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omAbstra
t. We present a new and simple algorithm for learning largemargin 
lassi�ers that works in a truly online manner. The algorithmgenerates a linear 
lassi�er by averaging the weights asso
iated with sev-eral per
eptron-like algorithms run in parallel in order to approximatethe Bayes point. A random subsample of the in
oming data stream isused to ensure diversity in the per
eptron solutions. We experimentallystudy the algorithm's performan
e on online and bat
h learning settings.The online experiments showed that our algorithm produ
es a low pre-di
tion error on the training sequen
e and tra
ks the presen
e of 
on
eptdrift. On the bat
h problems its performan
e is 
omparable to the max-imum margin algorithm whi
h expli
itly maximises the margin.1 Introdu
tionAn online 
lassi�er tries to give the best predi
tion based on the example se-quen
e seen at time t in 
ontrast to a bat
h 
lassi�er whi
h waits for the wholesequen
e of T examples. There have been a number of re
ent attempts [1{3℄in the online setting to a
hieve a approximation to the maximum margin so-lution of bat
h learners su
h as SVMs. In this paper we present a truly onlinealgorithm for linear 
lassi�ers whi
h a
hieves a large margin by estimating the
entre-of-mass (the so-
alled Bayes point) by a randomisation tri
k.It is well a

epted that a (�xed) large margin 
lassi�er provides a degree ofimmunity to attribute noise and 
on
ept drift. One advantage of the algorithmpresented here is the ability to also tra
k 
on
ept drift.The primary appeal of the algorithm is its simpli
ity: one merely needs torun a number of per
eptrons in parallel on di�erent (random) subsamples of thetraining sequen
e. Hen
e, it is well suited to very large data sets. We illustrate



2the e�e
tiveness of the algorithm to tra
k 
on
ept drift with an experiment basedon the MNIST OCR database.We de�ne a sequen
e of training examples seen by the online learning al-gorithm in the form of a sequen
e of T training examples, z = (z1; : : : ; zT ) :=((x1; y1); : : : ; (xT ; yT )), 
omprising an instan
e x in the instan
e spa
e X � Rdand y 2 f�1;+1g the 
orresponding binary label. The weight ve
tor w 2 Rdde�nes the d-dimensional hyperplane4 fx : (w � x) = 0g whi
h is the de
isionboundary asso
iated with the hypothesis sgn (w � x) of the per
eptron algorithm[4℄, where sgn(v) = 1 if v � 0 and sgn(v) = �1 if v < 0. We often assume that thetarget labels yi are de�ned by yi = sgn (u � xi); in other words, there exists a lin-ear 
lassi�er whi
h 
an 
orre
tly 
lassify the data. The margin 
z (w) plays a keyrole in understanding the performan
e and behaviour of linear 
lassi�er learningalgorithms. It is the minimum Eu
lidean distan
e between an instan
e ve
tor xand the separating hyperplane produ
ed by w. Formally, the margin of a weightve
tor on an example zi is 
zi(w) := yi (w � xi)=kwk2, and the margin with re-spe
t to the whole training sequen
e is 
z (w) := minf
zi(w) : i 2 f1; : : : ; Tgg.The version spa
e V (z) is the set of hypotheses 
onsistent with the trainingsample. Sin
e we only 
onsider linear 
lassi�ers, we 
onsider V (z) as a subsetof the weight spa
e:V (z) := fw 2 Rd : sgn (w � xi) = yi for all (xi; yi) 2 zg : (1)Clearly, the target fun
tion u is in V (z) for any z. A learning algorithm thatattains zero training error �nds an hypothesis in the version spa
e.2 (Large Margin) Per
eptron Learning AlgorithmsWe �rst 
onsider the generalised per
eptron (see Algorithm 1). The algorithmdi�ers from the standard per
eptron algorithm in two ways: 1) an update ismade on example zk if 
zk(wk) � �k, where �k is the update margin (�k = 0for all k in the standard per
eptron), and 2) the update step size is �k insteadof always being �xed to 1. When �k = 0, and �k is �xed it is known by a re-sult of Noviko� [5℄ that the algorithm makes no more than (�=
z)2 mistakeswhere � := maxi=1;:::;T kxik2 (we assume that the instan
es throughout the pa-per are normalised so � = 1) and 
z := maxf
z (w) : w 2 Rdg is the marginattained by the maximum margin hyperplane. This per
eptron 
onvergen
e the-orem only guarantees that the per
eptron's hypothesis w is in V (z); i.e. onlythat 
z (wper
) > 0 where wper
 is the weight ve
tor the per
eptron algorithm
onverges to. In the marginalised per
eptron [4℄, �k is a positive 
onstant andthe �nal margin, if run until separation of the training sequen
e in the bat
hsetting, 
an be guaranteed to be � �k. The per
eptron algorithm has several keyadvantages: it is extremely simple, on-line, and it 
an be readily kernelised sin
eit only uses inner produ
ts between input ve
tors [6℄.4 Note that in the 
ase of a weight ve
tor with bias term (also referred to as thethreshold) an extra attribute of +1 is added.



