Online Bayes Point Machines

Edward Harrington', Ralf Herbrich?, Jyrki Kivinen', John C. Platt®, and
Robert C. Williamson'!

! Research School of Information Sciences and Engineering
The Australian National University
Canberra, ACT 0200
{edward.harrington, jyrki.kivinen,bob.williamson}@anu.edu.au
% Microsoft Research
7 J J Thomson Avenue,
Cambridge, CB3 0FB, UK
rherb@microsoft.com
3 Microsoft Research
1 Microsoft Way,
Redmond, WA 98052, USA

jplatt@microsoft.com

Abstract. We present a new and simple algorithm for learning large
margin classifiers that works in a truly online manner. The algorithm
generates a linear classifier by averaging the weights associated with sev-
eral perceptron-like algorithms run in parallel in order to approximate
the Bayes point. A random subsample of the incoming data stream is
used to ensure diversity in the perceptron solutions. We experimentally
study the algorithm’s performance on online and batch learning settings.
The online experiments showed that our algorithm produces a low pre-
diction error on the training sequence and tracks the presence of concept
drift. On the batch problems its performance is comparable to the max-
imum margin algorithm which explicitly maximises the margin.

1 Introduction

An online classifier tries to give the best prediction based on the example se-
quence seen at time ¢ in contrast to a batch classifier which waits for the whole
sequence of T examples. There have been a number of recent attempts [1-3]
in the online setting to achieve a approximation to the maximum margin so-
lution of batch learners such as SVMs. In this paper we present a truly online
algorithm for linear classifiers which achieves a large margin by estimating the
centre-of-mass (the so-called Bayes point) by a randomisation trick.

It is well accepted that a (fixed) large margin classifier provides a degree of
immunity to attribute noise and concept drift. One advantage of the algorithm
presented here is the ability to also track concept drift.

The primary appeal of the algorithm is its simplicity: one merely needs to
run a number of perceptrons in parallel on different (random) subsamples of the
training sequence. Hence, it is well suited to very large data sets. We illustrate

the effectiveness of the algorithm to track concept drift with an experiment based
on the MNIST OCR database.

We define a sequence of training examples seen by the online learning al-
gorithm in the form of a sequence of T' training examples, z = (21,...,27) :=
((x1,91),-..,(x7,yT)), comprising an instance x in the instance space X C R?
and y € {—1,+1} the corresponding binary label. The weight vector w € R?
defines the d-dimensional hyperplane* {x: (w-x) = 0} which is the decision
boundary associated with the hypothesis sgn (w - x) of the perceptron algorithm
[4], where sgn(v) = 1ifv > 0 and sgn(v) = —1if v < 0. We often assume that the
target labels y; are defined by y; = sgn (u - x;); in other words, there exists a lin-
ear classifier which can correctly classify the data. The margin v, (w) plays a key
role in understanding the performance and behaviour of linear classifier learning
algorithms. It is the minimum Euclidean distance between an instance vector x
and the separating hyperplane produced by w. Formally, the margin of a weight
vector on an example z; is v,, (W) := y; (W - x;)/||W||2, and the margin with re-
spect to the whole training sequence is 7y, (w) := min{~,,(w): i € {1,...,T}}.
The version space V (z) is the set of hypotheses consistent with the training
sample. Since we only consider linear classifiers, we consider V (2) as a subset
of the weight space:

V(z) :={w e R: sgn(w-xz;) = y; for all (x;,y;) € 2}. (1)

Clearly, the target function u is in V (z) for any z. A learning algorithm that
attains zero training error finds an hypothesis in the version space.

2 (Large Margin) Perceptron Learning Algorithms

We first consider the generalised perceptron (see Algorithm 1). The algorithm
differs from the standard perceptron algorithm in two ways: 1) an update is
made on example zj, if v,, (Wi) < pg, where py, is the update margin (pr = 0
for all k in the standard perceptron), and 2) the update step size is 7 instead
of always being fixed to 1. When p; = 0, and 5y, is fixed it is known by a re-
sult of Novikoff [5] that the algorithm makes no more than (8/v.)” mistakes
where f := max;—1 . 7 ||X;||]2 (we assume that the instances throughout the pa-
per are normalised so 3 = 1) and 7, := max{y, (w) : w € R?} is the margin
attained by the maximum margin hyperplane. This perceptron convergence the-
orem only guarantees that the perceptron’s hypothesis w is in V (2); i.e. only
that vz (Wperec) > 0 where Wpere is the weight vector the perceptron algorithm
converges to. In the marginalised perceptron [4], pr is a positive constant and
the final margin, if run until separation of the training sequence in the batch
setting, can be guaranteed to be > pg. The perceptron algorithm has several key
advantages: it is extremely simple, on-line, and it can be readily kernelised since
it only uses inner products between input vectors [6].

