Minimising the Kullback-Leibler Divergence

Ralf Herbrich

7th August 2005

Abstract

In this note we show that minimising the Kullback-Leibler divergence over a family in the class of exponential distributions is achieved by matching the expected natural statistic. We will also give an explicit update formula for distributions with only one likelihood term.

1 Notation

We use $\mathcal{N}(\mathbf{x} ; \boldsymbol{\mu}, \boldsymbol{\Sigma})$ to denote a Gaussian density at \mathbf{x} with a mean vector $\boldsymbol{\mu}$ and covariance matrix $\boldsymbol{\Sigma}$,

$$
\begin{equation*}
\mathcal{N}(\mathbf{x} ; \boldsymbol{\mu}, \boldsymbol{\Sigma}):=(2 \pi)^{-\frac{n}{2}}|\boldsymbol{\Sigma}|^{-\frac{1}{2}} \exp \left(-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{\mathrm{T}} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right) . \tag{1.1}
\end{equation*}
$$

When dealing one dimensional Gaussians the vectors and matrices are replaced by scalars. If p is a density over \mathbf{x}, we will write $\langle g(\mathbf{x})\rangle_{p(\mathbf{x})}$ as a shorthand notation for the expectation of g over $\mathbf{x}, \int g(\mathbf{x}) p(\mathbf{x}) d \mathbf{x}$. Finally, the Kullback-Leibler divergence between two densities p and q is defined by

$$
\begin{equation*}
\mathrm{KL}(p \| q):=\left\langle\log \left(\frac{p(\mathbf{x})}{q(\mathbf{x})}\right)\right\rangle_{p(\mathbf{x})} \tag{1.2}
\end{equation*}
$$

2 Minimising in the Exponential Family

A set of distributions over \mathbb{R}^{N} is in the exponential family if its densities can be written as

$$
p_{\boldsymbol{\theta}}(\mathbf{x})=\frac{1}{Z(\boldsymbol{\theta})} \exp \left(\boldsymbol{\theta}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x})\right)
$$

where $\boldsymbol{\phi}(\mathbf{x})$ is known as the natural statistic of \mathbf{x} and $Z(\boldsymbol{\theta}):=\int \exp \left(\boldsymbol{\theta}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x})\right) d \mathbf{x}$ ensures normalisation. The exponential family includes many known families of distributions including the Gaussian distribution. For example, in the Gaussian case, the natural statistic $\boldsymbol{\phi}(\mathbf{x})$ is simply the vector of all first and second moments, $\boldsymbol{\phi}(\mathbf{x})=\left(x_{1}, \ldots, x_{N}, x_{1}^{2}, x_{1} x_{2}, \ldots, x_{N} x_{N-1}, x_{N}^{2}\right)$. Note that the expected natural statistic of $p_{\boldsymbol{\theta}}(\mathbf{x})$ is given in terms of the gradient of $\log (Z(\boldsymbol{\theta}))$ w.r.t. $\boldsymbol{\theta}$, that is,

$$
\begin{equation*}
\nabla_{\boldsymbol{\theta}} \log (Z(\boldsymbol{\theta}))=\frac{\int\left[\nabla_{\boldsymbol{\theta}} \exp \left(\boldsymbol{\theta}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x})\right)\right] d \mathbf{x}}{Z(\boldsymbol{\theta})}=\langle\boldsymbol{\phi}(\mathbf{x})\rangle_{p_{\boldsymbol{\theta}}(\mathbf{x})} . \tag{2.1}
\end{equation*}
$$

Theorem 1. For any distribution p, the distribution $p_{\theta^{*}}$ which minimises the Kullback-Leibler divergence, $K L\left(p \| p_{\boldsymbol{\theta}^{*}}\right)$, over the exponential family with natural statistic $\boldsymbol{\phi}$ is implicitly given by

$$
\begin{equation*}
\langle\phi(\mathbf{x})\rangle_{p_{\theta^{*}}(\mathbf{x})}=\langle\boldsymbol{\phi}(\mathbf{x})\rangle_{p(\mathbf{x})} . \tag{2.2}
\end{equation*}
$$