3Algorithm 1 Generalised Per
eptron algorithmRequire: A linear separable training sequen
e z = ((x1; y1); (x2; y2); : : :).Require: Margin parameter sequen
e �k and learning rate �k.1: t = 1; k = 1.2: repeat3: if yt (wk � xt) =kwkk2 � �k then4: wk+1 = wk + �kytxt5: k = k + 16: end if7: until No more updates madeThe motivation for setting �k = � > 0 in order to guarantee 
z (w) > � forthe �nal solution w is that a larger margin hyperplane has a better guarantee ofgeneralisation performan
e than a smaller margin one [6℄. It should be noted thatthe maximum margin hyperplane is not unique in this regard; indeed, generi
allyit is not the hyperplane with the best generalisation performan
e (the so-
alledBayes point) [7℄, but histori
ally mu
h e�ort has been expended on maximisingthe margin.Whilst su
h analyses and guarantees are proven in the bat
h setting, the ideaof seeking a large margin hyperplane with an online algorithm still makes sensefor two reasons. First, one 
an always use an online algorithm to learn in thebat
h setting by repeatedly iterating over the sample z. Se
ond, even in a trulyonline setting, a large margin solution provides some immunity to attribute noiseand 
on
ept drift.There have been a few re
ent attempts to develop further online algorithmsthat a
hieve an approximation to the maximum margin. Kivinen et al. [3℄ stud-ied the marginalised per
eptron (and issues arising when it is kernelised). Liand Long [2℄ studied an algorithm they 
alled ROMMA where if there is a mis-take at the tth trial then wt+1 is the smallest element of the 
onstrained set of�w : wt �w � kwtk22	 \ fw : yt(w � xt � 1)g, else wt+1 = wt. It has a similarmistake bound to the per
eptron and is 
omputationally slightly more 
ostlythan the per
eptron. Gentile [1℄ has presented an Approximately Large MarginAlgorithm (ALMA)5 whi
h he analysed in a bat
h setting showing that for anyÆ 2 (0; 1) it 
an a
hieve a margin of at least (1� Æ)
z (in the linearly separable
ase), requiring O(1=(Æ2
z2)) updates. Thus, ALMA is obtained from the gener-alised per
eptron by setting �k = (1�Æ)B=pk and �k = C=pk and, if ne
essary,re-normalising wk so that kwkk2 � 1.3 Online Bayes Point Ma
hinesWhilst the variants on the 
lassi
al per
eptron dis
ussed above 
an guarantee
onvergen
e to a hyperplane with a large margin, there is a pri
e to pay. The5 We only 
onsider the 2-norm 
ase of ALMA. ALMA is a more general algorithm forp-norm 
lassi�ers.



