
Online Bayes Point MahinesEdward Harrington1, Ralf Herbrih2, Jyrki Kivinen1, John C. Platt3, andRobert C. Williamson11 Researh Shool of Information Sienes and EngineeringThe Australian National UniversityCanberra, ACT 0200fedward.harrington,jyrki.kivinen,bob.williamsong�anu.edu.au2 Mirosoft Researh7 J J Thomson Avenue,Cambridge, CB3 0FB, UKrherb�mirosoft.om3 Mirosoft Researh1 Mirosoft Way,Redmond, WA 98052, USAjplatt�mirosoft.omAbstrat. We present a new and simple algorithm for learning largemargin lassi�ers that works in a truly online manner. The algorithmgenerates a linear lassi�er by averaging the weights assoiated with sev-eral pereptron-like algorithms run in parallel in order to approximatethe Bayes point. A random subsample of the inoming data stream isused to ensure diversity in the pereptron solutions. We experimentallystudy the algorithm's performane on online and bath learning settings.The online experiments showed that our algorithm produes a low pre-dition error on the training sequene and traks the presene of oneptdrift. On the bath problems its performane is omparable to the max-imum margin algorithm whih expliitly maximises the margin.1 IntrodutionAn online lassi�er tries to give the best predition based on the example se-quene seen at time t in ontrast to a bath lassi�er whih waits for the wholesequene of T examples. There have been a number of reent attempts [1{3℄in the online setting to ahieve a approximation to the maximum margin so-lution of bath learners suh as SVMs. In this paper we present a truly onlinealgorithm for linear lassi�ers whih ahieves a large margin by estimating theentre-of-mass (the so-alled Bayes point) by a randomisation trik.It is well aepted that a (�xed) large margin lassi�er provides a degree ofimmunity to attribute noise and onept drift. One advantage of the algorithmpresented here is the ability to also trak onept drift.The primary appeal of the algorithm is its simpliity: one merely needs torun a number of pereptrons in parallel on di�erent (random) subsamples of thetraining sequene. Hene, it is well suited to very large data sets. We illustrate



2the e�etiveness of the algorithm to trak onept drift with an experiment basedon the MNIST OCR database.We de�ne a sequene of training examples seen by the online learning al-gorithm in the form of a sequene of T training examples, z = (z1; : : : ; zT ) :=((x1; y1); : : : ; (xT ; yT )), omprising an instane x in the instane spae X � Rdand y 2 f�1;+1g the orresponding binary label. The weight vetor w 2 Rdde�nes the d-dimensional hyperplane4 fx : (w � x) = 0g whih is the deisionboundary assoiated with the hypothesis sgn (w � x) of the pereptron algorithm[4℄, where sgn(v) = 1 if v � 0 and sgn(v) = �1 if v < 0. We often assume that thetarget labels yi are de�ned by yi = sgn (u � xi); in other words, there exists a lin-ear lassi�er whih an orretly lassify the data. The margin z (w) plays a keyrole in understanding the performane and behaviour of linear lassi�er learningalgorithms. It is the minimum Eulidean distane between an instane vetor xand the separating hyperplane produed by w. Formally, the margin of a weightvetor on an example zi is zi(w) := yi (w � xi)=kwk2, and the margin with re-spet to the whole training sequene is z (w) := minfzi(w) : i 2 f1; : : : ; Tgg.The version spae V (z) is the set of hypotheses onsistent with the trainingsample. Sine we only onsider linear lassi�ers, we onsider V (z) as a subsetof the weight spae:V (z) := fw 2 Rd : sgn (w � xi) = yi for all (xi; yi) 2 zg : (1)Clearly, the target funtion u is in V (z) for any z. A learning algorithm thatattains zero training error �nds an hypothesis in the version spae.2 (Large Margin) Pereptron Learning AlgorithmsWe �rst onsider the generalised pereptron (see Algorithm 1). The algorithmdi�ers from the standard pereptron algorithm in two ways: 1) an update ismade on example zk if zk(wk) � �k, where �k is the update margin (�k = 0for all k in the standard pereptron), and 2) the update step size is �k insteadof always being �xed to 1. When �k = 0, and �k is �xed it is known by a re-sult of Noviko� [5℄ that the algorithm makes no more than (�=z)2 mistakeswhere � := maxi=1;:::;T kxik2 (we assume that the instanes throughout the pa-per are normalised so � = 1) and z := maxfz (w) : w 2 Rdg is the marginattained by the maximum margin hyperplane. This pereptron onvergene the-orem only guarantees that the pereptron's hypothesis w is in V (z); i.e. onlythat z (wper) > 0 where wper is the weight vetor the pereptron algorithmonverges to. In the marginalised pereptron [4℄, �k is a positive onstant andthe �nal margin, if run until separation of the training sequene in the bathsetting, an be guaranteed to be � �k. The pereptron algorithm has several keyadvantages: it is extremely simple, on-line, and it an be readily kernelised sineit only uses inner produts between input vetors [6℄.4 Note that in the ase of a weight vetor with bias term (also referred to as thethreshold) an extra attribute of +1 is added.



