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Abstract

We study generalization properties of the area under the ROC curve (AUC), a quantity
that has been advocated as an evaluation criterion for the bipartite ranking problem. The
AUC is a different term than the error rate used for evaluation in classification problems;
consequently, existing generalization bounds for the classification error rate cannot be used
to draw conclusions about the AUC. In this paper, we define the expected accuracy of a
ranking function (analogous to the expected error rate of a classification function), and
derive distribution-free probabilistic bounds on the deviation of the empirical AUC of a
ranking function (observed on a finite data sequence) from its expected accuracy. We derive
both a large deviation bound, which serves to bound the expected accuracy of a ranking
function in terms of its empirical AUC on a test sequence, and a uniform convergence
bound, which serves to bound the expected accuracy of a learned ranking function in terms
of its empirical AUC on a training sequence. Our uniform convergence bound is expressed
in terms of a new set of combinatorial parameters that we term the bipartite rank-shatter
coefficients; these play the same role in our result as do the standard VC-dimension related
shatter coefficients (also known as the growth function) in uniform convergence results for
the classification error rate. A comparison of our result with a recent uniform convergence
result derived by Freund et al. (2003) for a quantity closely related to the AUC shows that
the bound provided by our result can be considerably tighter.
Keywords: Generalization Bounds, Area Under the ROC Curve, Ranking, Large Devi-
ations, Uniform Convergence.

∗. Parts of the results contained in this paper were presented at the 18th Annual Conference on Neural
Information Processing Systems in December 2004 (Agarwal et al., 2005a) and at the 10th International
Workshop on Artificial Intelligence and Statistics in January 2005 (Agarwal et al., 2005b).
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1. Introduction

In many learning problems, the goal is not simply to classify objects into one of a fixed
number of classes; instead, a ranking of objects is desired. This is the case, for example, in
information retrieval problems, where one is interested in retrieving documents from some
database that are ‘relevant’ to a given query or topic. In such problems, one wants to return
to the user a list of documents that contains relevant documents at the top and irrelevant
documents at the bottom; in other words, one wants a ranking of the documents such that
relevant documents are ranked higher than irrelevant documents.

The problem of ranking has been studied from a learning perspective under a variety of
settings (Cohen et al., 1999; Herbrich et al., 2000; Crammer and Singer, 2002; Freund et al.,
2003). Here we consider the setting in which objects come from two categories, positive and
negative; the learner is given examples of objects labeled as positive or negative, and the goal
is to learn a ranking in which positive objects are ranked higher than negative ones. This
captures, for example, the information retrieval problem described above; in this case, the
training examples given to the learner consist of documents labeled as relevant (positive) or
irrelevant (negative). This form of ranking problem corresponds to the ‘bipartite feedback’
case of Freund et al. (2003); for this reason, we refer to it as the bipartite ranking problem.

Formally, the setting of the bipartite ranking problem is similar to that of the binary
classification problem. In both problems, there is an instance space X from which in-
stances are drawn, and a set of two class labels Y which we take without loss of gener-
ality to be Y = {−1,+1}. One is given a finite sequence of labeled training examples
S = ((x1, y1), . . . , (xM , yM )) ∈ (X × Y)M , and the goal is to learn a function based on this
training sequence. However, the form of the function to be learned in the two problems is
different. In classification, one seeks a binary-valued function h : X→Y that predicts the
class of a new instance in X . On the other hand, in ranking, one seeks a real-valued function
f : X → R that induces a ranking over X ; an instance that is assigned a higher value by f
is ranked higher than one that is assigned a lower value by f .

What is a good classification or ranking function? Intuitively, a good classification
function should classify most instances correctly, while a good ranking function should rank
most instances labeled as positive higher than most instances labeled as negative. At first
thought, these intuitions might suggest that one problem could be reduced to the other;
that a good solution to one could be used to obtain a good solution to the other. Indeed,
several approaches to learning ranking functions have involved using a standard classification
algorithm that produces a classification function h of the form h(x) = θ(fh(x)) for some
real-valued function fh : X→R, where

θ(u) =
{

1 if u > 0
−1 otherwise

, (1)

and then taking fh to be the desired ranking function.1 However, despite the apparently
close relation between classification and ranking, on formalizing the above intuitions about
evaluation criteria for classification and ranking functions, it turns out that a good classifi-
cation function may not always translate into a good ranking function.

1. In Herbrich et al. (2000) the problem of learning a ranking function is also reduced to a classification
problem, but on pairs of instances.
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1.1 Evaluation of (Binary) Classification Functions

In classification, one generally assumes that examples (both training examples and future,
unseen examples) are drawn randomly and independently according to some (unknown)
underlying distribution D over X×Y. The mathematical quantity typically used to evaluate
a classification function h : X→Y is then the expected error rate (or simply error rate) of
h, denoted by L(h) and defined as

L(h) = EXY∼D
{
I{h(X) 6=Y }

}
, (2)

where I{·} denotes the indicator variable whose value is one if its argument is true and zero
otherwise. The error rate L(h) is simply the probability that an example drawn randomly
from X×Y (according to D) will be misclassified by h; the quantity (1−L(h)) thus measures
our intuitive notion of ‘how often instances are classified correctly by h’. In practice, since
the distribution D is not known, the true error rate of a classification function cannot be
computed exactly. Instead, the error rate must be estimated using a finite data sample. A
widely used estimate is the empirical error rate: given a finite sequence of labeled examples
T = ((x1, y1), . . . , (xN , yN )) ∈ (X ×Y)N , the empirical error rate of a classification function
h with respect to T , which we denote by L̂(h;T ), is given by

L̂(h;T ) =
1
N

N∑
i=1

I{h(xi) 6=yi} . (3)

When the examples in T are drawn randomly and independently from X ×Y according to
D, the sequence T constitutes a random sample. Much work in learning theory research has
concentrated on developing bounds on the probability that an error estimate obtained from
such a random sample will have a large deviation from the true error rate. While the true
error rate of a classification function may not be exactly computable, such generalization
bounds allow us to compute confidence intervals within which the true value of the error
rate is likely to be contained with high probability.

1.2 Evaluation of (Bipartite) Ranking Functions

Evaluating a ranking function has proved to be somewhat more difficult. One empirical
quantity that has been used for this purpose is the average precision, which relates to
recall-precision curves. The average precision is often used in applications that contain very
few positive examples, such as information retrieval. Another empirical quantity that has
recently gained some attention as being well-suited for evaluating ranking functions relates
to receiver operating characteristic (ROC) curves. ROC curves were originally developed
in signal detection theory for analysis of radar images (Egan, 1975), and have been used
extensively in various fields such as medical decision-making. Given a ranking function
f : X→R and a finite data sequence T = ((x1, y1), . . . , (xN , yN )) ∈ (X × Y)N , the ROC
curve of f with respect to T is obtained as follows. First, a set of N + 1 classification
functions hi : X→Y, where 0 ≤ i ≤ N , is constructed from f :

hi(x) = θ(f(x)− bi) ,
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where θ(·) is as defined by Eq. (1) and

bi =

 f(xi) if 1 ≤ i ≤ N(
min
1≤j≤N

f(xj)
)
− 1 if i = 0 .

The classification function h0 classifies all instances in T as positive, while for 1 ≤ i ≤ N ,
hi classifies all instances ranked higher than xi as positive, and all others (including xi)
as negative. Next, for each classification function hi, one computes the (empirical) true
positive and false positive rates on T , denoted by tpr i and fpr i respectively:

tpr i =
number of positive examples in T classified correctly by hi

total number of positive examples in T
,

fpr i =
number of negative examples in T misclassified as positive by hi

total number of negative examples in T
.

Finally, the points (fpr i, tpr i) are plotted on a graph with the false positive rate on the x-
axis and the true positive rate on the y-axis; the ROC curve is then obtained by connecting
these points such that the resulting curve is monotonically increasing. It is the area under
the ROC curve (AUC) that has been used as an indicator of the quality of the ranking
function f (Cortes and Mohri, 2004; Rosset, 2004). An AUC value of one corresponds to
a perfect ranking on the given data sequence (i.e., all positive instances in T are ranked
higher than all negative instances); a value of zero corresponds to the opposite scenario
(i.e., all negative instances in T are ranked higher than all positive instances).