4Algorithm 2 OBPM algorithmRequire: A training sample z = ((x1; y1); : : : ; (xT ; yT )).Require: A online learning algorithm with update rule L for linear dis
riminationand asso
iated step-size update rule S.Require: A subroutine Bernoulli(p) whi
h returns independent Bernoulli random vari-ables with probability p of taking the value 1.Require: Parameters N 2 N and � 2 [0; 1℄.1: Initialise step sizes �j;1, for all j 2 f1; : : : ; Ng.2: Initialise weights wj;1 = 0, for all j 2 f1; : : : ; Ng.3: for t = 1 to T do4: ~w0t = 05: for j = 1 to N do6: bj;t = Bernoulli(� )7: if bj;t = 1 then8: wj;t+1 = L(wj;t; �j;t;xt; yt)9: else10: wj;t+1 = wj;t11: end if12: �j;t+1 = S(t; �j;t; : : :)13: ~w0t = ~w0t +wj;t+1=N14: end for15: ~wt = ~w0t=maxf1; k ~w0tk2g16: end for17: return ~wT
loser one desires the algorithm's hypothesis margin to be to the maximal pos-sible margin, the slower the 
onvergen
e. In addition, there are several extraparameters one has to 
hoose. This suggests it is worthwhile exploring alternatevariants on 
lassi
al per
eptrons.Our starting point for su
h variants is the observation that (1) de�nes a
onvex set V (z). Thus if one found a number of weight ve
tors w1; : : : ;wNin V (z), one 
ould optimise over the set of 
onvex 
ombinations CN :=CN (w1; : : : ;wN ) := fPi �iwi : k�k1 = 1;� � 0g of them. Intuitively one wouldexpe
t that the more \diverse" w1; : : : ;wN are, the greater the proportion ofV (z) 
ould be 
overed by CN . The 
entre of CN provides an rough approxima-tion of the Bayes point and thus potentially better performan
e (dependent onthe 
loseness to the true Bayes point). This 
onvex 
ombination of weight ve
-tors wj is di�erent to hypothesis aggregation methods su
h as boosting whi
hform 
onvex 
ombinations of 
lassi�er hypotheses x 7! sgn (wj � x). The samplingpresented in this paper 
an be mistaken for an online version of Bagging [8℄ sin
ethe sample is drawn randomly with repla
ement from a �xed set. The di�eren
ewith bagging (and boosting [9℄) is that we 
ombine the 
lassi�er weights not thehypotheses.Ifw1; : : : ;wN are all identi
al, CN is a singleton and nothing is gained. A wellknown te
hnique for a
hieving diversity is to generate w1; : : : ;wN by running (asuitable variant of) the per
eptron algorithm on di�erent permutations �(z) :=



5(z�(1); : : : ; z�(T )) of the training sample z [7℄, where � : f1; : : : ; Tg ! f1; : : : ; Tgis a permutation. Although an elegant and e�e
tive tri
k, it is not an onlinealgorithm | one needs the entire training sample z before starting.This motivates the algorithm we study in this paper: the Online Bayes PointMa
hine (OBPM) (Algorithm 2). Given a training sequen
e z, we run N Per-
eptrons \in parallel" and ensure diversity of their �nal solutions by randomly
hoosing to present a given sample zk to per
eptron j only if bjk = 1, wherebjk, j = 1; : : : ; N , k = 1; 2; : : : are independent Bernoulli random variables withPrfbjk = 1g = � .Although there are theoreti
al reasons for expe
ting that re�ned optimisationof the �i would lead to better solutions than naively setting them all equal to1=N , we have found experimentally this expe
tation not to hold. Furthermore,su
h optimisation 
an only o