3Algorithm 1 Generalised Pereptron algorithmRequire: A linear separable training sequene z = ((x1; y1); (x2; y2); : : :).Require: Margin parameter sequene �k and learning rate �k.1: t = 1; k = 1.2: repeat3: if yt (wk � xt) =kwkk2 � �k then4: wk+1 = wk + �kytxt5: k = k + 16: end if7: until No more updates madeThe motivation for setting �k = � > 0 in order to guarantee z (w) > � forthe �nal solution w is that a larger margin hyperplane has a better guarantee ofgeneralisation performane than a smaller margin one [6℄. It should be noted thatthe maximum margin hyperplane is not unique in this regard; indeed, generiallyit is not the hyperplane with the best generalisation performane (the so-alledBayes point) [7℄, but historially muh e�ort has been expended on maximisingthe margin.Whilst suh analyses and guarantees are proven in the bath setting, the ideaof seeking a large margin hyperplane with an online algorithm still makes sensefor two reasons. First, one an always use an online algorithm to learn in thebath setting by repeatedly iterating over the sample z. Seond, even in a trulyonline setting, a large margin solution provides some immunity to attribute noiseand onept drift.There have been a few reent attempts to develop further online algorithmsthat ahieve an approximation to the maximum margin. Kivinen et al. [3℄ stud-ied the marginalised pereptron (and issues arising when it is kernelised). Liand Long [2℄ studied an algorithm they alled ROMMA where if there is a mis-take at the tth trial then wt+1 is the smallest element of the onstrained set of�w : wt �w � kwtk22	 \ fw : yt(w � xt � 1)g, else wt+1 = wt. It has a similarmistake bound to the pereptron and is omputationally slightly more ostlythan the pereptron. Gentile [1℄ has presented an Approximately Large MarginAlgorithm (ALMA)5 whih he analysed in a bath setting showing that for anyÆ 2 (0; 1) it an ahieve a margin of at least (1� Æ)z (in the linearly separablease), requiring O(1=(Æ2z2)) updates. Thus, ALMA is obtained from the gener-alised pereptron by setting �k = (1�Æ)B=pk and �k = C=pk and, if neessary,re-normalising wk so that kwkk2 � 1.3 Online Bayes Point MahinesWhilst the variants on the lassial pereptron disussed above an guaranteeonvergene to a hyperplane with a large margin, there is a prie to pay. The5 We only onsider the 2-norm ase of ALMA. ALMA is a more general algorithm forp-norm lassi�ers.