* Note that in the case of a weight vector with bias term (also referred to as the
threshold) an extra attribute of +1 is added.

Algorithm 1 Generalised Perceptron algorithm

Require: A linear separable training sequence z = ((x1,y1), (x2,¥42),...).
Require: Margin parameter sequence p, and learning rate 7.

Lt=1, k=1

2: repeat
if y (wi - x¢) /[[Well2 < px then

4 Wil = Wk + NeYeXe

b: k=k+1

6: end if

7: until No more updates made

The motivation for setting pr, = p > 0 in order to guarantee v, (w) > p for
the final solution w is that a larger margin hyperplane has a better guarantee of
generalisation performance than a smaller margin one [6]. It should be noted that
the maximum margin hyperplane is not unique in this regard; indeed, generically
it is not the hyperplane with the best generalisation performance (the so-called
Bayes point) [7], but historically much effort has been expended on maximising
the margin.

Whilst such analyses and guarantees are proven in the batch setting, the idea
of seeking a large margin hyperplane with an online algorithm still makes sense
for two reasons. First, one can always use an online algorithm to learn in the
batch setting by repeatedly iterating over the sample z. Second, even in a truly
online setting, a large margin solution provides some immunity to attribute noise
and concept drift.

There have been a few recent attempts to develop further online algorithms
that achieve an approximation to the maximum margin. Kivinen et al. [3] stud-
ied the marginalised perceptron (and issues arising when it is kernelised). Li
and Long [2] studied an algorithm they called ROMMA where if there is a mis-
take at the tth trial then wyy; is the smallest element of the constrained set of
{w:wi-w> ||well3} N {w:y(w-x, > 1)}, else wyyy = wy. It has a similar
mistake bound to the perceptron and is computationally slightly more costly
than the perceptron. Gentile [1] has presented an Approximately Large Margin
Algorithm (ALMA)® which he analysed in a batch setting showing that for any
0 € (0,1) it can achieve a margin of at least (1 —)7, (in the linearly separable
case), requiring O(1/(6%7.?2)) updates. Thus, ALMA is obtained from the gener-
alised perceptron by setting p, = (1—0)B/vk and n, = C/v/k and, if necessary,
re-normalising wy, so that ||wg|2 < 1.

3 Online Bayes Point Machines

Whilst the variants on the classical perceptron discussed above can guarantee
convergence to a hyperplane with a large margin, there is a price to pay. The

® We only consider the 2-norm case of ALMA. ALMA is a more general algorithm for
p-norm classifiers.

Algorithm 2 OBPM algorithm

Require: A training sample z = ((x1,¥1),. .., (X7, y71)).

Require: A online learning algorithm with update rule £ for linear discrimination
and associated step-size update rule S.

Require: A subroutine Bernoulli(p) which returns independent Bernoulli random vari-
ables with probability p of taking the value 1.

Require: Parameters N € N and 7 € [0, 1].

1: Initialise step sizes n; 1, for all j € {1,...,N}.

2: Initialise weights wj,; =0, for all j € {1,...,N}.
3: fort=1toT do

4 W, =0

5: for j=1to N do

6: b;,+ = Bernoulli(7)

7 if bj; =1 then

8 Wi+t = L(Wjt,jt, X, Yt)

9: else

10: Wi t4+1 = Wyt

11: end if

12: nj,t+1 =S(t,7]j,t,...)
13: \XI; = \XI; + Wj,t+1/N
14: end for

15: Wy = Wi/ max{1, ||Wi||2}
16: end for

17: return wr

closer one desires the algorithm’s hypothesis margin to be to the maximal pos-
sible margin, the slower the convergence. In addition, there are several extra
parameters one has to choose. This suggests it is worthwhile exploring alternate
variants on classical perceptrons.