ur in the bat
h setting: one 
annot determine themargin of a 
andidate weight ve
tor without the whole training sample. Onemethod tried in optimizing the 
hoi
e of �i was to maximize the following lowerbound in the bat
h setting (see Appendix A for proof):
z( ~w) � PNj=1 �j
z(wj)qPNi=1PNj=1 �i�j (wi �wj) : (2)It was found by experimentation that maximizing the bound of (2) had no per-forman
e gain 
ompared to setting �i = 1=N . Hen
e in the rest of the paper wewill only 
onsider the situation where �i = 1=N for all i. Step 15 of algorithm 2is optional as it only bounds k ~wk by one and given the instan
es are normalized,this results in � � 1 in the generalised Per
eptron algorithm 1.On average ea
h per
eptron j sees only a fra
tion � of all the examples in z.The smaller � , the more diverse the solutionswj be
ome, although the algorithmtakes longer to rea
h these solutions.In this paper we take L the base learner to be the per
eptron update ruleand �x �j;t = 1. This leaves OBPM two parameters required for tuning: � andN . We see that the number of arithmeti
 operations for OBPM on average isO(�NdT ), for both ALMA and the per
eptron it is O(dT ). OBPM is a fa
tor�N more expensive 
omputationally than ALMA. A point worth noting is thatea
h per
eptron used in OBPM is independent and so OBPM 
an be readilyimplemented using parallel 
omputing.In the 
ase of OBPM, the implementation may be made more eÆ
ient bynoting that the kernel values K(x;xt) are the same for all N per
eptrons. For atruly online algorithm we need to bound the number of instan
es xt needed tobe stored for the kernel expansion [3℄.4 ExperimentsWe used a toy problem to analyse the e�e
t of � and N on approximating themaximum margin. We show that for this example we 
an do better than other
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ial data set averages from 30 Monte Carlo simulations training OBPMwith no label noise (e = 0:0) for a single epo
h: (a) test error versus � , (b) margin
z ( ~wT ) versus � .online methods but there is a trade-o� with 
omputational 
ost. We demonstratethat OBPM has the ability to handle 
on
ept drift by applying it to a problemgenerated using the MNIST OCR data set. Last, we show the performan
e ofOBPM on some real-world data sets using the online predi
tion error analysisand bat
h test errors.The tuning parameters used in the experiments for OBPM were � (rangingfrom 0.01 to 0.5 in non-uniform steps) andN 2 f100; 200g. For ALMA, B was ad-justed from 0.5 up to 20 in non-uniform steps, and C 2 fp2=4;p2=2;p2; 2p2g6.Thoughout the experiments the �nal reported parameters were 
hosen based onthe best training error for that experiment. The SVM results were produ
ed witha linear kernel and soft margin using an exa
t optimisation method. Trainingand test errors and margins for the algorithms were measured using the lastweights as the hypothesis. The results were produ
ed using C 
ode on a 1GHzDEC alpha.4.1 Parameter Sele
tionA target u 2 f�1; 0;+1g100 and T instan
es xt were generated randomlywith a margin, 
z (u) � m = 0:05. The asso
iated label yt was allo
ated +1if (u � xt) =kuk2 � m and �1 if (u � xt) =kuk2 � �m. This pro
ess ensured thatthe training sample has a margin greater than m; we generated the test sampleidenti
ally to the training sample. This problem is very similar to the arti�
ialdata experiment of Gentile [1℄. We use a di�erent data set size of T , and we usethe same margin in the training and test samples. We redu
ed T from 10000to 1000, m from 1 to 0:05. This gives a mistake bound of 400 for the 
lassi
6 This was after initial experimentation to determine the best B and C for all theproblems 
onsidered here.



7Table 1. Table of test error averages from 30 Monte Carlo simulations of a singleepo
h of the parameter sele
tion experiment, with 95 per
ent 
on�den
e interval forStudent's t-distribution.noise Per
eptron ALMA OBPM0.0 2.03 �0.32 0.07�0.04(B=1.11,C=0.71) 0.00�0.00(� = 0:35,N=100)0.01 3.35�0.44 0.14�0.07(B=0.83,C=0.71) 0.10�0.06(� = 0:50,N=100)0.1 12.96�1.0 0.76�0.13(B=1.25,C=0.71) 0.96�0.13(� = 0:15,N=100)Per
eptron, making it highly unlikely that the per
eptron 
ould learn this in asingle epo
h. Simulations with label noise on the training sample (not the testsample) were done by 
ipping ea
h label yt with probability e.There is a trade-o� between 
omputational 
ost and ~w a
hieving an a

urateestimate of the maximum margin. It is indi
ated in Figure 1 (b) that by in
reas-ing N , the margin was in
reased. As the margin in
reased, the total number ofper
eptron updates was in
reased. For example when � = 0:3 in the noise free
ase, the total number of updates of all the per
eptrons went from 1334 to 5306,as a result of the total number of per
eptrons going from 25 to 100. The relation-ship between � and N is shown by Figure 1; if � is too small then the numberof N must be in
reased to ensure ~w is in the version spa
e. From Figure 1 (b)OBPM a
hieved a margin of 0.02, whereas ALMA a
hieved 0.006. Table 1 showswith label noise that the performan
e of ALMA and OBPM were similar, ex
eptin the noise-free 
ase. We also noted that ALMA's test error performan
e wasmore sensitive to the 
hoi
e of parameter settings 
ompared to OBPM.4.2 Drifting 
on
eptIn order to demonstrate OBPM's ability to learn a drifting 
on
ept we designeda drifting experiment using the well known MNIST OCR data set7. To simulatethe drift we set the positive 
lass to a single label whi
h varied over time. Thenegative 
lass was set to be the remaining 9 labels. We took 1000 examples. Thelabels where swapped in two phases gradually using a linear relationship in thenumber of examples seen so far. The mixing of the labels in ea
h trial was ran-dom and we averaged results over 10 trials, therefore the transition boundariesin Figure 2 are not obvious. The following psuedo 
ode shows how we allo
atedlabels l = 1; : : : ; 3 to the positive 
lass of zt = z+t (i.e. y = 1) a