4Algorithm 2 OBPM algorithmRequire: A training sample z = ((x1; y1); : : : ; (xT ; yT )).Require: A online learning algorithm with update rule L for linear disriminationand assoiated step-size update rule S.Require: A subroutine Bernoulli(p) whih returns independent Bernoulli random vari-ables with probability p of taking the value 1.Require: Parameters N 2 N and � 2 [0; 1℄.1: Initialise step sizes �j;1, for all j 2 f1; : : : ; Ng.2: Initialise weights wj;1 = 0, for all j 2 f1; : : : ; Ng.3: for t = 1 to T do4: ~w0t = 05: for j = 1 to N do6: bj;t = Bernoulli(� )7: if bj;t = 1 then8: wj;t+1 = L(wj;t; �j;t;xt; yt)9: else10: wj;t+1 = wj;t11: end if12: �j;t+1 = S(t; �j;t; : : :)13: ~w0t = ~w0t +wj;t+1=N14: end for15: ~wt = ~w0t=maxf1; k ~w0tk2g16: end for17: return ~wTloser one desires the algorithm's hypothesis margin to be to the maximal pos-sible margin, the slower the onvergene. In addition, there are several extraparameters one has to hoose. This suggests it is worthwhile exploring alternatevariants on lassial pereptrons.Our starting point for suh variants is the observation that (1) de�nes aonvex set V (z). Thus if one found a number of weight vetors w1; : : : ;wNin V (z), one ould optimise over the set of onvex ombinations CN :=CN (w1; : : : ;wN ) := fPi �iwi : k�k1 = 1;� � 0g of them. Intuitively one wouldexpet that the more \diverse" w1; : : : ;wN are, the greater the proportion ofV (z) ould be overed by CN . The entre of CN provides an rough approxima-tion of the Bayes point and thus potentially better performane (dependent onthe loseness to the true Bayes point). This onvex ombination of weight ve-tors wj is di�erent to hypothesis aggregation methods suh as boosting whihform onvex ombinations of lassi�er hypotheses x 7! sgn (wj � x). The samplingpresented in this paper an be mistaken for an online version of Bagging [8℄ sinethe sample is drawn randomly with replaement from a �xed set. The di�erenewith bagging (and boosting [9℄) is that we ombine the lassi�er weights not thehypotheses.Ifw1; : : : ;wN are all idential, CN is a singleton and nothing is gained. A wellknown tehnique for ahieving diversity is to generate w1; : : : ;wN by running (asuitable variant of) the pereptron algorithm on di�erent permutations �(z) :=



5(z�(1); : : : ; z�(T )) of the training sample z [7℄, where � : f1; : : : ; Tg ! f1; : : : ; Tgis a permutation. Although an elegant and e�etive trik, it is not an onlinealgorithm | one needs the entire training sample z before starting.This motivates the algorithm we study in this paper: the Online Bayes PointMahine (OBPM) (Algorithm 2). Given a training sequene z, we run N Per-eptrons \in parallel" and ensure diversity of their �nal solutions by randomlyhoosing to present a given sample zk to pereptron j only if bjk = 1, wherebjk, j = 1; : : : ; N , k = 1; 2; : : : are independent Bernoulli random variables withPrfbjk = 1g = � .Although there are theoretial reasons for expeting that re�ned optimisationof the �i would lead to better solutions than naively setting them all equal to1=N , we have found experimentally this expetation not to hold. Furthermore,suh optimisation an only our in the bath setting: one annot determine themargin of a andidate weight vetor without the whole training sample. Onemethod tried in optimizing the hoie of �i was to maximize the following lowerbound in the bath setting (see Appendix A for proof):z( ~w) � PNj=1 �jz(wj)qPNi=1PNj=1 �i�j (wi �wj) : (2)It was found by experimentation that maximizing the bound of (2) had no per-formane gain ompared to setting �i = 1=N . Hene in the rest of the paper wewill only onsider the situation where �i = 1=N for all i. Step 15 of algorithm 2is optional as it only bounds k ~wk by one and given the instanes are normalized,this results in � � 1 in the generalised Pereptron algorithm 1.On average eah pereptron j sees only a fration � of all the examples in z.The smaller � , the more diverse the solutionswj beome, although the algorithmtakes longer to reah these solutions.In this paper we take L the base learner to be the pereptron update ruleand �x �j;t = 1. This leaves OBPM two parameters required for tuning: � andN . We see that the number of arithmeti operations for OBPM on average isO(�NdT ), for both ALMA and the pereptron it is O(dT ). OBPM is a fator�N more expensive omputationally than ALMA. A point worth noting is thateah pereptron used in OBPM is independent and so OBPM an be readilyimplemented using parallel omputing.In the ase of OBPM, the implementation may be made more eÆient bynoting that the kernel values K(x;xt) are the same for all N pereptrons. For atruly online algorithm we need to bound the number of instanes xt needed tobe stored for the kernel expansion [3℄.4 ExperimentsWe used a toy problem to analyse the e�et of � and N on approximating themaximum margin. We show that for this example we an do better than other