Our starting point for such variants is the observation that (1) defines a
conver set V(z). Thus if one found a number of weight vectors wy,...,wy
in V(2), one could optimise over the set of convex combinations CV :=
CN(wi,...,wn) = {3, a;w;: [[a]i =1, > 0} of them. Intuitively one would
expect that the more “diverse” wy,...,wy are, the greater the proportion of
V(2z) could be covered by CN. The centre of CV provides an rough approxima-
tion of the Bayes point and thus potentially better performance (dependent on
the closeness to the true Bayes point). This convex combination of weight vec-
tors w; is different to hypothesis aggregation methods such as boosting which
form convex combinations of classifier hypotheses x — sgn (w; - x). The sampling
presented in this paper can be mistaken for an online version of Bagging [8] since
the sample is drawn randomly with replacement from a fixed set. The difference
with bagging (and boosting [9]) is that we combine the classifier weights not the
hypotheses.

If wi,...,wy are all identical, C" is a singleton and nothing is gained. A well
known technique for achieving diversity is to generate wy, ..., wy by running (a
suitable variant of) the perceptron algorithm on different permutations 7(z) :=

(2r(1)»- - -» Zr()) Of the training sample 2z [7], where 7 : {1,...,T} — {1,...,T}
is a permutation. Although an elegant and effective trick, it is not an online
algorithm — one needs the entire training sample z before starting.

This motivates the algorithm we study in this paper: the Online Bayes Point
Machine (OBPM) (Algorithm 2). Given a training sequence z, we run N Per-
ceptrons “in parallel” and ensure diversity of their final solutions by randomly
choosing to present a given sample z; to perceptron j only if b, = 1, where
bjr, 7 =1,...,N, k=1,2,... are independent Bernoulli random variables with
Pr{b]-k =].} =T.

Although there are theoretical reasons for expecting that refined optimisation
of the a; would lead to better solutions than naively setting them all equal to
1/N, we have found experimentally this expectation not to hold. Furthermore,
such optimisation can only occur in the batch setting: one cannot determine the
margin of a candidate weight vector without the whole training sample. One
method tried in optimizing the choice of o; was to maximize the following lower
bound in the batch setting (see Appendix A for proof):

N w;
Va(W) > NZj:;]72(')” -
\/Zi:l ijl a;a (Wi - W)

It was found by experimentation that maximizing the bound of (2) had no per-
formance gain compared to setting a;; = 1/N. Hence in the rest of the paper we
will only consider the situation where a; = 1/N for all i. Step 15 of algorithm 2
is optional as it only bounds ||W|| by one and given the instances are normalized,
this results in p < 1 in the generalised Perceptron algorithm 1.

On average each perceptron j sees only a fraction 7 of all the examples in z.
The smaller 7, the more diverse the solutions w; become, although the algorithm
takes longer to reach these solutions.

In this paper we take £ the base learner to be the perceptron update rule
and fix n;; = 1. This leaves OBPM two parameters required for tuning: 7 and
N.

We see that the number of arithmetic operations for OBPM on average is
O(rNdT), for both ALMA and the perceptron it is O(dT). OBPM is a factor
7N more expensive computationally than ALMA. A point worth noting is that
each perceptron used in OBPM is independent and so OBPM can be readily
implemented using parallel computing.

In the case of OBPM, the implementation may be made more efficient by
noting that the kernel values K (x, x;) are the same for all N perceptrons. For a
truly online algorithm we need to bound the number of instances x; needed to
be stored for the kernel expansion [3].

(2)

4 Experiments

We used a toy problem to analyse the effect of 7 and N on approximating the
maximum margin. We show that for this example we can do better than other

=2}

A N=10 0.04
——= N=25
5l -5~ N=100 ||
0.021
£
4 >
=

-0.02-

Test error (%)
w

1} _ L
2 p 0.04
1 1 -0.06 A~ N=10 [
— N=25
o DU 00 —=- N =100
uuuuuuu e -0.
() 0.2 0.4 06 08 1 0 1

0.2 0:4 0.‘6 0.8
(b) T (Bernoulli Probabilities)

Fig. 1. Artificial data set averages from 30 Monte Carlo simulations training OBPM
with no label noise (e = 0.0) for a single epoch: (a) test error versus 7, (b) margin
vz (W) versus 7.

online methods but there is a trade-off with computational cost. We demonstrate
that OBPM has the ability to handle concept drift by applying it to a problem
generated using the MNIST OCR data set. Last, we show the performance of
OBPM on some real-world data sets using the online prediction error analysis
and batch test errors.