ording to theuniform random variable rt 2 [0; 1℄ at time t, where zlt = (xlt; yl = 1) :z+t = z1tif rt > (1� tT=2 ) then z+t = z2tif rt > (1� t1:11T ) then z+t = z3t7 Available at http://yann.le
un.
om/exdb/mnist/index.html.



8 Sele
ted the labels this way we ensure by t > T=2 all the positive 
lassexamples are with label 2 and by 900 they are all label 3. Repla
ing the labelsrandomly in the above way also gives a smoother and more gradual transitionbetween labels.Figure 2 presents the results of the MNIST drift experiment for 10 trialswith permutations. We see that OBPM made fewer predi
tion errors 
omparedto several other online algorithms. One of the online algorithms 
ompared withOBPM was LMS (Least Mean Squared [12℄), whi
h is a regression algorithmwhere we take the sign of the predi
tions to 
onvert to the 
lassi�
ation setting.One reason why ALMA did not perform as well as OBPM is that ALMA as-suming a stationary target in order to adjust the learning rate �t and marginparameter �k. Note that this is not an exhaustive study on drifting 
on
eptsbut it appears the large margin of OBPM allows for the improvement over theper
eptron (the generalised Per
eptron � = 0).
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Fig. 2. Predi
tion errors from drifting 
on
ept experiment with the MNIST OCR dataset 
omparing LMS (step size 0.5), ALMA (B=2, C=p2), Per
eptron (� = 0) andOBPM (�=0.4, N=100).
4.3 Real-world data setsWe 
onsider three di�erent data sets. The �rst data set was derived from agenome of the nematode Ceanorhabditis Elegans (C. Elegans). The 
lassi�
a-tion task was to lo
ate the spe
i�
 spli
e sites (for more details see [10℄). TheC. Elegans training sample had 6125 dimensions and 100 000 examples, witha separate test set of 10 000 examples. The other two data sets were the UCIAdult the Web data sets 8. Ea
h input 
onsists of 14 mixed 
ategori
al and8 Available at http://www.resear
h.mi
rosoft.
om/~jplatt/smo.html



9
ontinuous attributes. We in
rease the input dimensionality to 123 by quantis-ing the 
ontinuous attributes and by representing the 
ategori
al inputs with a1-of-N 
ode. The training sample size of Adult is 32562 and the test set size is16282. The predi
tion task of the adult data set is to determine whether a personearns over $50k a year. The Web task 
onsists of predi
ting whether a web pagebelongs to a topi
 or not, based on the presen
e of 300 words. The Web taskhas a training sample size of 49 749 and a test set size of 21 489. To study the
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Fig. 3. (a) Predi
tion errors for OBPMs ~wt (�=0.3, N=100) and ALMAs weight solu-tions and (b) total number updates for the Web data after training example t.online behaviour of this algorithm we measured the number of predi
tion errorsmade at t examples and 
ompared this to ALMA. The predi
tion errors madeon the Web data in Figure 3(a) demonstrate a lower predi
tion error 
omparedto ALMA. The predi
tion error was 
onsistently lower than ALMA with all theexperiments in this paper. The lower predi
tion error 
omes at a 
ost, as shownin Figure 3(b): the total number of updates made by OBPM is larger than thenumber made by ALMA.The bat
h setting results ben
hmarking OBPM with other algorithms aregiven in Table 2. The UCI data results of Table 2 report the average test error for30 trials of permutations of the training sequen
e with their 95 per
ent 
on�den
einterval using the Student's t-distribution. The maximum margin ben
hmark,the soft margin linear SVM gave test errors of 15:05% and 1:25% for the Adultand Web respe
tively. The C. Elegans data set OBPM with � = 0:05; N = 100,was able to a
hieve a test error of 1:59% after 20 epo
hs whi
h was 
omparableto the SVM (soft margin) result 1:58%, ALMA a
hieved 1:72%. The Co
hrantest statisti
 for C. Elegans after 20 epo
hs 
omparing ALMA, OBPM and SVMwas 3:77 whi
h indi
ates no di�eren
e at a signi�
an
e level of 95 per
ent. Ageneral 
omment of the results of Table 2 was that in the bat
h setting OBPMperformed better than the standard per
eptron whereas ALMA and OBPM were