The AUC can in fact be expressed in a simpler form: if the sample T contains m positive
and n negative examples, then it is not difficult to see that the AUC of f with respect to
T , which we denote by Â(f ;T ), is given simply by the following Wilcoxon-Mann-Whitney
statistic (Cortes and Mohri, 2004):

Â(f ;T ) =
1
mn

∑
{i:yi=+1}

∑
{j:yj=−1}

I{f(xi)>f(xj)} +
1
2
I{f(xi)=f(xj)} . (4)

In this simplified form, it becomes clear that the AUC of f with respect to T is simply the
fraction of positive-negative pairs in T that are ranked correctly by f , assuming that ties
are broken uniformly at random.2

There are two important observations to be made about the AUC defined above. The
first is that the error rate of a classification function is not necessarily a good indicator of the
AUC of a ranking function derived from it; different classification functions with the same
error rate may produce ranking functions with very different AUC values. For example,
consider two classification functions h1, h2 given by hi(x) = θ(fi(x)), i = 1, 2, where the
values assigned by f1, f2 to the instances in a sample T ∈ (X ×Y)8 are as shown in Table 1.
Clearly, L̂(h1;T ) = L̂(h2;T ) = 2/8, but Â(f1;T ) = 12/16 while Â(f2;T ) = 8/16. The
exact relationship between the (empirical) error rate of a classification function h of the

2. In (Cortes and Mohri, 2004), a slightly simpler form of the Wilcoxon-Mann-Whitney statistic is used,
which does not account for ties.
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Table 1: Values assigned by two functions f1, f2 to eight instances in a hypothetical ex-
ample. The corresponding classification functions have the same (empirical) error
rate, but the AUC values of the ranking functions are different. See text for details.

xi x1 x2 x3 x4 x5 x6 x7 x8

yi -1 -1 -1 -1 +1 +1 +1 +1

f1(xi) -2 -1 3 4 1 2 5 6
f2(xi) -2 -1 5 6 1 2 3 4

form h(x) = θ(fh(x)) and the AUC value of the corresponding ranking function fh with
respect to a given data sequence was studied in detail by Cortes and Mohri (2004). In
particular, they showed that when the number of positive examples m in the given data
sequence is equal to the number of negative examples n, the average AUC value over all
possible rankings corresponding to classification functions with a fixed (empirical) error rate
` is given by (1−`), but the standard deviation among the AUC values can be large for large
`. As the proportion of positive instances m/(m + n) departs from 1/2, the average AUC
value corresponding to an error rate ` departs from (1 − `), and the standard deviation
increases further. The AUC is thus a different term than the error rate, and therefore
requires separate analysis.

The second important observation about the AUC is that, as defined above, it is an em-
pirical quantity that evaluates a ranking function with respect to a particular data sequence.
What does the empirical AUC tell us about the expected performance of a ranking function
on future examples? This is the question we address in this paper. The question has two
parts, both of which are important for machine learning practice. First, what can be said
about the expected performance of a ranking function based on its empirical AUC on an
independent test sequence? Second, what can be said about the expected performance of a
learned ranking function based on its empirical AUC on the training sequence from which
it is learned? The first part of the question concerns the large deviation behaviour of the
AUC; the second part concerns its uniform convergence behaviour. Both are addressed in
this paper.

We start by defining the expected ranking accuracy of a ranking function (analogous
to the expected error rate of a classification function) in Section 2. Section 3 contains our
large deviation result, which serves to bound the expected accuracy of a ranking function
in terms of its empirical AUC on an independent test sequence. Our conceptual approach
in deriving the large deviation result for the AUC is similar to that of (Hill et al., 2002),
in which large deviation properties of the average precision were considered. Section 4
contains our uniform convergence result, which serves to bound the expected accuracy of a
learned ranking function in terms of its empirical AUC on a training sequence. Our uniform
convergence bound is expressed in terms of a new set of combinatorial parameters that we
term the bipartite rank-shatter coefficients; these play the same role in our result as do the
standard shatter coefficients (also known as the growth function) in uniform convergence
results for the classification error rate. A comparison of our result with a recent uniform
convergence result derived by Freund et al. (2003) for a quantity closely related to the AUC
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shows that the bound provided by our result can be considerably tighter. We conclude with
a summary and some open questions in Section 5.

2. Expected Ranking Accuracy

We begin by introducing some additional notation. As in classification, we shall assume
that all examples are drawn randomly and independently according to some (unknown)
underlying distribution D over X ×Y. The notation D+1 and D−1 will be used to denote the
class-conditional distributions DX|Y =+1 and DX|Y =−1, respectively. We use an underline
to denote a sequence, e.g., y ∈ YN to denote a sequence of elements in Y. We shall
find it convenient to decompose a data sequence T = ((x1, y1), . . . , (xN , yN )) ∈ (X × Y)N

into two components, TX = (x1, . . . ,xN ) ∈ XN and TY = (y1, . . . , yN ) ∈ YN . Several
of our results will involve the conditional distribution DTX |TY =y for some label sequence
y = (y1, . . . , yN ) ∈ YN ; this distribution is simply Dy1 × . . . × DyN .3 If the distribution is
clear from the context it will be dropped in the notation of expectations and probabilities,
e.g., EXY ≡ EXY∼D. As a final note of convention, we use T ∈ (X × Y)N to denote a
general data sequence (e.g., an independent test sequence), and S ∈ (X ×Y)M to denote a
training sequence.

We define below a quantity that we term the expected ranking accuracy; the purpose
of this quantity will be to serve as an evaluation criterion for ranking functions (analogous
to the use of the expected error rate as an evaluation criterion for classification functions).

Definition 1 (Expected ranking accuracy) Let f : X→R be a ranking function on X .
Define the expected ranking accuracy (or simply ranking accuracy) of f , denoted by A(f),
as follows:

A(f) = EX∼D+1,X′∼D−1

{
I{f(X)>f(X′)} +

1
2
I{f(X)=f(X′)}

}
. (5)

The ranking accuracy A(f) defined above is simply the probability that an instance
drawn randomly according to D+1 will be ranked higher by f than an instance drawn ran-
domly according to D−1, assuming that ties are broken uniformly at random; the quantity
A(f) thus measures our intuitive notion of ‘how often instances labeled as positive are
ranked higher by f than instances labeled as negative’. As in the case of classification, the
true ranking accuracy depends on the underlying distribution of the data and cannot be
observed directly. Our goal shall be to derive generalization bounds that allow the true
accuracy of a ranking function to be estimated from its empirical AUC with respect to a
finite data sample. The following simple lemma shows that this makes sense, for given a
fixed label sequence, the empirical AUC of a ranking function f is an unbiased estimator
of the expected ranking accuracy of f :

3. Note that, since the AUC of a ranking function f with respect to a data sequence T ∈ (X × Y)N is
independent of the actual ordering of examples in the sequence, our results involving the conditional
distribution DTX |TY =y for some label sequence y = (y1, . . . , yN ) ∈ YN depend only on the number m of
positive labels in y and the number n of negative labels in y. We choose to state our results in terms
of the distribution DTX |TY =y ≡ Dy1 × . . .×DyN only because this is more general than stating them in
terms of Dm

+1 ×Dn
−1.

6



Generalization Bounds for the Area Under the ROC Curve

Lemma 2 Let f : X→R be a ranking function on X , and let y = (y1, . . . , yN ) ∈ YN be a
finite label sequence. Then

ETX |TY =y

{
Â(f ;T )

}
= A(f) .

Proof Let m be the number of positive labels in y, and n the number of negative labels
in y. Then from the definition of empirical AUC (Eq. (4)) and linearity of expectation, we
have

ETX |TY =y

{
Â(f ;T )

}
=

1
mn

∑
{i:yi=+1}

∑
{j:yj=−1}

EXi∼D+1,Xj∼D−1

{
I{f(Xi)>f(Xj)} +

1
2
I{f(Xi)=f(Xj)}

}

=
1
mn

∑
{i:yi=+1}

∑
{j:yj=−1}

A(f)

= A(f) .

We are now ready to present the main results of this paper, namely, a large deviation
bound in Section 3 and a uniform convergence bound in Section 4. We note that our results
are all distribution-free, in the sense that they hold for any distribution D over X × Y.

3. Large Deviation Bound for the AUC

In this section we are interested in bounding the probability that the empirical AUC of
a ranking function f with respect to a (random) test sequence T will have a large devi-
ation from its expected ranking accuracy. In other words, we are interested in bounding
probabilities of the form

P
{∣∣∣Â(f ;T )−A(f)

∣∣∣ ≥ ε}
for given ε > 0. Our main tool in deriving such a large deviation bound will be the following
powerful concentration inequality of McDiarmid (1989), which bounds the deviation of any
function of a sample for which a single change in the sample has limited effect:

Theorem 3 (McDiarmid, 1989) Let X1, . . . , XN be independent random variables with
Xk taking values in a set Ak for each k. Let φ : (A1 × · · · ×AN )→R be such that

sup
xi∈Ai,x′k∈Ak

∣∣φ(x1, . . . , xN )− φ(x1, . . . , xk−1, x
′
k, xk+1, . . . , xN )

∣∣ ≤ ck .

Then for any ε > 0,

P {|φ(X1, . . . , XN )−E{φ(X1, . . . , XN )}| ≥ ε} ≤ 2e−2ε2/
∑N

k=1 c2k .

Note that when X1, . . . , XN are independent bounded random variables with Xk ∈
[ak, bk] with probability one, and φ(X1, . . . , XN ) =

∑N
k=1Xk, McDiarmid’s inequality (with

ck = bk−ak) reduces to Hoeffding’s inequality. Next we define the following quantity which
appears in several of our results:
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Definition 4 (Positive skew) Let y = (y1, . . . , yN ) ∈ YN be a finite label sequence of
length N ∈ N. Define the positive skew of y, denoted by ρ(y), as follows:

ρ(y) =
1
N

∑
{i:yi=+1}

1 . (6)

The following is the main result of this section:

Theorem 5 Let f : X→R be a fixed ranking function on X and let y = (y1, . . . , yN ) ∈ YN

be any label sequence of length N ∈ N. Let m be the number of positive labels in y, and
n = N −m the number of negative labels in y. Then for any ε > 0,

PTX |TY =y

{∣∣∣Â(f ;T )−A(f)
∣∣∣ ≥ ε} ≤ 2e−2mnε2/(m+n)

= 2e−2ρ(y)(1−ρ(y))Nε2 .