Proof. Let us recall the Kullback-Leibler divergence from (1.2) and consider it as a function f of the parameters $\boldsymbol{\theta}$,

$$
\begin{aligned}
f(\boldsymbol{\theta}) & =\operatorname{KL}\left(p \| p_{\boldsymbol{\theta}}\right)=\left\langle\log \left(\frac{p(\mathbf{x})}{p_{\boldsymbol{\theta}}(\mathbf{x})}\right)\right\rangle_{p(\mathbf{x})} \\
& =\langle\log (p(\mathbf{x}))\rangle_{p(\mathbf{x})}+\langle\log (Z(\boldsymbol{\theta}))\rangle_{p(\mathbf{x})}-\left\langle\boldsymbol{\theta}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x})\right\rangle_{p(\mathbf{x})} \\
& =\langle\log (p(\mathbf{x}))\rangle_{p(\mathbf{x})}+\log (Z(\boldsymbol{\theta}))-\boldsymbol{\theta}^{\mathrm{T}}\langle\boldsymbol{\phi}(\mathbf{x})\rangle_{p(\mathbf{x})} .
\end{aligned}
$$

Recall that a necessary condition for the minimum $\boldsymbol{\theta}^{*}$ is $\nabla_{\boldsymbol{\theta}} f\left(\boldsymbol{\theta}^{*}\right)=\mathbf{0}$. From (2.1) we have

$$
\nabla_{\boldsymbol{\theta}} f(\boldsymbol{\theta})=\langle\boldsymbol{\phi}(\mathbf{x})\rangle_{p_{\boldsymbol{\theta}}(\mathbf{x})}-\langle\boldsymbol{\phi}(\mathbf{x})\rangle_{p(\mathbf{x})} .
$$

It remains to show that $\boldsymbol{\theta}^{*}$ such that $\langle\boldsymbol{\phi}(\mathbf{x})\rangle_{p_{\boldsymbol{\theta}^{*}}(\mathbf{x})}=\langle\boldsymbol{\phi}(\mathbf{x})\rangle_{p(\mathbf{x})}$ is a minimum. To this end, consider the matrix of second derivatives,

$$
\begin{aligned}
{\left[\nabla \nabla_{\boldsymbol{\theta}} f(\boldsymbol{\theta})\right]_{i, j} } & =\frac{\partial^{2} \log (Z(\boldsymbol{\theta}))}{\partial \theta_{i} \partial \theta_{j}}=\frac{\partial}{\partial \theta_{j}} \frac{\int \phi_{i}(\mathbf{x}) \exp \left(\boldsymbol{\theta}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x})\right) d \mathbf{x}}{Z(\boldsymbol{\theta})} \\
& =\left\langle\phi_{i}(\mathbf{x}) \phi_{j}(\mathbf{x})\right\rangle_{p_{\boldsymbol{\theta}}(\mathbf{x})}-\left\langle\phi_{i}(\mathbf{x})\right\rangle_{p_{\boldsymbol{\theta}}(\mathbf{x})}\left\langle\phi_{j}(\mathbf{x})\right\rangle_{p_{\boldsymbol{\theta}}(\mathbf{x})}
\end{aligned}
$$

At the solution $\boldsymbol{\theta}^{*}$, this is the covariance matrix of the natural statistic $\boldsymbol{\phi}(\mathbf{x})$ over the distribution $p_{\boldsymbol{\theta}^{*}}$. By definition, this is positive semi-definite matrix (in fact, for every distribution $p_{\boldsymbol{\theta}}$) and thus we have proven the theorem.

Remark. In the case of the Gaussian family, $\{\mathcal{N}(\cdot ; \boldsymbol{\mu}, \mathbf{\Sigma})\}$, Theorem 1 reduces to matching the mean and covariance (which are related in a one-to-one way to the first and second moments),

$$
\begin{align*}
\boldsymbol{\mu}^{*} & =\langle\mathbf{x}\rangle_{p(\mathbf{x})} \tag{2.3}\\
\mathbf{\Sigma}^{*} & =\left\langle\mathbf{x} \mathbf{x}^{\mathrm{T}}\right\rangle_{p(\mathbf{x})}-\langle\mathbf{x}\rangle_{p(\mathbf{x})}\langle\mathbf{x}\rangle_{p(\mathbf{x})}^{\mathrm{T}} \tag{2.4}
\end{align*}
$$