The tuning parameters used in the experiments for OBPM were 7 (ranging
from 0.01 to 0.5 in non-uniform steps) and N € {100,200}. For ALMA, B was ad-
justed from 0.5 up to 20 in non-uniform steps, and C' € {v/2/4,v/2/2,v/2,2/2}5.
Thoughout the experiments the final reported parameters were chosen based on
the best training error for that experiment. The SVM results were produced with
a linear kernel and soft margin using an exact optimisation method. Training
and test errors and margins for the algorithms were measured using the last
weights as the hypothesis. The results were produced using C code on a 1GHz
DEC alpha.

4.1 Parameter Selection

A target u € {—1,0,+1}'% and T instances x; were generated randomly
with a margin, v, (u) > m = 0.05. The associated label y; was allocated +1
if (u-x¢) /|Jull2 > m and —1 if (u-x¢) /||u||]2 < —m. This process ensured that
the training sample has a margin greater than m; we generated the test sample
identically to the training sample. This problem is very similar to the artificial
data experiment of Gentile [1]. We use a different data set size of T', and we use
the same margin in the training and test samples. We reduced 7' from 10000
to 1000, m from 1 to 0.05. This gives a mistake bound of 400 for the classic

6 This was after initial experimentation to determine the best B and C for all the
problems considered here.

7

Table 1. Table of test error averages from 30 Monte Carlo simulations of a single
epoch of the parameter selection experiment, with 95 percent confidence interval for
Student’s t¢-distribution.

NOISE PERCEPTRON ALMA OBPM
0.0 2.03 £0.32 0.07£0.04(B=1.11,C=0.71) 0.00£0.00(r = 0.35,N=100)
0.01 3.354+0.44 0.14+0.07(B=0.83,C=0.71) 0.10+0.06(7 = 0.50,N=100)
0.1 12.96+£1.0 0.76:1:0.13(B:1.25,C:0.71) 0.96:1:0.13(7' = 0.15,N:100)

Perceptron, making it highly unlikely that the perceptron could learn this in a
single epoch. Simulations with label noise on the training sample (not the test
sample) were done by flipping each label y; with probability e.

There is a trade-off between computational cost and w achieving an accurate
estimate of the maximum margin. It is indicated in Figure 1 (b) that by increas-
ing N, the margin was increased. As the margin increased, the total number of
perceptron updates was increased. For example when 7 = 0.3 in the noise free
case, the total number of updates of all the perceptrons went from 1334 to 5306,
as a result of the total number of perceptrons going from 25 to 100. The relation-
ship between 7 and N is shown by Figure 1; if 7 is too small then the number
of N must be increased to ensure W is in the version space. From Figure 1 (b)
OBPM achieved a margin of 0.02, whereas ALMA achieved 0.006. Table 1 shows
with label noise that the performance of ALMA and OBPM were similar, except
in the noise-free case. We also noted that ALMA’s test error performance was
more sensitive to the choice of parameter settings compared to OBPM.

4.2 Drifting concept

In order to demonstrate OBPM’s ability to learn a drifting concept we designed
a drifting experiment using the well known MNIST OCR data set”. To simulate
the drift we set the positive class to a single label which varied over time. The
negative class was set to be the remaining 9 labels. We took 1000 examples. The
labels where swapped in two phases gradually using a linear relationship in the
number of examples seen so far. The mixing of the labels in each trial was ran-
dom and we averaged results over 10 trials, therefore the transition boundaries
in Figure 2 are not obvious. The following psuedo code shows how we allocated
labels I = 1,...,3 to the positive class of z; = zt+ (i.e. y = 1) according to the

uniform random variable r; € [0,1] at time ¢, where 2! = (x},y' =1) :

A
if ry >(1— TL/2) then z;" = 2}
if r; > (1 — 547) then 2 = 2}

" Available at http://yann.lecun.com/exdb/mist/index.html.

Selected the labels this way we ensure by ¢ > T/2 all the positive class
examples are with label 2 and by 900 they are all label 3. Replacing the labels
randomly in the above way also gives a smoother and more gradual transition
between labels.