Proof Given the label sequence y, the random variables X1, . . . , XN are independent, with
each Xk taking values in X . Now, define φ : XN→R as follows:

φ (x1, . . . ,xN ) = Â (f ; ((x1, y1), . . . , (xN , yN ))) .

Then, for each k such that yk = +1, we have the following for all xi,x′k ∈ X :∣∣φ(x1, . . . ,xN )− φ(x1, . . . ,xk−1,x′k,xk+1 . . . ,xN )
∣∣

=
1
mn

∣∣∣∣∣ ∑
{j:yj=−1}

((
I{f(xk)>f(xj)} +

1
2
I{f(xk)=f(xj)}

)
−

(
I{f(x′k)>f(xj)} +

1
2
I{f(x′k)=f(xj)}

))∣∣∣∣∣
≤ 1

mn
n

=
1
m
.

Similarly, for each k such that yk = −1, one can show for all xi,x′k ∈ X :

∣∣φ(x1, . . . ,xN )− φ(x1, . . . ,xk−1,x′k,xk+1 . . . ,xN )
∣∣ ≤ 1

n
.

Thus, taking ck = 1/m for k such that yk = +1 and ck = 1/n for k such that yk = −1, and
applying McDiarmid’s theorem, we get for any ε > 0,

PTX |TY =y

{∣∣∣Â(f ;T )−ETX |TY =y

{
Â(f ;T )

}∣∣∣ ≥ ε} ≤ 2e−2ε2/(m( 1
m

)2+n( 1
n

)2)

= 2e−2mnε2/(m+n) .

The result follows from Lemma 2.
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We note that the result of Theorem 5 can be strengthened so that the conditioning is
only on the numbers m and n of positive and negative labels, and not on the specific label
vector y. From Theorem 5, we can derive a confidence interval interpretation of the bound
that gives, for any 0 < δ ≤ 1, a confidence interval based on the empirical AUC of a ranking
function (on a random test sequence) which is likely to contain the true ranking accuracy
with probability at least 1− δ. More specifically, we have:

Corollary 6 Let f : X→R be a fixed ranking function on X and let y = (y1, . . . , yN ) ∈ YN

be any label sequence of length N ∈ N. Then for any 0 < δ ≤ 1,

PTX |TY =y

{∣∣∣Â(f ;T )−A(f)
∣∣∣ ≥√ ln

(
2
δ

)
2ρ(y)(1− ρ(y))N

}
≤ δ .

Proof This follows directly from Theorem 5 by setting 2e−2ρ(y)(1−ρ(y))Nε2 = δ and solving
for ε.

We note that a different approach for deriving confidence intervals for the AUC has
recently been taken by Cortes and Mohri (2005); in particular, their confidence intervals
for the AUC are constructed from confidence intervals for the classification error rate.

Theorem 5 also allows us to obtain an expression for a test sample size that is sufficient
to obtain, for given 0 < ε, δ ≤ 1, an ε-accurate estimate of the ranking accuracy with
δ-confidence:

Corollary 7 Let f : X→R be a fixed ranking function on X and let 0 < ε, δ ≤ 1. Let
y = (y1, . . . , yN ) ∈ YN be any label sequence of length N ∈ N. If

N ≥
ln
(

2
δ

)
2ρ(y)(1− ρ(y))ε2

,

then

PTX |TY =y

{∣∣∣Â(f ;T )−A(f)
∣∣∣ ≥ ε} ≤ δ .

Proof This follows directly from Theorem 5 by setting 2e−2ρ(y)(1−ρ(y))Nε2 ≤ δ and solving
for N .

The confidence interval of Corollary 6 can in fact be generalized to remove the condi-
tioning on the label vector completely:

Theorem 8 Let f : X→R be a fixed ranking function on X and let N ∈ N. Then for any
0 < δ ≤ 1,

PT∼DN

∣∣∣Â(f ;T )−A(f)
∣∣∣ ≥

√
ln
(

2
δ

)
2ρ(TY )(1− ρ(TY ))N

 ≤ δ .
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Proof For T ∈ (X × Y)N and 0 < δ ≤ 1, define the proposition

Φ(T, δ) ≡

∣∣∣Â(f ;T )−A(f)
∣∣∣ ≥

√
ln
(

2
δ

)
2ρ(TY )(1− ρ(TY ))N

 .

Then for any 0 < δ ≤ 1, we have

PT {Φ(T, δ)} = ET

{
IΦ(T,δ)

}
= ETY

{
ETX |TY =y

{
IΦ(T,δ)

}}
= ETY

{
PTX |TY =y {Φ(T, δ)}

}
≤ ETY

{δ} (by Corollary 6)
= δ .

Note that the above ‘trick’ works only once we have gone to a confidence interval; an
attempt to generalize the bound of Theorem 5 in a similar way gives an expression in which
the final expectation is not easy to evaluate. Interestingly, the above proof does not even
require a factorized distribution DTY

since it is built on a result for any fixed label sequence
y. We note that the above technique could also be applied to generalize the results of Hill
et al. (2002) in a similar manner.

3.1 Comparison with Bounds from Statistical Literature

The AUC, in the form of the Wilcoxon-Mann-Whitney statistic, has been studied exten-
sively in the statistical literature. In particular, Lehmann (1975) derives an exact expression
for the variance of the Wilcoxon-Mann-Whitney statistic which can be used to obtain large
deviation bounds for the AUC. Below we compare the large deviation bound we have de-
rived above with these bounds obtainable from the statistical literature. We note that the
expression derived by Lehmann (1975) is for a simpler form of the Wilcoxon-Mann-Whitney
statistic that does not account for ties; therefore, in this section we assume the AUC and
the expected ranking accuracy are defined without the terms that account for ties (the large
deviation result we have derived above applies also in this setting).

Let f : X→R be a fixed ranking function on X and let y = (y1, . . . , yN ) ∈ YN be
any label sequence of length N ∈ N. Let m be the number of positive labels in y, and
n = N −m the number of negative labels in y. Then the variance of the AUC of f is given
by the following expression (Lehmann, 1975):

σ2
A = VarTX |TY =y

{
Â(f ;T )

}
=

A(f)(1−A(f)) + (m− 1)(p1 −A(f)2) + (n− 1)(p2 −A(f)2)
mn

, (7)

where

p1 = PX+
1 ,X+

2 ∼D+1,X−
1 ∼D−1

{{
f(X+

1 ) > f(X−
1 )
}
∩
{
f(X+

2 ) > f(X−
1 )
}}

(8)

p2 = PX+
1 ∼D+1,X−

1 ,X−
2 ∼D−1

{{
f(X+

1 ) > f(X−
1 )
}
∩
{
f(X+

1 ) > f(X−
2 )
}}

. (9)
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Next we recall the following classical inequality:

Theorem 9 (Chebyshev’s inequality) Let X be a random variable. Then for any ε > 0,

P {|X −E{X}| ≥ ε} ≤ Var{X}
ε2

.

The expression for the variance σ2
A of the AUC can be used with Chebyshev’s inequality to

give the following bound: for any ε > 0,

PTX |TY =y

{∣∣∣Â(f ;T )−A(f)
∣∣∣ ≥ ε} ≤

σ2
A

ε2
. (10)

This leads to the following confidence interval: for any 0 < δ ≤ 1,

PTX |TY =y

{∣∣∣Â(f ;T )−A(f)
∣∣∣ ≥ σA√

δ

}
≤ δ . (11)

It has been established that the AUC follows an asymptotically normal distribution.
Therefore, for large N , one can use a normal approximation to obtain a tighter bound:

PTX |TY =y

{∣∣∣Â(f ;T )−A(f)
∣∣∣ ≥ ε} ≤ 2(1− Φ(ε/σA)) , (12)

where Φ(·) denotes the standard normal cumulative distribution function given by Φ(u) =∫ u
0 e

−z2/2 dz/
√

2π. The resulting confidence interval is given by

PTX |TY =y

{∣∣∣Â(f ;T )−A(f)
∣∣∣ ≥ σAΦ−1(1− δ/2)

}
≤ δ . (13)

The quantities p1 and p2 that appear in the expression for σ2
A in Eq. (7) depend on the

underlying distributions D+1 and D−1; for example, Hanley and McNeil (1982) derive ex-
pressions for p1 and p2 in the case when the scores f(X+) assigned to positive instances X+

and the scores f(X−) assigned to negative instances X− both follow negative exponential
distributions. Distribution-independent bounds can be obtained by using the fact that the
variance σ2

A is at most (Cortes and Mohri, 2005; Dantzig, 1915; Birnbaum and Klose, 1957)

σ2
max =

A(f)(1−A(f))
min(m,n)

≤ 1
4 min(m,n)

. (14)

A comparison of the resulting bounds with the large deviation bound we have derived above
using McDiarmid’s inequality is shown in Figure 1. The McDiarmid bound is tighter than
the bound obtained using Chebyshev’s inequality. It is looser than the bound obtained
using the normal approximation; however, since the normal approximation is valid only for
large N , for smaller values of N the McDiarmid bound is safer.