3 Matching the Bayesian Posterior

We will now derive an explicit update formula for matching the expected natural statistic if $p(\mathbf{x})$ has the simple form

$$
p(\mathbf{x})=\frac{1}{\tilde{Z}(\boldsymbol{\theta})} \cdot t(\mathbf{x}) p_{\boldsymbol{\theta}}(\mathbf{x})
$$

where $\tilde{Z}(\boldsymbol{\theta}):=\int t(\mathbf{x}) p_{\boldsymbol{\theta}}(\mathbf{x}) d \mathbf{x}$ ensures normalisation ${ }^{1}$. In fact, similar to (2.1), the expected natural statistic under $p(\mathbf{x})$ can again be expressed solely in terms of the gradient of $\tilde{Z}(\boldsymbol{\theta})$ w.r.t. $\boldsymbol{\theta}$. In order to see this, note that

$$
\begin{aligned}
\nabla_{\boldsymbol{\theta}} p_{\boldsymbol{\theta}}(\mathbf{x}) & =\left[\nabla_{\boldsymbol{\theta}} \frac{1}{Z(\boldsymbol{\theta})}\right] \exp \left(\boldsymbol{\theta}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x})\right)+\frac{1}{Z(\boldsymbol{\theta})}\left[\nabla_{\boldsymbol{\theta}} \exp \left(\boldsymbol{\theta}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x})\right)\right] \\
& =-\frac{\left[\nabla_{\boldsymbol{\theta}} Z(\boldsymbol{\theta})\right]}{Z(\boldsymbol{\theta})} p_{\boldsymbol{\theta}}(\mathbf{x})+\boldsymbol{\phi}(\mathbf{x}) p_{\boldsymbol{\theta}}(\mathbf{x}) \\
& =-\langle\boldsymbol{\phi}(\mathbf{x})\rangle_{p_{\boldsymbol{\theta}}(\mathbf{x})} \cdot p_{\boldsymbol{\theta}}(\mathbf{x})+\boldsymbol{\phi}(\mathbf{x}) p_{\boldsymbol{\theta}}(\mathbf{x})
\end{aligned}
$$

Multiplying both sides by $\tilde{Z}^{-1}(\boldsymbol{\theta}) t(\mathbf{x})$, integrating over \mathbf{x} and re-arranging terms we get

$$
\begin{align*}
\tilde{Z}^{-1}(\boldsymbol{\theta}) \nabla_{\boldsymbol{\theta}} \tilde{Z}(\boldsymbol{\theta}) & =-\langle\boldsymbol{\phi}(\mathbf{x})\rangle_{p_{\boldsymbol{\theta}}(\mathbf{x})}+\langle\boldsymbol{\phi}(\mathbf{x})\rangle_{p(\mathbf{x})} \\
\langle\boldsymbol{\phi}(\mathbf{x})\rangle_{p(\mathbf{x})} & =\nabla_{\boldsymbol{\theta}} \log (\tilde{Z}(\boldsymbol{\theta}))+\langle\boldsymbol{\phi}(\mathbf{x})\rangle_{p_{\boldsymbol{\theta}}(\mathbf{x})} \tag{3.1}
\end{align*}
$$

[^0]Finally, using Theorem 1 and (2.1) we obtain

$$
\nabla_{\boldsymbol{\theta}} \log \left(Z\left(\boldsymbol{\theta}^{*}\right)\right)=\nabla_{\boldsymbol{\theta}} \log (\tilde{Z}(\boldsymbol{\theta}))+\nabla_{\boldsymbol{\theta}} \log (Z(\boldsymbol{\theta})) .
$$

All that is required to solve the above equation for a given exponential family is to know the analytical solution of the gradient equation of $\log (Z(\theta))$ and $\log (\tilde{Z}(\boldsymbol{\theta}))$. These two equations only depend on the particular natural statistic function ϕ and the function t. This is applicable, for example, for Gamma densities.

However, some exponential families are usually not parameterised in terms of $\boldsymbol{\theta}$ but rather in terms of $\boldsymbol{\tau}(\boldsymbol{\theta}):=\langle\boldsymbol{\phi}(\mathbf{x})\rangle_{p_{\boldsymbol{\theta}}(\mathbf{x})}$-a parameterisation also known as the moment representation. This representation has particular advantages when minimising the KL divergence as Theorem 1 directly specifies the update equation for the parameters. In this case, (3.1) can still be used together with the chain rule of differentiation to obtain the update equation for a particular class of exponential densities if the mapping to $\boldsymbol{\tau} \mapsto \boldsymbol{\theta}$ is easy to differentiate. We can also follow the above argument simply in the new parameterisation. In the next section we give a detailed derivation for the Gaussian family (which is represented in terms of its moments).