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N = 100Fig. 1. Arti�ial data set averages from 30 Monte Carlo simulations training OBPMwith no label noise (e = 0:0) for a single epoh: (a) test error versus � , (b) marginz ( ~wT ) versus � .online methods but there is a trade-o� with omputational ost. We demonstratethat OBPM has the ability to handle onept drift by applying it to a problemgenerated using the MNIST OCR data set. Last, we show the performane ofOBPM on some real-world data sets using the online predition error analysisand bath test errors.The tuning parameters used in the experiments for OBPM were � (rangingfrom 0.01 to 0.5 in non-uniform steps) andN 2 f100; 200g. For ALMA, B was ad-justed from 0.5 up to 20 in non-uniform steps, and C 2 fp2=4;p2=2;p2; 2p2g6.Thoughout the experiments the �nal reported parameters were hosen based onthe best training error for that experiment. The SVM results were produed witha linear kernel and soft margin using an exat optimisation method. Trainingand test errors and margins for the algorithms were measured using the lastweights as the hypothesis. The results were produed using C ode on a 1GHzDEC alpha.4.1 Parameter SeletionA target u 2 f�1; 0;+1g100 and T instanes xt were generated randomlywith a margin, z (u) � m = 0:05. The assoiated label yt was alloated +1if (u � xt) =kuk2 � m and �1 if (u � xt) =kuk2 � �m. This proess ensured thatthe training sample has a margin greater than m; we generated the test sampleidentially to the training sample. This problem is very similar to the arti�ialdata experiment of Gentile [1℄. We use a di�erent data set size of T , and we usethe same margin in the training and test samples. We redued T from 10000to 1000, m from 1 to 0:05. This gives a mistake bound of 400 for the lassi6 This was after initial experimentation to determine the best B and C for all theproblems onsidered here.



7Table 1. Table of test error averages from 30 Monte Carlo simulations of a singleepoh of the parameter seletion experiment, with 95 perent on�dene interval forStudent's t-distribution.noise Pereptron ALMA OBPM0.0 2.03 �0.32 0.07�0.04(B=1.11,C=0.71) 0.00�0.00(� = 0:35,N=100)0.01 3.35�0.44 0.14�0.07(B=0.83,C=0.71) 0.10�0.06(� = 0:50,N=100)0.1 12.96�1.0 0.76�0.13(B=1.25,C=0.71) 0.96�0.13(� = 0:15,N=100)Pereptron, making it highly unlikely that the pereptron ould learn this in asingle epoh. Simulations with label noise on the training sample (not the testsample) were done by ipping eah label yt with probability e.There is a trade-o� between omputational ost and ~w ahieving an aurateestimate of the maximum margin. It is indiated in Figure 1 (b) that by inreas-ing N , the margin was inreased. As the margin inreased, the total number ofpereptron updates was inreased. For example when � = 0:3 in the noise freease, the total number of updates of all the pereptrons went from 1334 to 5306,as a result of the total number of pereptrons going from 25 to 100. The relation-ship between � and N is shown by Figure 1; if � is too small then the numberof N must be inreased to ensure ~w is in the version spae. From Figure 1 (b)OBPM ahieved a margin of 0.02, whereas ALMA ahieved 0.006. Table 1 showswith label noise that the performane of ALMA and OBPM were similar, exeptin the noise-free ase. We also noted that ALMA's test error performane wasmore sensitive to the hoie of parameter settings ompared to OBPM.4.2 Drifting oneptIn order to demonstrate OBPM's ability to learn a drifting onept we designeda drifting experiment using the well known MNIST OCR data set7. To simulatethe drift we set the positive lass to a single label whih varied over time. Thenegative lass was set to be the remaining 9 labels. We took 1000 examples. Thelabels where swapped in two phases gradually using a linear relationship in thenumber of examples seen so far. The mixing of the labels in eah trial was ran-dom and we averaged results over 10 trials, therefore the transition boundariesin Figure 2 are not obvious. The following psuedo ode shows how we alloatedlabels l = 1; : : : ; 3 to the positive lass of zt = z+t (i.e. y = 1) aording to theuniform random variable rt 2 [0; 1℄ at time t, where zlt = (xlt; yl = 1) :z+t = z1tif rt > (1� tT=2 ) then z+t = z2tif rt > (1� t1:11T ) then z+t = z3t7 Available at http://yann.leun.om/exdb/mnist/index.html.



