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Abstract

In this note we show that minimising the Kullback–Leibler divergence over a family in the class of
exponential distributions is achieved by matching the expected natural statistic. We will also give an
explicit update formula for distributions with only one likelihood term.

1 Notation
We use

�
(x; µ, 6) to denote a Gaussian density at x with a mean vector µ and covariance matrix 6,

�
(x; µ, 6) := (2π)−

n
2 |6|−

1
2 exp

(

−
1
2

(x − µ)T 6−1 (x − µ)

)

. (1.1)

When dealing one dimensional Gaussians the vectors and matrices are replaced by scalars. If p is a density
over x, we will write 〈g (x)〉p(x) as a shorthand notation for the expectation of g over x,

∫

g (x) p (x) dx.
Finally, the Kullback–Leibler divergence between two densities p and q is defined by

KL (p||q) :=

〈

log
(

p (x)

q (x)

)〉

p(x)

. (1.2)

2 Minimising in the Exponential Family
A set of distributions over � N is in the exponential family if its densities can be written as

pθ (x) =
1

Z (θ)
exp

(

θTφ (x)

)

,

where φ(x) is known as the natural statistic of x and Z(θ) :=
∫

exp(θTφ(x))dx ensures normalisation.
The exponential family includes many known families of distributions including the Gaussian distribution.
For example, in the Gaussian case, the natural statistic φ (x) is simply the vector of all first and second
moments, φ (x) = (x1, . . . , xN , x2

1 , x1x2, . . . , xN xN−1, x2
N ). Note that the expected natural statistic of

pθ(x) is given in terms of the gradient of log(Z(θ)) w.r.t. θ , that is,

∇θ log (Z (θ)) =

∫ [

∇θ exp
(

θTφ (x)
)]

dx
Z (θ)

= 〈φ (x)〉pθ (x) . (2.1)

Theorem 1. For any distribution p, the distribution pθ∗ which minimises the Kullback-Leibler divergence,
KL (p||pθ∗), over the exponential family with natural statistic φ is implicitly given by

〈φ (x)〉pθ∗ (x) = 〈φ (x)〉p(x) . (2.2)
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Proof. Let us recall the Kullback-Leibler divergence from (1.2) and consider it as a function f of the
parameters θ ,

f (θ) = KL (p||pθ) =

〈

log
(

p (x)

pθ (x)

)〉

p(x)

= 〈log (p (x))〉p(x) + 〈log (Z (θ))〉p(x) −

〈

θTφ (x)

〉

p(x)

= 〈log (p (x))〉p(x) + log (Z (θ)) − θT 〈φ (x)〉p(x) .

Recall that a necessary condition for the minimum θ ∗ is ∇θ f
(

θ∗
)

= 0. From (2.1) we have

∇θ f (θ) = 〈φ (x)〉pθ (x) − 〈φ (x)〉p(x) .

It remains to show that θ∗ such that 〈φ(x)〉pθ∗ (x) = 〈φ(x)〉p(x) is a minimum. To this end, consider the
matrix of second derivatives,

[∇∇θ f (θ)]i, j =
∂2 log (Z (θ))

∂θi∂θ j
=

∂

∂θ j

∫

φi (x) exp
(

θTφ (x)
)

dx
Z (θ)

=
〈

φi (x) φ j (x)
〉

pθ (x)
− 〈φi (x)〉pθ (x)

〈

φ j (x)
〉

pθ (x)
.

At the solution θ∗, this is the covariance matrix of the natural statistic φ (x) over the distribution pθ∗ . By
definition, this is positive semi-definite matrix (in fact, for every distribution pθ ) and thus we have proven
the theorem.

Remark. In the case of the Gaussian family, {
�

(·; µ, 6)}, Theorem 1 reduces to matching the mean and
covariance (which are related in a one-to-one way to the first and second moments),

µ∗ = 〈x〉p(x) , (2.3)

6∗ =
〈

xxT
〉

p(x)
− 〈x〉p(x) 〈x〉T

p(x) . (2.4)

3 Matching the Bayesian Posterior
We will now derive an explicit update formula for matching the expected natural statistic if p(x) has the
simple form

p (x) =
1

Z̃ (θ)
· t (x) pθ (x) ,

where Z̃(θ) :=
∫

t (x)pθ(x)dx ensures normalisation1. In fact, similar to (2.1), the expected natural statistic
under p(x) can again be expressed solely in terms of the gradient of Z̃(θ) w.r.t. θ . In order to see this, note
that

∇θ pθ (x) =

[

∇θ

1
Z (θ)

]

exp
(

θTφ (x)

)

+
1

Z (θ)

[

∇θ exp
(

θTφ (x)

)]

= −
[∇θ Z (θ)]

Z (θ)
pθ (x) + φ (x) pθ (x)

= − 〈φ (x)〉pθ (x) · pθ (x) + φ (x) pθ (x) .