10
omparable. For these experiments it was not obvious how to tune ALMA'sparameters easily, whereas with OBPM good results were a
hieved by simplyadjusting � over a small range 0:1 to 0:4.The time taken to pro
ess the C. Elegans results were: OBPM with CPUtime 19 minutes (real time 21 minutes) and ALMA CPU time of 3 minutes (realtime 13 minutes). The CPU time is not prohibitive, espe
ially given that theSVM9 optimisation took approximately 300 hours of real time. Of 
ourse, on aparallel ma
hine, OBPM 
ould be sped up further.Table 2. Real world data set test errors in per
ent run for 3 epo
hs.ALGORITHM EPOCHs C. Elegans UCI Adult UCI WebPer
eptron 1 3.33 19.59�1.54 1.84�0.122 2.99 18.81�0.96 2.12�1.033 2.93 21.21�2.21 1.72�0.18ALMA(B,C) (B=3.33,C=0.70) (B=20,C=0.70) (B=0.625,C=1.41)1 1.95 15.88�0.19 1.36�0.032 1.92 15.35�0.13 1.29�0.033 1.78 15.26�0.13 1.26�0.03OBPM(� ,N) (�=0.2,N=200) (�=0.01,N=200) (�=0.3,N=200)1 1.94 15.29�0.15 1.42�0.042 1.86 15.24�0.19 1.36�0.043 1.79 15.17�0.14 1.31�0.03
5 Con
lusionsWe have presented OBPM, whi
h is a simple meta-algorithm for the online train-ing of linear 
lassi�ers with large margin. OBPM trains N linear 
lassi�ers inparallel on random subsets of the data. We have shown experimentally that 
om-pared to online algorithms su
h as the standard per
eptron and ALMA, OBPMwas able to a
hieve a lower predi
tion error and tra
k 
on
ept drift. We were ableto demonstrate that OBPM is a truly online algorithm with a large margin whi
his simple to implement with the potential for a parallel ar
hite
ture. OBPM'sCPU times were not prohibitive and its performan
e 
ompared favourably withSVM and ALMA when trained in the bat
h setting on three real datasets.A
knowledgements This work was supported by the Australian Resear
hCoun
il. We thank Gunnar R�ats
h, Alex Smola and S�oren Sonnenburg for their9 We used the fast interior point optimization pa
kage SVlab of Alex Smola whi
h hasbeen shown to have 
omparable speed to SVM light.



11help with the C. Elegans data and for providing their SVM results for C. El-egans. Edward's resear
h was funded by the Defen
e S
ien
e and Te
hnologyOrganisation, Australia.A Lower bound proof of (2)Proof. Re
all that the 
onvex hull of weights w1; : : : ;wN is de�ned by CN :=CN (w1; : : : ;wN ) := fPi �iwi : k�k1 = 1;� � 0g. From the de�nition of CN ,and ~w =PNi=1 �iwi, we �nd that k ~wk2 is equal tovuuut0� NXi=1 �iwi � NXj=1 �jwj1A =vuut NXi=1 NXj=1 �i�j (wi �wj): (A.1)For any example zi := (xi; yi) from z = (z1; : : : ; zt) and exploiting the normal-ization kwik2 = 1 for i = 1; : : : ; N , we 
on
lude thatyi ( ~w � xi) = yi0� NXj=1 �jwi � xi1A = NXj=1 �jyi (wi � xi)kwik2 : (A.2)Using the de�nition for the margin for a parti
ular weight solution w over thesequen
e z, 
z(w) := minfyi (w � xi) =kwk2 : i 2 f1; : : : ; Tgg with the result of(A.2), we obtain yi ( ~w � xi) � NXj=1 �j
z(wj): (A.3)Combining (A.1) and (A.3) 
ompletes the proof that
z( ~w) � PNj=1 �j
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