Of course, it should be noted that this comparison holds only in the distribution-free
setting. In practice, depending on the underlying distribution, the actual variance of the
AUC may be much smaller than σ2

max; indeed, in the best case, the variance could be as
small as

σ2
min =

A(f)(1−A(f))
mn

≤ 1
4mn

. (15)

Therefore, if one can estimate the variance of the AUC reliably, it may be possible to obtain
tighter bounds using Eqs. (10) and (12).

11
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Figure 1: A comparison of our large deviation bound, derived using McDiarmid’s inequal-
ity, with large deviation bounds obtainable from the statistical literature (see
Section 3.1). The plots are for δ = 0.01 and show how the confidence interval
size ε given by the different bounds varies with the sample size N = m + n, for
various values of m/(m+ n).

3.2 Comparison with Large Deviation Bound for Classification Error Rate

Our use of McDiarmid’s inequality in deriving the large deviation bound for the AUC of a
ranking function is analogous to the use of Hoeffding’s inequality in deriving a similar large
deviation bound for the error rate of a classification function (see, for example, Devroye
et al., 1996, Chapter 8). The need for the more general inequality of McDiarmid in our
derivation arises from the fact that the empirical AUC, unlike the empirical error rate,
cannot be expressed as a sum of independent random variables. In the notation of Section 1,
the large deviation bound for the classification error rate obtained via Hoeffding’s inequality
states that for a fixed classification function h : X→Y and for any N ∈ N and any ε > 0,

PT∼DN

{∣∣∣L̂(h;T )− L(h)
∣∣∣ ≥ ε} ≤ 2e−2Nε2 . (16)

12
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Figure 2: The test sample size bound for the AUC, for positive skew ρ ≡ ρ(y) for some
label sequence y, is larger than the corresponding test sample size bound for the
error rate by a factor of 1/(ρ(1− ρ)) (see text for discussion).

Comparing Eq. (16) to the bound of Theorem 5, we see that the AUC bound differs from the
error rate bound by a factor of ρ(y)(1−ρ(y)) in the exponent. This difference translates into
a 1/(ρ(y)(1 − ρ(y))) factor difference in the resulting sample size bounds; in other words,
for given 0 < ε, δ ≤ 1, the test sample size sufficient to obtain an ε-accurate estimate of the
expected accuracy of a ranking function with δ-confidence is 1/(ρ(y)(1−ρ(y))) times larger
than the corresponding test sample size sufficient to obtain an ε-accurate estimate of the
expected error rate of a classification function with the same confidence. For ρ(y) = 1/2,
this means a sample size larger by a factor of 4; as the positive skew ρ(y) departs from 1/2,
the factor grows larger (see Figure 2).

Again, it should be noted that the above conclusion holds only in the distribution-free
setting. Indeed, the variance σ2

L of the error rate (which follows a binomial distribution) is
given by

σ2
L = VarT∼DN

{
L̂(h;T )

}
=

L(h)(1− L(h))
N

≤ 1
4N

. (17)

Comparing to Eqs. (14) and (15), we see that although this is smaller than the worst-case
variance of the AUC, in the best case, the variance of the AUC can be considerably smaller,
leading to a tighter bound for the AUC and therefore a smaller sufficient test sample size.

3.3 Bound for Learned Ranking Functions Chosen from Finite Function
Classes

The large deviation result of Theorem 5 bounds the expected accuracy of a ranking function
in terms of its empirical AUC on an independent test sequence. A simple application of the
union bound allows the result to be extended to bound the expected accuracy of a learned
ranking function in terms of its empirical AUC on the training sequence from which it is
learned, in the case when the learned ranking function is chosen from a finite function class.
More specifically, we have:

13
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Theorem 10 Let F be a finite class of real-valued functions on X and let fS ∈ F denote
the ranking function chosen by a learning algorithm based on the training sequence S. Let
y = (y1, . . . , yM ) ∈ YM be any label sequence of length M ∈ N. Then for any ε > 0,

PSX |SY =y

{∣∣∣Â(fS ;S)−A(fS)
∣∣∣ ≥ ε} ≤ 2|F|e−2ρ(y)(1−ρ(y))Mε2 .

Proof For any ε > 0, we have

PSX |SY =y

{∣∣∣Â(fS ;S)−A(fS)
∣∣∣ ≥ ε}

≤ PSX |SY =y

{
max
f∈F

∣∣∣Â(f ;S)−A(f)
∣∣∣ ≥ ε}

≤
∑
f∈F

PSX |SY =y

{∣∣∣Â(f ;S)−A(f)
∣∣∣ ≥ ε} (by the union bound)

≤ 2|F|e−2ρ(y)(1−ρ(y))Mε2 (by Theorem 5) .

As before, we can derive from Theorem 10 expressions for confidence intervals and
sufficient training sample size; we give these below without proof:

Corollary 11 Let F be a finite class of real-valued functions on X and let fS ∈ F denote
the ranking function chosen by a learning algorithm based on the training sequence S. Let
y = (y1, . . . , yM ) ∈ YM be any label sequence of length M ∈ N. Then for any 0 < δ ≤ 1,

PSX |SY =y

{∣∣∣Â(fS ;S)−A(fS)
∣∣∣ ≥√ ln |F|+ ln

(
2
δ

)
2ρ(y)(1− ρ(y))M

}
≤ δ .

Corollary 12 Let F be a finite class of real-valued functions on X and let fS ∈ F denote
the ranking function chosen by a learning algorithm based on the training sequence S. Let
y = (y1, . . . , yM ) ∈ YM be any label sequence of length M ∈ N. Then for any 0 < ε, δ ≤ 1,
if

M ≥ 1
2ρ(y)(1− ρ(y))ε2

(
ln |F|+ ln

(
2
δ

))
,

then

PSX |SY =y

{∣∣∣Â(fS ;S)−A(fS)
∣∣∣ ≥ ε} ≤ δ .

Theorem 13 Let F be a finite class of real-valued functions on X and let fS ∈ F denote
the ranking function chosen by a learning algorithm based on the training sequence S. Let
M ∈ N. Then for any 0 < δ ≤ 1,

PS∼DM

∣∣∣Â(fS ;S)−A(fS)
∣∣∣ ≥

√
ln |F|+ ln

(
2
δ

)
2ρ(SY )(1− ρ(SY ))M

 ≤ δ .

The above results apply only to ranking functions learned from finite function classes.
The general case, when the learned ranking function may be chosen from a possibly infinite
function class, is the subject of the next section.
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4. Uniform Convergence Bound for the AUC

In this section we are interested in bounding the probability that the empirical AUC of a
learned ranking function fS with respect to the (random) training sequence S from which it
is learned will have a large deviation from its expected ranking accuracy, when the function
fS is chosen from a possibly infinite function class F . The standard approach for obtaining
such bounds is via uniform convergence results. In particular, we have for any ε > 0,

P
{∣∣∣Â(fS ;S)−A(fS)

∣∣∣ ≥ ε} ≤ P

{
sup
f∈F

∣∣∣Â(f ;S)−A(f)
∣∣∣ ≥ ε} .

Therefore, to bound probabilities of the form on the left hand side above, it is sufficient
to derive a uniform convergence result that bounds probabilities of the form on the right
hand side. Our uniform convergence result for the AUC is expressed in terms of a new set
of combinatorial parameters, termed the bipartite rank-shatter coefficients, that we define
below.

4.1 Bipartite Rank-Shatter Coefficients

We define first the notion of a bipartite rank matrix; this is used in our definition of bipartite
rank-shatter coefficients.

Definition 14 (Bipartite rank matrix) Let f : X→R be a ranking function on X , let
m,n ∈ N, and let x = (x1, . . . ,xm) ∈ Xm, x′ = (x′1, . . . ,x

′
n) ∈ X n. Define the bipartite

rank matrix of f with respect to x,x′, denoted by Bf (x,x′), to be the matrix in {0, 1
2 , 1}

m×n

whose (i, j)-th element is given by

[
Bf (x,x′)

]
ij

= I{f(xi)>f(x′j)} +
1
2
I{f(xi)=f(x′j)} (18)

for all i ∈ {1, . . . ,m}, j ∈ {1, . . . , n}.