8 Seleted the labels this way we ensure by t > T=2 all the positive lassexamples are with label 2 and by 900 they are all label 3. Replaing the labelsrandomly in the above way also gives a smoother and more gradual transitionbetween labels.Figure 2 presents the results of the MNIST drift experiment for 10 trialswith permutations. We see that OBPM made fewer predition errors omparedto several other online algorithms. One of the online algorithms ompared withOBPM was LMS (Least Mean Squared [12℄), whih is a regression algorithmwhere we take the sign of the preditions to onvert to the lassi�ation setting.One reason why ALMA did not perform as well as OBPM is that ALMA as-suming a stationary target in order to adjust the learning rate �t and marginparameter �k. Note that this is not an exhaustive study on drifting oneptsbut it appears the large margin of OBPM allows for the improvement over thepereptron (the generalised Pereptron � = 0).
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Fig. 2. Predition errors from drifting onept experiment with the MNIST OCR dataset omparing LMS (step size 0.5), ALMA (B=2, C=p2), Pereptron (� = 0) andOBPM (�=0.4, N=100).
4.3 Real-world data setsWe onsider three di�erent data sets. The �rst data set was derived from agenome of the nematode Ceanorhabditis Elegans (C. Elegans). The lassi�a-tion task was to loate the spei� splie sites (for more details see [10℄). TheC. Elegans training sample had 6125 dimensions and 100 000 examples, witha separate test set of 10 000 examples. The other two data sets were the UCIAdult the Web data sets 8. Eah input onsists of 14 mixed ategorial and8 Available at http://www.researh.mirosoft.om/~jplatt/smo.html



9ontinuous attributes. We inrease the input dimensionality to 123 by quantis-ing the ontinuous attributes and by representing the ategorial inputs with a1-of-N ode. The training sample size of Adult is 32562 and the test set size is16282. The predition task of the adult data set is to determine whether a personearns over $50k a year. The Web task onsists of prediting whether a web pagebelongs to a topi or not, based on the presene of 300 words. The Web taskhas a training sample size of 49 749 and a test set size of 21 489. To study the
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Fig. 3. (a) Predition errors for OBPMs ~wt (�=0.3, N=100) and ALMAs weight solu-tions and (b) total number updates for the Web data after training example t.online behaviour of this algorithm we measured the number of predition errorsmade at t examples and ompared this to ALMA. The predition errors madeon the Web data in Figure 3(a) demonstrate a lower predition error omparedto ALMA. The predition error was onsistently lower than ALMA with all theexperiments in this paper. The lower predition error omes at a ost, as shownin Figure 3(b): the total number of updates made by OBPM is larger than thenumber made by ALMA.The bath setting results benhmarking OBPM with other algorithms aregiven in Table 2. The UCI data results of Table 2 report the average test error for30 trials of permutations of the training sequene with their 95 perent on�deneinterval using the Student's t-distribution. The maximum margin benhmark,the soft margin linear SVM gave test errors of 15:05% and 1:25% for the Adultand Web respetively. The C. Elegans data set OBPM with � = 0:05; N = 100,was able to ahieve a test error of 1:59% after 20 epohs whih was omparableto the SVM (soft margin) result 1:58%, ALMA ahieved 1:72%. The Cohrantest statisti for C. Elegans after 20 epohs omparing ALMA, OBPM and SVMwas 3:77 whih indiates no di�erene at a signi�ane level of 95 perent. Ageneral omment of the results of Table 2 was that in the bath setting OBPMperformed better than the standard pereptron whereas ALMA and OBPM were