Figure 2 presents the results of the MNIST drift experiment for 10 trials
with permutations. We see that OBPM made fewer prediction errors compared
to several other online algorithms. One of the online algorithms compared with
OBPM was LMS (Least Mean Squared [12]), which is a regression algorithm
where we take the sign of the predictions to convert to the classification setting.
One reason why ALMA did not perform as well as OBPM is that ALMA as-
suming a stationary target in order to adjust the learning rate n; and margin
parameter pi. Note that this is not an exhaustive study on drifting concepts
but it appears the large margin of OBPM allows for the improvement over the
perceptron (the generalised Perceptron p = 0).

—S— Perceptron

180r |« oBPM

| |- ALMA
—&- LMS

S 100t

Prediction

1000

Number of examples

Fig. 2. Prediction errors from drifting concept experiment with the MNIST OCR data
set comparing LMS (step size 0.5), ALMA (B=2, C=v/2), Perceptron (p = 0) and
OBPM (r=0.4, N=100).

4.3 Real-world data sets

We consider three different data sets. The first data set was derived from a
genome of the nematode Ceanorhabditis Elegans (C. Elegans). The classifica-
tion task was to locate the specific splice sites (for more details see [10]). The
C. Elegans training sample had 6125 dimensions and 100 000 examples, with
a separate test set of 10 000 examples. The other two data sets were the UCI
Adult the Web data sets ®. Each input consists of 14 mixed categorical and

8 Available at http://www.research.microsoft.com/~jplatt/smo.html

continuous attributes. We increase the input dimensionality to 123 by quantis-
ing the continuous attributes and by representing the categorical inputs with a
1-0of-N code. The training sample size of Adult is 32562 and the test set size is
16282. The prediction task of the adult data set is to determine whether a person
earns over $50k a year. The Web task consists of predicting whether a web page
belongs to a topic or not, based on the presence of 300 words. The Web task
has a training sample size of 49 749 and a test set size of 21 489. To study the

1600 x10

[}

—A- OBPM :
A~ OBPM
«» 1200F §
o) ©
o 4t
£ 1000+ =
[}
e)
© 8o0of ‘S3r
t; —_
S 600F 2
<t c2r
o L >
400 =
4t
2001
L L 3 k%
0 1 2 3 4 5 0 1 2 3 4 5
(a) Number of examples, t x10* (b) Number of examples, t x10*

Fig. 3. (a) Prediction errors for OBPMs w; (7=0.3, N=100) and ALMAs weight solu-
tions and (b) total number updates for the Web data after training example ¢.

online behaviour of this algorithm we measured the number of prediction errors
made at ¢ examples and compared this to ALMA. The prediction errors made
on the Web data in Figure 3(a) demonstrate a lower prediction error compared
to ALMA. The prediction error was consistently lower than ALMA with all the
experiments in this paper. The lower prediction error comes at a cost, as shown
in Figure 3(b): the total number of updates made by OBPM is larger than the
number made by ALMA.

The batch setting results benchmarking OBPM with other algorithms are
given in Table 2. The UCI data results of Table 2 report the average test error for
30 trials of permutations of the training sequence with their 95 percent confidence
interval using the Student’s ¢-distribution. The maximum margin benchmark,
the soft margin linear SVM gave test errors of 15.05% and 1.25% for the Adult
and Web respectively. The C. Elegans data set OBPM with 7 = 0.05, N = 100,
was able to achieve a test error of 1.59% after 20 epochs which was comparable
to the SVM (soft margin) result 1.58%, ALMA achieved 1.72%. The Cochran
test statistic for C. Elegans after 20 epochs comparing ALMA, OBPM and SVM
was 3.77 which indicates no difference at a significance level of 95 percent. A
general comment of the results of Table 2 was that in the batch setting OBPM
performed better than the standard perceptron whereas ALMA and OBPM were

10

comparable. For these experiments it was not obvious how to tune ALMA’s
parameters easily, whereas with OBPM good results were achieved by simply
adjusting 7 over a small range 0.1 to 0.4.

The time taken to process the C. Elegans results were: OBPM with CPU
time 19 minutes (real time 21 minutes) and ALMA CPU time of 3 minutes (real
time 13 minutes). The CPU time is not prohibitive, especially given that the
SVM? optimisation took approximately 300 hours of real time. Of course, on a
parallel machine, OBPM could be sped up further.

Table 2. Real world data set test errors in percent run for 3 epochs.