Definition 15 (Bipartite rank-shatter coefficient) Let F be a class of real-valued func-
tions on X , and let m,n ∈ N. Define the (m,n)-th bipartite rank-shatter coefficient of F ,
denoted by r(F ,m, n), as follows:

r(F ,m, n) = max
x∈Xm,x′∈Xn

∣∣{Bf (x,x′) | f ∈ F
}∣∣ . (19)

Clearly, for finite F , we have r(F ,m, n) ≤ |F| for all m,n. In general, r(F ,m, n) ≤ 3mn

for all m,n. In fact, not all 3mn matrices in {0, 1
2 , 1}

m×n can be realized as bipartite rank
matrices. Therefore, we have

r(F ,m, n) ≤ ψ(m,n) ,

where ψ(m,n) is the number of matrices in {0, 1
2 , 1}

m×n that can be realized as a bipartite
rank matrix. The number ψ(m,n) can be characterized in the following ways:

Theorem 16 Let ψ(m,n) be the number of matrices in {0, 1
2 , 1}

m×n that can be realized as
a bipartite rank matrix Bf (x,x′) for some f : X→R, x ∈ Xm, x′ ∈ X n. Then
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Table 2: Sub-matrices that cannot appear in a bipartite rank matrix.[
1
0

0
1

] [½
0

0
1

] [
1
0

½
1

] [
1
0

0
½

] [
1
½

0
1

] [
½
0

½
1

] [
½
0

0
½

] [
½
½

0
1

] [
1
0

½
½

] [
1
½

½
1

] [
1
½

0
½

] [
1
½

½
½

] [
½
½

0
½

] [
½
½

½
1

] [
½
0

½
½

]
[
0
1

1
0

] [½
1

1
0

] [
0
1

½
0

] [
0
1

1
½

] [
0
½

1
0

] [
½
1

½
0

] [
½
1

1
½

] [
½
½

1
0

] [
0
1

½
½

] [
0
½

½
0

] [
0
½

1
½

] [
0
½

½
½

] [
½
½

1
½

] [
½
½

½
0

] [
½
1

½
½

]

1. ψ(m,n) is equal to the number of complete mixed acyclic (m,n)-bipartite graphs (where
a mixed graph is one which may contain both directed and undirected edges, and where
we define a cycle in such a graph as a cycle that contains at least one directed edge
and in which all directed edges have the same directionality along the cycle).

2. ψ(m,n) is equal to the number of matrices in {0, 1
2 , 1}

m×n that do not contain a sub-
matrix of any of the forms shown in Table 2.

Proof
Part 1. Let G(m,n) denote the set of all complete mixed (m,n)-bipartite graphs. Clearly,
|G(m,n)| = 3mn, since there are mn edges and three possibilities for each edge. Let V =
{v1, . . . , vm}, V ′ = {v′1, . . . , v′n} be sets of m and n vertices respectively, and for any matrix
B = [bij ] ∈ {0, 1

2 , 1}
m×n, let E(B) denote the set of edges between V and V ′ given by

E(B) = {(vi ← v′j) | bij = 1} ∪ {(vi → v′j) | bij = 0} ∪ {(vi — v′j) | bij = 1
2}. Define the

mapping G : {0, 1
2 , 1}

m×n → G(m,n) as follows:

G(B) = (V ∪ V ′, E(B)) .

Then clearly, G is a bijection that puts the sets {0, 1
2 , 1}

m×n and G(m,n) into one-to-one
correspondence. We show that a matrix B ∈ {0, 1

2 , 1}
m×n can be realized as a bipartite

rank matrix if and only if the corresponding bipartite graph G(B) ∈ G(m,n) is acyclic.
First suppose B = Bf (x,x′) for some f : X→R, x ∈ Xm, x′ ∈ X n, and let if possible

G(B) contain a cycle, say

(vi1 ← v′j1 — vi2 — v′j2 — . . . — vik — v′jk
— vi1) .

Then, from the definition of a bipartite rank matrix, we get

f(xi1) < f(x′j1) = f(xi2) = f(x′j2) = . . . = f(xik) = f(x′jk
) = f(xi1) ,

which is a contradiction.
To prove the other direction, let B ∈ {0, 1

2 , 1}
m×n be such that G(B) is acyclic. Let

G′(B) denote the directed graph obtained by collapsing together vertices in G(B) that are
connected by an undirected edge. Then it is easily verified that G′(B) does not contain
any directed cycles, and therefore there exists a complete order on the vertices of G′(B)
that is consistent with the partial order defined by the edges of G′(B) (topological sorting;
see, for example, Cormen et al., 2001, Section 22.4). This implies a unique order on the
vertices of G(B) (in which vertices connected by undirected edges are assigned the same
position in the ordering). For any x ∈ Xm, x′ ∈ X n, identifying x,x′ with the vertex sets
V, V ′ of G(B) therefore gives a unique order on x1, . . . ,xm,x′1, . . . ,x

′
n. It can be verified
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that defining f : X→R such that it respects this order then gives B = Bf (x,x′).

Part 2. Consider again the bijection G : {0, 1
2 , 1}

m×n → G(m,n) defined in Part 1 above.
We show that a matrix B ∈ {0, 1

2 , 1}
m×n does not contain a sub-matrix of any of the forms

shown in Table 2 if and only if the corresponding bipartite graph G(B) ∈ G(m,n) is acyclic;
the desired result then follows by Part 1 of the theorem.

We first note that the condition that B ∈ {0, 1
2 , 1}

m×n not contain a sub-matrix of any
of the forms shown in Table 2 is equivalent to the condition that the corresponding mixed
(m,n)-bipartite graph G(B) ∈ G(m,n) not contain any 4-cycles.

Now, to prove the first direction, let B ∈ {0, 1
2 , 1}

m×n not contain a sub-matrix of any
of the forms shown in Table 2. As noted above, this means G(B) does not contain any
4-cycles. Let, if possible, G(B) contain a cycle of length 2k, say

(vi1 ← v′j1 — vi2 — v′j2 — . . . — vik — v′jk
— vi1) .

Now consider vi1 , v
′
j2

. Since G(B) is a complete bipartite graph, there must be an edge
between these vertices. If G(B) contained the edge (vi1 → v′j2), it would contain the 4-cycle

(vi1 ← v′j1 — vi2 — v′j2 ← vi1) ,

which would be a contradiction. Similarly, if G(B) contained the edge (vi1 — v′j2), it would
contain the 4-cycle

(vi1 ← v′j1 — vi2 — v′j2 — vi1) ,

which would again be a contradiction. Therefore, G(B) must contain the edge (vi1 ← v′j2).
However, this means G(B) must contain a 2(k − 1)-cycle, namely,

(vi1 ← v′j2 — vi3 — v′j3 — . . . — vik — v′jk
— vi1) .

By a recursive argument, we eventually get that G(B) must contain a 4-cycle, which is a
contradiction.

To prove the other direction, let B ∈ {0, 1
2 , 1}

m×n be such that G(B) is acyclic. Then
it follows trivially that G(B) does not contain a 4-cycle, and therefore, by the above obser-
vation, B does not contain a sub-matrix of any of the forms shown in Table 2.

We discuss further properties of the bipartite rank-shatter coefficients in Section 4.3; we
first present below our uniform convergence result in terms of these coefficients.

4.2 Uniform Convergence Bound

The following is the main result of this section:

Theorem 17 Let F be a class of real-valued functions on X , and let y = (y1, . . . , yM ) ∈ YM

be any label sequence of length M ∈ N. Let m be the number of positive labels in y, and
n = M −m the number of negative labels in y. Then for any ε > 0,

PSX |SY =y

{
sup
f∈F

∣∣∣Â(f ;S)−A(f)
∣∣∣ ≥ ε} ≤ 4 · r(F , 2m, 2n) · e−mnε2/8(m+n)

= 4 · r
(
F , 2ρ(y)M, 2(1− ρ(y))M

)
· e−ρ(y)(1−ρ(y))Mε2/8 ,
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where ρ(y) denotes the positive skew of y defined in Eq. (6).

The proof is adapted from proofs of uniform convergence for the classification error rate
(see, for example, Anthony and Bartlett, 1999; Devroye et al., 1996). The main difference
is that since the AUC cannot be expressed as a sum of independent random variables, more
powerful inequalities are required. In particular, a result of Devroye (1991) is required to
bound the variance of the AUC that appears after an application of Chebyshev’s inequality;
the application of this result to the AUC requires the same reasoning that was used to
apply McDiarmid’s inequality in deriving the large deviation result of Theorem 5. Similarly,
McDiarmid’s inequality is required in the final step of the proof where Hoeffding’s inequality
sufficed in the case of classification. Complete details of the proof are given in Appendix A.

As in the case of the large deviation bound of Section 3, we note that the result of
Theorem 17 can be strengthened so that the conditioning is only on the numbers m and n
of positive and negative labels, and not on the specific label vector y. From Theorem 17,
we can derive a confidence interval interpretation of the bound as follows:

Corollary 18 Let F be a class of real-valued functions on X , and let y = (y1, . . . , yM ) ∈
YM be any label sequence of length M ∈ N. Let m be the number of positive labels in y, and
n = M −m the number of negative labels in y. Then for any 0 < δ ≤ 1,

PSX |SY =y

sup
f∈F

∣∣∣Â(f ;S)−A(f)
∣∣∣ ≥

√
8(m+ n)

(
ln r(F , 2m, 2n) + ln

(
4
δ

))
mn

 ≤ δ .

Proof This follows directly from Theorem 17 by setting 4 ·r(F , 2m, 2n) ·e−mnε2/8(m+n) = δ
and solving for ε.