4 Matching the Bayesian Posterior in the Gaussian Family

We consider a family of Gaussians parameterised in terms of its mean, $\boldsymbol{\mu}$, and covariance, $\boldsymbol{\Sigma}$,

$$
q(\mathbf{x}):=q(\mathbf{x} ; \boldsymbol{\mu}, \boldsymbol{\Sigma}):=\mathcal{N}(\mathbf{x} ; \boldsymbol{\mu}, \boldsymbol{\Sigma}) .
$$

Our ability to compute (2.3) and (2.4) when $p(\mathbf{x}) \propto t(\mathbf{x}) q(\mathbf{x})$ depends only on the tractability of the normalisation constant,

$$
\tilde{Z}:=\tilde{Z}(\boldsymbol{\mu}, \mathbf{\Sigma}):=\int t(\mathbf{x}) q(\mathbf{x} ; \boldsymbol{\mu}, \mathbf{\Sigma}) d \mathbf{x}
$$

Matching the Mean We will consider the mean of \mathbf{x} under $t(\mathbf{x}) q(\mathbf{x})$. First note that

$$
\nabla_{\boldsymbol{\mu}} q(\mathbf{x})=\boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu}) q(\mathbf{x})
$$

which can be re-expressed in terms of $\mathbf{x} q(\mathbf{x})$,

$$
\mathbf{x} q(\mathbf{x})=\boldsymbol{\mu} q(\mathbf{x})+\boldsymbol{\Sigma} \nabla_{\boldsymbol{\mu}} q(\mathbf{x}) .
$$

Now multiplying both sides by $\tilde{Z}^{-1} t(\mathbf{x})$, integrating over \mathbf{x}, and exploiting the linearity of the gradient operator gives

$$
\begin{align*}
\langle\mathbf{x}\rangle_{p(\mathbf{x})} & =\boldsymbol{\mu}+\tilde{Z}^{-1} \cdot \boldsymbol{\Sigma}\left[\nabla_{\boldsymbol{\mu}} \int t(\mathbf{x}) q(\mathbf{x}) d \mathbf{x}\right] \\
& =\boldsymbol{\mu}+\tilde{Z}^{-1}(\boldsymbol{\mu}, \mathbf{\Sigma}) \cdot \mathbf{\Sigma} \nabla_{\boldsymbol{\mu}} \tilde{Z}(\boldsymbol{\mu}, \mathbf{\Sigma}) \\
& =\boldsymbol{\mu}+\boldsymbol{\Sigma} \nabla_{\boldsymbol{\mu}} \log (\tilde{Z}(\boldsymbol{\mu}, \mathbf{\Sigma})) \\
& =\boldsymbol{\mu}+\boldsymbol{\Sigma} \mathbf{g}, \tag{4.1}
\end{align*}
$$

where we have defined $\mathbf{g}:=\nabla_{\boldsymbol{\mu}} \log (\tilde{Z}(\boldsymbol{\mu}, \mathbf{\Sigma}))$.

The Second Moment Matrix Once again we take gradients ${ }^{2}$ of $q(\mathbf{x})$, but this time with respect to the covariance matrix $\boldsymbol{\Sigma}$,

$$
\nabla_{\boldsymbol{\Sigma}} q(\mathbf{x})=\frac{1}{2}\left(-\boldsymbol{\Sigma}^{-1}+\boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})(\mathbf{x}-\boldsymbol{\mu})^{\mathrm{T}} \boldsymbol{\Sigma}^{-1}\right) q(\mathbf{x}),
$$

[^1]which can be re-arranged, as we did before, in order to obtain
$$
\mathbf{x x}^{\mathrm{T}} q(\mathbf{x})=2 \boldsymbol{\Sigma}\left[\nabla_{\boldsymbol{\Sigma}} q(\mathbf{x})\right] \boldsymbol{\Sigma}+\left(\boldsymbol{\Sigma}+\mathbf{x} \boldsymbol{\mu}^{\mathrm{T}}+\boldsymbol{\mu} \mathbf{x}^{\mathrm{T}}-\boldsymbol{\mu} \boldsymbol{\mu}^{\mathrm{T}}\right) q(\mathbf{x}) .
$$

