[11]

[12]

* [13]

[14]

* [15]

R. Herbrich and R. C. Williamson. Algorithmic luckiness. In Advances in

Neural Information Processing Systems 14. MIT Press, 2002. In press.

S. Kulkarni, G. Lugosi, and S. Venkatesh. Learning pattern classification —

a survey. IEEE Transactions on Information Theory, 44:2178-2206, 1998.

N. Littlestone. Learning quickly when irrelevant attributes abound: A new

linear-threshold algorithm. Machine Learning, 2:285-318, 1988.

D. A. McAllester. Some PAC Bayesian theorems. In Proceedings of the An-
nual Conference on Computational Learning Theory, pages 230-234, Madi-

son, Wisconsin, 1998. ACM Press.

S. Mendelson. Geometric methods in the analysis of Glivenko-Cantelli
classes. In D. Helmbold and B. Williamson, editors, 14th Annual Confer-
ence on Computational Learning Theory COLT, Proceedings, pages 256272,

2001.

B. Scholkopf and A. J. Smola. Learning with Kernels. MIT Press, Cam-

bridge, MA, 2002.

J. Shawe-Taylor, P. L. Bartlett, R. C. Williamson, and M. Anthony. Struc-
tural risk minimization over data-dependent hierarchies. IEEE Transactions

on Information Theory, 44(5):1926-1940, 1998.

V. Vapnik. Statistical Learning Theory. John Wiley and Sons, New York,
1998.

24