Again, as in the case of the large deviation bound, the confidence interval above can be
generalized to remove the conditioning on the label vector completely:

Theorem 19 Let F be a class of real-valued functions on X , and let M ∈ N. Then for
any 0 < δ ≤ 1,

PS∼DM

sup
f∈F

∣∣∣Â(f ;S)−A(f)
∣∣∣ ≥

√
8
(
ln r (F , 2ρ(SY )M, 2(1− ρ(SY ))M) + ln

(
4
δ

))
ρ(SY )(1− ρ(SY ))M

 ≤ δ .

4.3 Properties of Bipartite Rank-Shatter Coefficients

As discussed in Section 4.1, we have r(F ,m, n) ≤ ψ(m,n), where ψ(m,n) is the number
of matrices in {0, 1

2 , 1}
m×n that can be realized as a bipartite rank matrix. The number

ψ(m,n) is strictly smaller than 3mn; indeed, ψ(m,n) = O(e(m+n)(ln(m+n)+1)). (To see this,
note that the number of distinct bipartite rank matrices of size m × n is bounded above
by the total number of permutations of (m + n) objects, allowing for objects to be placed
at the same position. This number is equal to (m + n)! 2(m+n−1) = O(e(m+n)(ln(m+n)+1)).)
Nevertheless, ψ(m,n) is still very large; in particular, ψ(m,n) ≥ 3max(m,n). (To see this,
note that choosing any column vector in {0, 1

2 , 1}
m and replicating it along the n columns or
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choosing any row vector in {0, 1
2 , 1}

n and replicating it along the m rows results in a matrix
that does not contain a sub-matrix of any of the forms shown in Table 2. The conclusion
then follows from Theorem 16 (Part 2).)

For the bound of Theorem 17 to be meaningful, one needs an upper bound on r(F ,m, n)
that is at least slightly smaller than emn/8(m+n). Below we provide one method for deriving
upper bounds on r(F ,m, n); taking Y∗ = {−1, 0,+1}, we extend slightly the standard VC-
dimension related shatter coefficients studied in binary classification to Y∗-valued function
classes, and then derive an upper bound on the bipartite rank-shatter coefficients r(F ,m, n)
of a class of ranking functions F in terms of the shatter coefficients of a class of Y∗-valued
functions derived from F .

Definition 20 (Shatter coefficient) Let Y∗ = {−1, 0,+1}, and let H be a class of Y∗-
valued functions on X . Let N ∈ N. Define the N -th shatter coefficient of H, denoted by
s(H, N), as follows:

s(H, N) = max
x∈XN

|{ (h(x1), . . . , h(xN )) | h ∈ H}| .

Clearly, s(H, N) ≤ 3N for all N . Next we define a series of Y∗-valued function classes
derived from a given ranking function class. Only the second function class is used in this
section; the other two are needed in Section 4.4. Note that we take

sign(u) =


+1 if u > 0

0 if u = 0
−1 if u < 0 .

Definition 21 (Function classes) Let F be a class of real-valued functions on X . Define
the following classes of Y∗-valued functions derived from F :

1 . F̄ = {f̄ : X→Y∗ | f̄(x) = sign(f(x)) for some f ∈ F} (20)
2 . F̃ = {f̃ : X × X→Y∗ | f̃(x,x′) = sign(f(x)− f(x′)) for some f ∈ F} (21)
3 . F̌ = {f̌z : X→Y∗ | f̌z(x) = sign(f(x)− f(z)) for some f ∈ F , z ∈ X} (22)

The following result gives an upper bound on the bipartite rank-shatter coefficients of
a class of ranking functions F in terms of the standard shatter coefficients of F̃ :

Theorem 22 Let F be a class of real-valued functions on X , and let F̃ be the class of
Y∗-valued functions on X × X defined by Eq. (21). Then for all m,n ∈ N,

r(F ,m, n) ≤ s(F̃ ,mn) .

Proof For any m,n ∈ N, we have4

r(F ,m, n) = max
x∈Xm,x′∈Xn

∣∣∣∣{[I{f(xi)>f(x′j)} +
1
2
I{f(xi)=f(x′j)}

] ∣∣∣∣ f ∈ F}∣∣∣∣
4. We use the notation [aij ] to denote a matrix whose (i, j)th element is aij . The dimensions of such a

matrix should be clear from context.
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= max
x∈Xm,x′∈Xn

∣∣∣∣{[I{f̃(xi,x′j)=+1} +
1
2
I{f̃(xi,x′j)=0}

] ∣∣∣ f̃ ∈ F̃}∣∣∣∣
= max

x∈Xm,x′∈Xn

∣∣∣{[f̃(xi,x′j)
] ∣∣∣ f̃ ∈ F̃ }∣∣∣

≤ max
X,X′∈Xm×n

∣∣∣{[f̃(xij ,x′ij)
] ∣∣∣ f̃ ∈ F̃ }∣∣∣

= max
x,x′∈Xmn

∣∣∣{(f̃(x1,x′1), . . . , f̃(xmn,x′mn)
) ∣∣∣ f̃ ∈ F̃ }∣∣∣

= s(F̃ ,mn) .

Below we make use of the above result to derive polynomial upper bounds on the bi-
partite rank-shatter coefficients for linear and higher-order polynomial ranking functions.
We note that the same method can be used to establish similar upper bounds for other
algebraically well-behaved function classes.

Lemma 23 For d ∈ N, let Flin(d) denote the class of linear ranking functions on Rd:

Flin(d) = {f : Rd→R | f(x) = w·x + b for some w ∈ Rd, b ∈ R} .

Then for all N ∈ N,

s(F̃lin(d), N) ≤
(

2eN
d

)d

.

Proof We have,

F̃lin(d) = {f̃ : Rd × Rd→Y∗ | f̃(x,x′) = sign(w·(x− x′)) for some w ∈ Rd} .

Let (x1,x′1), . . . , (xN ,x′N ) be any N points in Rd×Rd, and consider the ‘dual’ weight space
corresponding to w ∈ Rd. Each point (xi,x′i) defines a hyperplane (xi − x′i) in this space;
the N points thus give rise to an arrangement of N hyperplanes in Rd. It is easily seen that
the number of sign patterns (f̃(x1,x′1), . . . , f̃(xN ,x′N )) that can be realized by functions
f̃ ∈ F̃lin(d) is equal to the total number of faces of this arrangement (Matoušek, 2002),
which is at most (Buck, 1943)

d∑
k=0

d∑
i=d−k

(
i

d− k

)(
N

i

)
=

d∑
i=0

2i

(
N

i

)
≤

(
2eN
d

)d

.

Since the N points were arbitrary, the result follows.

Theorem 24 For d ∈ N, let Flin(d) denote the class of linear ranking functions on Rd

(defined in Lemma 23 above). Then for all m,n ∈ N,

r(Flin(d),m, n) ≤
(

2emn
d

)d

.

20



Generalization Bounds for the Area Under the ROC Curve

Proof This follows immediately from Lemma 23 and Theorem 22.

Lemma 25 For d, q ∈ N, let Fpoly(d,q) denote the class of polynomial ranking functions on
Rd with degree less than or equal to q. Then for all N ∈ N,

s(F̃poly(d,q), N) ≤
(

2eN
C(d, q)

)C(d,q)

,

where

C(d, q) =
q∑

i=1

((
d

i

) q∑
j=1

(
j − 1
i− 1

))
. (23)

Proof We have,

F̃poly(d,q) = {f̃ : Rd × Rd→Y∗ | f̃(x,x′) = sign(f(x)− f(x′)) for some f ∈ Fpoly(d,q)} .

Let (x1,x′1), . . . , (xN ,x′N ) be any N points in Rd × Rd. For any f ∈ Fpoly(d,q), (f(x) −
f(x′)) is a linear combination of C(d, q) basis functions of the form (gk(x) − gk(x′)), 1 ≤
k ≤ C(d, q), each gk(x) being a product of 1 to q components of x. Denote g(x) =
(g1(x), . . . , gC(d,q)(x)) ∈ RC(d,q). Then each point (xi,x′i) defines a hyperplane (g(xi) −
g(x′i)) in RC(d,q); the N points thus give rise to an arrangement of N hyperplanes in RC(d,q).
It is easily seen that the number of sign patterns (f̃(x1,x′1), . . . , f̃(xN ,x′N )) that can be
realized by functions f̃ ∈ F̃poly(d,q) is equal to the total number of faces of this arrangement
(Matoušek, 2002), which is at most (Buck, 1943)(

2eN
C(d, q)

)C(d,q)

.

Since the N points were arbitrary, the result follows.

Theorem 26 For d, q ∈ N, let Fpoly(d,q) denote the class of polynomial ranking functions
on Rd with degree less than or equal to q. Then for all m,n ∈ N,

r(Fpoly(d,q),m, n) ≤
(

2emn
C(d, q)

)C(d,q)

,

where C(d, q) is as defined in Eq. (23).

Proof This follows immediately from Lemma 25 and Theorem 22.
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4.4 Comparison with Uniform Convergence Bound of Freund et al.