10omparable. For these experiments it was not obvious how to tune ALMA'sparameters easily, whereas with OBPM good results were ahieved by simplyadjusting � over a small range 0:1 to 0:4.The time taken to proess the C. Elegans results were: OBPM with CPUtime 19 minutes (real time 21 minutes) and ALMA CPU time of 3 minutes (realtime 13 minutes). The CPU time is not prohibitive, espeially given that theSVM9 optimisation took approximately 300 hours of real time. Of ourse, on aparallel mahine, OBPM ould be sped up further.Table 2. Real world data set test errors in perent run for 3 epohs.ALGORITHM EPOCHs C. Elegans UCI Adult UCI WebPereptron 1 3.33 19.59�1.54 1.84�0.122 2.99 18.81�0.96 2.12�1.033 2.93 21.21�2.21 1.72�0.18ALMA(B,C) (B=3.33,C=0.70) (B=20,C=0.70) (B=0.625,C=1.41)1 1.95 15.88�0.19 1.36�0.032 1.92 15.35�0.13 1.29�0.033 1.78 15.26�0.13 1.26�0.03OBPM(� ,N) (�=0.2,N=200) (�=0.01,N=200) (�=0.3,N=200)1 1.94 15.29�0.15 1.42�0.042 1.86 15.24�0.19 1.36�0.043 1.79 15.17�0.14 1.31�0.03
5 ConlusionsWe have presented OBPM, whih is a simple meta-algorithm for the online train-ing of linear lassi�ers with large margin. OBPM trains N linear lassi�ers inparallel on random subsets of the data. We have shown experimentally that om-pared to online algorithms suh as the standard pereptron and ALMA, OBPMwas able to ahieve a lower predition error and trak onept drift. We were ableto demonstrate that OBPM is a truly online algorithm with a large margin whihis simple to implement with the potential for a parallel arhiteture. OBPM'sCPU times were not prohibitive and its performane ompared favourably withSVM and ALMA when trained in the bath setting on three real datasets.Aknowledgements This work was supported by the Australian ResearhCounil. We thank Gunnar R�atsh, Alex Smola and S�oren Sonnenburg for their9 We used the fast interior point optimization pakage SVlab of Alex Smola whih hasbeen shown to have omparable speed to SVM light.



11help with the C. Elegans data and for providing their SVM results for C. El-egans. Edward's researh was funded by the Defene Siene and TehnologyOrganisation, Australia.A Lower bound proof of (2)Proof. Reall that the onvex hull of weights w1; : : : ;wN is de�ned by CN :=CN (w1; : : : ;wN ) := fPi �iwi : k�k1 = 1;� � 0g. From the de�nition of CN ,and ~w =PNi=1 �iwi, we �nd that k ~wk2 is equal tovuuut0� NXi=1 �iwi � NXj=1 �jwj1A =vuut NXi=1 NXj=1 �i�j (wi �wj): (A.1)For any example zi := (xi; yi) from z = (z1; : : : ; zt) and exploiting the normal-ization kwik2 = 1 for i = 1; : : : ; N , we onlude thatyi ( ~w � xi) = yi0� NXj=1 �jwi � xi1A = NXj=1 �jyi (wi � xi)kwik2 : (A.2)Using the de�nition for the margin for a partiular weight solution w over thesequene z, z(w) := minfyi (w � xi) =kwk2 : i 2 f1; : : : ; Tgg with the result of(A.2), we obtain yi ( ~w � xi) � NXj=1 �jz(wj): (A.3)Combining (A.1) and (A.3) ompletes the proof thatz( ~w) � PNj=1 �jz(wj)qPNi=1PNj=1 �i�j (wi �wj) :Referenes1. C. Gentile, (2001) A new approximate maximal margin lassi�ation algorithm.Journal of Mahine Learning Researh, 2:213-242.2. Y. Li. & P. Long, (2002) The relaxed online maximum margin algorithm. MahineLearning, 46(1-3):361-387.3. J. Kivinen, A. Smola, and R. C. Williamson, (2002) Online Learning with kernels.Advanes in Neural Information Proessing Systems 14, Cambridge, MA: MITPress (pp. 785-793).4. R.O. Duda & P.E. Hart & D.G. Stork, (2000) Pattern Classi�ation And SeneAnalysis 2nd Edition. John Wiley.5. A.B.J. Noviko�, (1962) On onvergene proofs on pereptrons. In Proeedings ofthe Symposium on Mathematial Theory of Automata, vol. XII, (pp. 615-622).
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