Multiplying both sides by Z̃−1(θ)t (x), integrating over x and re-arranging terms we get

Z̃−1 (θ) ∇θ Z̃ (θ) = − 〈φ (x)〉pθ (x) + 〈φ (x)〉p(x)

〈φ (x)〉p(x) = ∇θ log
(

Z̃ (θ)

)

+ 〈φ (x)〉pθ (x) . (3.1)

1Please note that the normalisation constant Z̃(θ) should not be confused with the normalisation constant Z(θ).
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Finally, using Theorem 1 and (2.1) we obtain

∇θ log
(

Z
(

θ∗
))

= ∇θ log
(

Z̃ (θ)

)

+ ∇θ log (Z (θ)) .

All that is required to solve the above equation for a given exponential family is to know the analytical
solution of the gradient equation of log(Z(θ)) and log( Z̃(θ)). These two equations only depend on the
particular natural statistic function φ and the function t . This is applicable, for example, for Gamma
densities.

However, some exponential families are usually not parameterised in terms of θ but rather in terms of
τ(θ) := 〈φ(x)〉pθ (x)—a parameterisation also known as the moment representation. This representation
has particular advantages when minimising the KL divergence as Theorem 1 directly specifies the update
equation for the parameters. In this case, (3.1) can still be used together with the chain rule of differentiation
to obtain the update equation for a particular class of exponential densities if the mapping to τ 7→ θ is easy
to differentiate. We can also follow the above argument simply in the new parameterisation. In the next
section we give a detailed derivation for the Gaussian family (which is represented in terms of its moments).

4 Matching the Bayesian Posterior in the Gaussian Family
We consider a family of Gaussians parameterised in terms of its mean, µ, and covariance, 6,

q (x) := q (x; µ, 6) :=
�

(x; µ, 6) .

Our ability to compute (2.3) and (2.4) when p(x) ∝ t (x)q (x) depends only on the tractability of the
normalisation constant,

Z̃ := Z̃ (µ, 6) :=

∫

t (x) q (x; µ, 6) dx .

Matching the Mean We will consider the mean of x under t (x)q(x). First note that

∇µq (x) = 6−1 (x − µ) q (x) ,

which can be re-expressed in terms of xq (x),

xq (x) = µq (x) + 6∇µq (x) .

Now multiplying both sides by Z̃−1t (x), integrating over x, and exploiting the linearity of the gradient
operator gives

〈x〉p(x) = µ + Z̃−1 · 6

[

∇µ

∫

t (x) q (x) dx
]

= µ + Z̃−1 (µ, 6) · 6∇µ Z̃ (µ, 6)

= µ + 6∇µ log
(

Z̃ (µ, 6)

)

= µ + 6g , (4.1)

where we have defined g := ∇µ log(Z̃(µ, 6)).

The Second Moment Matrix Once again we take gradients2 of q(x), but this time with respect to the
covariance matrix 6,

∇6q (x) =
1
2

(

−6−1 + 6−1 (x − µ) (x − µ)T 6−1
)

q (x) ,

2It helps to remember that ∇6 log(q(x)) = (q(x))−1 · ∇6q(x)).
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which can be re-arranged, as we did before, in order to obtain

xxTq (x) = 26 [∇6q (x)] 6 +

(

6 + xµT + µxT − µµT
)

q (x) .

Multiplying both sides by Z̃−1t (x), integrating over x and exploiting the linearity of the gradient operator
gives

〈

xxT
〉

p(x)
= 6 + 26

(

Z̃−1 (µ, 6)∇6 Z̃ (µ, 6)

)

6 + 〈x〉p(x) µT + µ 〈x〉T
p(x) − µµT

= 6 + 26
(

∇6 log
(

Z̃ (µ, 6)

))

6 + 〈x〉p(x) µT + µ 〈x〉T
p(x) − µµT

= 6 + 26G6 + 〈x〉p(x) µT + µ 〈x〉T
p(x) − µµT ,

where we have defined G := ∇6 log(Z̃(µ, 6)).

Matching the Covariance The update (2.4) for the covariance requires to compute
〈

xxT
〉

p(x)
− 〈x〉p(x) 〈x〉T

p(x) = 6 − 6
(

ggT − 2G
)

6 , (4.2)

where we used (4.1). Substituting (4.1) and (4.2) into (2.3) and (2.4) we obtain the required updates for the
mean and covariance:

µ∗ = µ + 6g ,

6∗ = 6 − 6
(

ggT − 2G
)

6 .
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