Multiplying both sides by $\tilde{Z}^{-1} t(\mathbf{x})$, integrating over \mathbf{x} and exploiting the linearity of the gradient operator gives

$$
\begin{aligned}
\left\langle\mathbf{x} \mathbf{x}^{\mathrm{T}}\right\rangle_{p(\mathbf{x})} & =\boldsymbol{\Sigma}+2 \boldsymbol{\Sigma}\left(\tilde{Z}^{-1}(\boldsymbol{\mu}, \boldsymbol{\Sigma}) \nabla_{\boldsymbol{\Sigma}} \tilde{Z}(\boldsymbol{\mu}, \boldsymbol{\Sigma})\right) \boldsymbol{\Sigma}+\langle\mathbf{x}\rangle_{p(\mathbf{x})} \boldsymbol{\mu}^{\mathrm{T}}+\boldsymbol{\mu}\langle\mathbf{x}\rangle_{p(\mathbf{x})}^{\mathrm{T}}-\boldsymbol{\mu} \boldsymbol{\mu}^{\mathrm{T}} \\
& =\boldsymbol{\Sigma}+2 \boldsymbol{\Sigma}\left(\nabla_{\boldsymbol{\Sigma}} \log (\tilde{Z}(\boldsymbol{\mu}, \boldsymbol{\Sigma}))\right) \boldsymbol{\Sigma}+\langle\mathbf{x}\rangle_{p(\mathbf{x})} \boldsymbol{\mu}^{\mathrm{T}}+\boldsymbol{\mu}\langle\mathbf{x}\rangle_{p(\mathbf{x})}^{\mathrm{T}}-\boldsymbol{\mu} \boldsymbol{\mu}^{\mathrm{T}} \\
& =\boldsymbol{\Sigma}+2 \boldsymbol{\Sigma} \mathbf{G} \boldsymbol{\Sigma}+\langle\mathbf{x}\rangle_{p(\mathbf{x})} \boldsymbol{\mu}^{\mathrm{T}}+\boldsymbol{\mu}\langle\mathbf{x}\rangle_{p(\mathbf{x})}^{\mathrm{T}}-\boldsymbol{\mu} \boldsymbol{\mu}^{\mathrm{T}}
\end{aligned}
$$

where we have defined $\mathbf{G}:=\nabla_{\boldsymbol{\Sigma}} \log (\tilde{Z}(\boldsymbol{\mu}, \boldsymbol{\Sigma}))$.
Matching the Covariance The update (2.4) for the covariance requires to compute

$$
\begin{equation*}
\left\langle\mathbf{x} \mathbf{x}^{\mathrm{T}}\right\rangle_{p(\mathbf{x})}-\langle\mathbf{x}\rangle_{p(\mathbf{x})}\langle\mathbf{x}\rangle_{p(\mathbf{x})}^{\mathrm{T}}=\boldsymbol{\Sigma}-\mathbf{\Sigma}\left(\mathbf{g g}^{\mathrm{T}}-2 \mathbf{G}\right) \boldsymbol{\Sigma}, \tag{4.2}
\end{equation*}
$$

where we used (4.1). Substituting (4.1) and (4.2) into (2.3) and (2.4) we obtain the required updates for the mean and covariance:

$$
\begin{aligned}
\boldsymbol{\mu}^{*} & =\boldsymbol{\mu}+\boldsymbol{\Sigma} \mathbf{g} \\
\boldsymbol{\Sigma}^{*} & =\boldsymbol{\Sigma}-\boldsymbol{\Sigma}\left(\mathbf{g g}^{\mathrm{T}}-2 \mathbf{G}\right) \boldsymbol{\Sigma}
\end{aligned}
$$

[^0]: ${ }^{1}$ Please note that the normalisation constant $\tilde{Z}(\boldsymbol{\theta})$ should not be confused with the normalisation constant $Z(\boldsymbol{\theta})$.

[^1]: ${ }^{2}$ It helps to remember that $\left.\nabla_{\boldsymbol{\Sigma}} \log (q(\mathbf{x}))=(q(\mathbf{x}))^{-\mathbf{1}} \cdot \nabla_{\boldsymbol{\Sigma}} q(\mathbf{x})\right)$.