Freund et al. (2003) recently derived a uniform convergence bound for a quantity closely
related to the AUC, namely the ranking loss for the bipartite ranking problem. As pointed
out by Cortes and Mohri (2004), the bipartite ranking loss is equal to one minus the AUC;
the uniform convergence bound of Freund et al. (2003) therefore implies a uniform conver-
gence bound for the AUC.5 Although the result in (Freund et al., 2003) is given only for
function classes considered by their RankBoost algorithm, their technique is generally ap-
plicable. We state their result below, using our notation, for the general case (i.e., function
classes not restricted to those considered by RankBoost), and then offer a comparison of
our bound with theirs. As in (Freund et al., 2003), the result is given in the form of a
confidence interval.6

Theorem 27 (Generalization of Freund et al. (2003), Theorem 3) Let F be a class
of real-valued functions on X , and let y = (y1, . . . , yM ) ∈ YM be any label sequence of length
M ∈ N. Let m be the number of positive labels in y, and n = M −m the number of negative
labels in y. Then for any 0 < δ ≤ 1,

PSX |SY =y

{
sup
f∈F

∣∣∣Â(f ;S)−A(f)
∣∣∣ ≥ 2

√
ln s(F̌ , 2m) + ln

(
12
δ

)
m

+ 2

√
ln s(F̌ , 2n) + ln

(
12
δ

)
n

}
≤ δ ,

where F̌ is the class of Y∗-valued functions on X defined by Eq. (22).

The proof follows that of Freund et al. (2003); for completeness, we give details in
Appendix B. We now compare the uniform convergence bound derived in Section 4.2
with that of Freund et al. for a simple function class for which the quantities involved in
both bounds (namely, r(F , 2m, 2n) and s(F̌ , 2m), s(F̌ , 2n)) can be characterized exactly.
Specifically, consider the function class Flin(1) of linear ranking functions on R, given by

Flin(1) = {f : R→R | f(x) = wx+ b for some w ∈ R, b ∈ R} .

Although Flin(1) is an infinite function class, it is easy to verify that r(Flin(1),m, n) = 3 for
all m,n ∈ N. (To see this, note that for any set of m + n distinct points in R, one can
obtain exactly three different ranking behaviours with functions in Flin(1): one by setting
w > 0, another by setting w < 0, and the third by setting w = 0.) On the other hand,
s(F̌lin(1), N) = 4N + 1 for all N ≥ 2, since F̌lin(1) = F̄lin(1) (see Eq. (20)) and, as is easily
verified, the number of sign patterns on N ≥ 2 distinct points in R that can be realized by
functions in F̄lin(1) is 4N + 1. We thus get from our result (Corollary 18) that

PSX |SY =y

{
sup

f∈Flin(1)

∣∣∣Â(f ;S)−A(f)
∣∣∣ ≥

√
8(m+ n)

(
ln 3 + ln

(
4
δ

))
mn

}
≤ δ ,

5. As in the AUC definition of (Cortes and Mohri, 2004), the ranking loss defined in (Freund et al., 2003)
does not account for ties; this is easily remedied.

6. The result in (Freund et al., 2003) was stated in terms of the VC dimension, but the basic result can be
stated in terms of shatter coefficients. Due to our AUC definition which accounts for ties, the standard
shatter coefficients are replaced here with the extended shatter coefficients defined above for Y∗-valued
function classes.
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Figure 3: A comparison of our uniform convergence bound with that of Freund et al. (2003)
for the class of linear ranking functions on R. The plots are for δ = 0.01 and show
how the confidence interval size ε given by the two bounds varies with the sample
size M = m+ n, for various values of m/(m+ n). In all cases where the bounds
are meaningful (ε < 0.5), our bound is tighter.

and from the result of Freund et al. (Theorem 27) that

PSX |SY =y

{
sup

f∈Flin(1)

∣∣∣Â(f ;S)−A(f)
∣∣∣ ≥

2

√
ln(8m+ 1) + ln

(
12
δ

)
m

+ 2

√
ln(8n+ 1) + ln

(
12
δ

)
n

}
≤ δ .

The above bounds are plotted in Figure 3 for δ = 0.01 and various values of m/(m + n).
As can be seen, the bound provided by our result is considerably tighter.
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Table 3: The number of positive examples m and the number of negative examples n in
different training sequences used in the experiments described in Section 4.5.

Training sequence m n

0 50 50
1 20 80
2 10 90
3 100 100
4 40 160
5 20 180
6 150 150
7 60 240
8 30 270
9 200 200
10 80 320
11 40 360

4.5 Correctness of Functional Shape of Bound

Although our bound seems to be tighter than the previous bound of Freund et al. (2003), it
is still in general loose for practical use. However, the bound can be a valuable analysis tool,
as well as a useful tool for model selection, if it displays a correct functional dependency on
the training sample size parametersm and n. In this section we give an empirical assessment
of the correctness of the functional shape of our bound.

We generated data points in d = 20 dimensions (X = R20) as follows. We took D+1

and D−1 to be mixtures of two 20-dimensional Gaussians each, where each of the elements
of both the means and the (diagonal) covariances of the Gaussians were chosen randomly
from a uniform distribution on the interval (0, 1). Twelve training sequences of varying sizes
were generated by drawing m points from D+1 and n points from D−1 for various values of
m and n (see Table 3).7 Similarly, a test sequence was generated by drawing 2500 points
from D+1 and 2500 points from D−1. For each training sequence, a linear ranking function
in Flin(20) was learned using the RankBoost algorithm of Freund et al. (2003). The training
AUC of the learned ranking function, its AUC on the independent test sequence, and the
lower bound on its expected ranking accuracy obtained from our uniform convergence result
(using Corollary 18, at a confidence level δ = 0.01) were then calculated. Since we do not
have a means to characterize r(Flin(20),m, n) exactly, we used the (loose) bound provided by
Theorem 24 in calculating the lower bound on the expected accuracy. The results are shown
in Figure 4. As can be seen, the functional shape of the bound is roughly in accordance with
that of the test AUC, suggesting that the bound does indeed display a correct functional
dependency and therefore can be useful as an analysis and model selection tool.

7. To sample points from Gaussian mixtures we made use of the NETLAB toolbox written by Ian Nabney
and Christopher Bishop, available from http://www.ncrg.aston.ac.uk/netlab/ .
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Figure 4: The training AUC (top), test AUC (middle), and lower bound on expected rank-
ing accuracy (bottom) of linear ranking functions learned from training sequences
of different sizes (see Table 3). The functional shape of the bound is roughly in
accordance with that of the test AUC.
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5. Conclusion and Open Questions

We have derived geralization bounds for the area under the ROC curve (AUC), a quantity
used as an evaluation criterion for the bipartite ranking problem. We have derived both a
large deviation bound, which serves to bound the expected accuracy of a ranking function
in terms of its empirical AUC on a test sequence, and a uniform convergence bound, which
serves to bound the expected accuracy of a learned ranking function in terms of its empirical
AUC on a training sequence. Both our bounds are distribution-free.

Our large deviation result for the AUC parallels the classical large deviation result for
the classification error rate obtained via Hoeffding’s inequality. A comparison with the
large deviation result for the error rate suggests that, in the distribution-free setting, the
test sample size required to obtain an ε-accurate estimate of the expected accuracy of a
ranking function with δ-confidence is larger than the test sample size required to obtain a
similar estimate of the expected error rate of a classification function.

Our uniform convergence bound for the AUC is expressed in terms of a new set of
combinatorial parameters that we have termed the bipartite rank-shatter coefficients. These
coefficients define a new measure of complexity for real-valued function classes and play the
same role in our result as do the standard VC-dimension related shatter coefficients in
uniform convergence results for the classification error rate.

For the case of linear ranking functions on R, for which we could compute the bipartite
rank-shatter coefficients exactly, we have shown that our uniform convergence bound is
considerably tighter than a recent uniform convergence bound derived by Freund et al.
(2003), which is expressed directly in terms of standard shatter coefficients from results for
classification. This suggests that the bipartite rank-shatter coefficients we have introduced
may be a more appropriate complexity measure for studying the bipartite ranking problem.
However, in order to take advantage of our results, one needs to be able to characterize
these coefficients for the class of ranking functions of interest. The biggest open question
that arises from our study is, for what other function classes F can the bipartite rank-
shatter coefficients r(F ,m, n) be characterized? We have derived in Theorem 22 a general
upper bound on the bipartite rank-shatter coefficients of a function class F in terms of the
standard shatter coefficients of the function class F̃ (see Eq. (21)); this allows us to establish
a polynomial upper bound on the bipartite rank-shatter coefficients for linear and higher-
order polynomial ranking functions on Rd and other algebraically well-behaved function
classes. However, this upper bound is inherently loose (see proof of Theorem 22). Is it
possible to find tighter upper bounds on r(F ,m, n) than that given by Theorem 22?

Our study also raises several other interesting questions. First, can we establish analo-
gous complexity measures and generalization bounds for other forms of ranking problems
(i.e., other than bipartite)? Second, do there exist data-dependent bounds for ranking,
analogous to existing margin bounds for classification? Finally, it also remains an open
question whether tighter (or alternative) generalization bounds for the AUC can be derived
using different proof techniques. A possible route for deriving an alternative large deviation
bound for the AUC could be via the theory of U-statistics (de la Peña and Giné, 1999);
possible routes for an alternative uniform convergence bound could include the theory of
compression bounds (Littlestone and Warmuth, 1986; Graepel et al., 2005).
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Appendix A. Proof of Theorem 17

We shall need the following result of Devroye (1991), which bounds the variance of any
fuction of a sample for which a single change in the sample has limited effect:

Theorem 28 (Devroye, 1991; Devroye et al., 1996, Theorem 9.3) Let X1, . . . , XN

be independent random variables with Xk taking values in a set Ak for each k. Let φ :
(A1 × · · · ×AN )→R be such that

sup
xi∈Ai,x′k∈Ak

∣∣φ(x1, . . . , xN )− φ(x1, . . . , xk−1, x
′
k, xk+1, . . . , xN )

∣∣ ≤ ck .