ALGORITHM EPOCHs C. Elegans UCI Adult UCI Web
Perceptron 1 3.33 19.59+1.54 1.84+0.12
2.99 18.814+0.96 2.12+1.03
3 2.93 21.21+2.21 1.72+0.18
ALMA(B,C) (B=3.33,C=0.70) (B=20,C=0.70) (B=0.625,C=1.41)
1 1.95 15.884+0.19 1.36+0.03
2 1.92 15.354+0.13 1.2940.03
3 1.78 15.26+0.13 1.26+0.03
OBPM(7,N) (r=0.2,N=200) (7=0.01,N=200) (7=0.3,N=200)
1 1.94 15.294+0.15 1.4240.04
1.86 15.2440.19 1.36£0.04
3 1.79 15.1740.14 1.31+0.03

5 Conclusions

We have presented OBPM, which is a simple meta-algorithm for the online train-
ing of linear classifiers with large margin. OBPM trains N linear classifiers in
parallel on random subsets of the data. We have shown experimentally that com-
pared to online algorithms such as the standard perceptron and ALMA, OBPM
was able to achieve a lower prediction error and track concept drift. We were able
to demonstrate that OBPM is a truly online algorithm with a large margin which
is simple to implement with the potential for a parallel architecture. OBPM’s
CPU times were not prohibitive and its performance compared favourably with
SVM and ALMA when trained in the batch setting on three real datasets.

Acknowledgements This work was supported by the Australian Research
Council. We thank Gunnar Rétsch, Alex Smola and Soéren Sonnenburg for their

® We used the fast interior point optimization package SVlab of Alex Smola which has
been shown to have comparable speed to SVM light.

11

help with the C. Elegans data and for providing their SVM results for C. El-
egans. Edward’s research was funded by the Defence Science and Technology
Organisation, Australia.

A Lower bound proof of (2)

Proof. Recall that the convex hull of weights w1, ..., wy is defined by OV :=
CN(wi,...,wn) = {3, ;w;: |lafli =1, > 0}. From the definition of CV,
and w = Zfil a;w;, we find that |[|W]|2 is equal to

N N N N
Zaiwi - Z ;W 5 = Z Zaiozj (W, . Wj). (A].)
i=1 j=1

i=1 j=1
For any example z; := (x;,y;) from z = (z1,...,2:) and exploiting the normal-
ization ||w;||lo =1 fori=1,..., N, we conclude that
i N N (w; - x)
wiwox) = [Lawx) = Lan T
=1 =1 7112

Using the definition for the margin for a particular weight solution w over the
sequence z, vz(w) := min{y; (w-x;) /||w|l2 : i € {1,...,T}} with the result of
(A.2), we obtain

N
yi (W-x;) > Zaﬂz(wj)- (A.3)

Combining (A.1) and (A.3) completes the proof that

N i (w;
e p— ”)'_ _
\/Zi:1 Zj:l ajaj (W - W;)

References

1. C. Gentile, (2001) A new approximate maximal margin classification algorithm.
Journal of Machine Learning Research, 2:213-242.

2. Y. Li. & P. Long, (2002) The relaxed online maximum margin algorithm. Machine
Learning, 46(1-3):361-387.

3. J. Kivinen, A. Smola, and R. C. Williamson, (2002) Online Learning with kernels.
Advances in Neural Information Processing Systems 14, Cambridge, MA: MIT
Press (pp. 785-793).

4. R.O. Duda & P.E. Hart & D.G. Stork, (2000) Pattern Classification And Scene
Analysis 2nd Edition. John Wiley.

5. A.B.J. Novikoff, (1962) On convergence proofs on perceptrons. In Proceedings of
the Symposium on Mathematical Theory of Automata, vol. XII, (pp. 615-622).

12

6. R. Herbrich, (2002) Learning Kernel Classifiers, Cambridge, MA: MIT Press.

7. R. Herbrich, T. Graepel & C. Campbell, (2001) Bayes Point Machines. Journal of
Machine Learning Research, 1:245-279.

8. L. Breiman, (1996) Bagging predictors. Machine Learning, 24(2):120-140.

9. R.E. Schapire, (1990) The strength of weak learnability. Machine Learning, 5:197-
227.

10. S. Sonnenburg, (2002) New Methods for Splice Site Recognition. Master’s thesis,
Humbold University.

11. W.J. Conover, (1980) Practical nonparametric statistics, 2nd Edition. John Wiley.

12. B. Widrow and M. E. Hoff, (1960) Adaptive switching circuits. 1960 IRE WESCON
Convention Record, pt. 4, pp. 96-104.