Then

Var {φ(X1, . . . , XN )} ≤ 1
4

N∑
k=1

c2k .

Proof [of Theorem 17]
The proof is adapted from proofs of uniform convergence for the classification error rate
given in (Anthony and Bartlett, 1999; Devroye et al., 1996). It consists of four steps.

Step 1. Symmetrization by a ghost sample.
For each k ∈ {1, . . . ,M}, define the random variable X̃k such that Xk, X̃k are inde-

pendent and identically distributed. Let S̃X = (X̃1, . . . , X̃M ), and denote by S̃ the joint
sequence (S̃X , y). Then for any ε > 0 satisfying mnε2/(m+ n) ≥ 2, we have

PSX |SY =y

{
sup
f∈F

∣∣∣Â(f ;S)−A(f)
∣∣∣ ≥ ε} ≤ 2PSX S̃X |SY =y

{
sup
f∈F

∣∣∣Â(f ;S)− Â(f ; S̃)
∣∣∣ ≥ ε

2

}
.

To see this, let f∗S ∈ F be a function for which |Â(f∗S ;S) − A(f∗S)| ≥ ε if such a function
exists, and let f∗S be a fixed function in F otherwise. Then

PSX S̃X |SY =y

{
sup
f∈F

∣∣∣Â(f ;S)− Â(f ; S̃)
∣∣∣ ≥ ε

2

}
≥ PSX S̃X |SY =y

{∣∣∣Â(f∗S ;S)− Â(f∗S ; S̃)
∣∣∣ ≥ ε

2

}
≥ PSX S̃X |SY =y

{{∣∣∣Â(f∗S ;S)−A(f∗S)
∣∣∣ ≥ ε} ∩ {∣∣∣Â(f∗S ; S̃)−A(f∗S)

∣∣∣ ≤ ε

2

}}
= ESX |SY =y

{
I{|Â(f∗S ;S)−A(f∗S)|≥ε}PS̃X |SX ,SY =y

{∣∣∣Â(f∗S ; S̃)−A(f∗S)
∣∣∣ ≤ ε

2

}}
. (24)

The conditional probability inside can be bounded using Chebyshev’s inequality (and Lemma 2):

PS̃X |SX ,SY =y

{∣∣∣Â(f∗S ; S̃)−A(f∗S)
∣∣∣ ≤ ε

2

}
≥ 1−

VarS̃X |SX ,SY =y

{
Â(f∗S ; S̃)

}
ε2/4

.

Now, by the same reasoning as in the proof of Theorem 5, a change in the value of a single
random variable X̃k can cause a change of at most 1/m in Â(f∗S ; S̃) for k : yk = +1, and a
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change of at most 1/n for k : yk = −1. Thus, by Theorem 28, we have

VarS̃X |SX ,SY =y

{
Â(f∗S ; S̃)

}
≤ 1

4

 ∑
{i:yi=+1}

(
1
m

)2

+
∑

{j:yj=−1}

(
1
n

)2
 =

m+ n

4mn
.

This gives

PS̃X |SX ,SY =y

{∣∣∣Â(f∗S ; S̃)−A(f∗S)
∣∣∣ ≤ ε

2

}
≥ 1− m+ n

mnε2
≥ 1

2
,

whenever mnε2/(m+ n) ≥ 2. Thus, from Eq. (24) and the definition of f∗S , we have

PSX S̃X |SY =y

{
sup
f∈F

∣∣∣Â(f ;S)− Â(f ; S̃)
∣∣∣ ≥ ε

2

}
≥ 1

2
ESX |SY =y

{
I{|Â(f∗S ;S)−A(f∗S)|≥ε}

}
=

1
2
PSX |SY =y

{∣∣∣Â(f∗S ;S)−A(f∗S)
∣∣∣ ≥ ε}

≥ 1
2
PSX |SY =y

{
sup
f∈F

∣∣∣Â(f ;S)−A(f)
∣∣∣ ≥ ε} .

Step 2. Permutations.

Let ΓM be the set of all permutations of {X1, . . . , XM , X̃1, . . . , X̃M} that swap Xk

and X̃k, for all k in some subset of {1, . . . ,M}. In other words, for all σ ∈ ΓM and
k ∈ {1, . . . ,M}, either σ(Xk) = Xk, in which case σ(X̃k) = X̃k, or σ(Xk) = X̃k, in which
case σ(X̃k) = Xk. Now, define

βf (X1, . . . , XM , X̃1, . . . , X̃M ) ≡ 1
mn

∑
{i:yi=+1}

∑
{j:yj=−1}

((
I{f(Xi)>f(Xj)} +

1
2
I{f(Xi)=f(Xj)}

)

−
(
I{f(X̃i)>f(X̃j)} +

1
2
I{f(X̃i)=f(X̃j)}

))
.

Then clearly, since Xk, X̃k are i.i.d. for each k, for any σ ∈ ΓM we have that the distribution
of

sup
f∈F

∣∣∣βf (X1, . . . , XM , X̃1, . . . , X̃M )
∣∣∣

is the same as the distribution of

sup
f∈F

∣∣∣βf (σ(X1), . . . , σ(XM ), σ(X̃1), . . . , σ(X̃M ))
∣∣∣ .

Therefore, using U(D) to denote the uniform distribution over a discrete set D, we have
the following:

PSX S̃X |SY =y

{
sup
f∈F

∣∣∣Â(f ;S)− Â(f ; S̃)
∣∣∣ ≥ ε

2

}
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= PSX S̃X |SY =y

{
sup
f∈F

∣∣∣βf (X1, . . . , XM , X̃1, . . . , X̃M )
∣∣∣ ≥ ε

2

}

=
1
|ΓM |

∑
σ∈ΓM

PSX S̃X |SY =y

{
sup
f∈F

∣∣∣βf (σ(X1), . . . , σ(XM ), σ(X̃1), . . . , σ(X̃M ))
∣∣∣ ≥ ε

2

}

=
1
|ΓM |

∑
σ∈ΓM

ESX S̃X |SY =y

{
I{supf∈F |βf (σ(X1),...,σ(XM ),σ(X̃1),...,σ(X̃M ))|≥ ε

2}
}

= ESX S̃X |SY =y

 1
|ΓM |

∑
σ∈ΓM

I{supf∈F |βf (σ(X1),...,σ(XM ),σ(X̃1),...,σ(X̃M ))|≥ ε
2}


= ESX S̃X |SY =y

{
Pσ∼U(ΓM )

{
sup
f∈F

∣∣∣βf (σ(X1), . . . , σ(XM ), σ(X̃1), . . . , σ(X̃M ))
∣∣∣ ≥ ε

2

}}

≤ max
x,x̃∈XM

Pσ∼U(ΓM )

{
sup
f∈F

∣∣∣βf (σ(x1), . . . , σ(xM ), σ(x̃1), . . . , σ(x̃M ))
∣∣∣ ≥ ε

2

}
.

Step 3. Reduction to a finite class.

We wish to bound the quantity on the right hand side above. From the definition of
bipartite rank matrices (Definition 14), it follows that for any x, x̃ ∈ XM , as f ranges over
F , the number of different random variables∣∣∣βf (σ(x1), . . . , σ(xM ), σ(x̃1), . . . , σ(x̃M ))

∣∣∣
is at most the number of different bipartite rank matrices Bf (z, z′) that can be realized by
functions in F , where z ∈ X 2m contains xi, x̃i for i : yi = +1 and z′ ∈ X 2n contains xj , x̃j

for j : yj = −1. This number, by definition, cannot exceed r(F , 2m, 2n) (see the definition
of bipartite rank-shatter coefficients, Definition 15). Therefore, the supremum in the above
probability is a maximum of at most r(F , 2m, 2n) random variables. Thus, by the union
bound, we get for any x, x̃ ∈ XM ,

Pσ∼U(ΓM )

{
sup
f∈F

∣∣∣βf (σ(x1), . . . , σ(xM ), σ(x̃1), . . . , σ(x̃M ))
∣∣∣ ≥ ε

2

}
≤ r(F , 2m, 2n) · sup

f∈F
Pσ∼U(ΓM )

{∣∣∣βf (σ(x1), . . . , σ(xM ), σ(x̃1), . . . , σ(x̃M ))
∣∣∣ ≥ ε

2

}
.

Step 4. McDiarmid’s inequality.

Notice that for any x, x̃ ∈ XM , we can write

Pσ∼U(ΓM )

{∣∣∣βf (σ(x1), . . . , σ(xM ), σ(x̃1), . . . , σ(x̃M ))
∣∣∣ ≥ ε

2

}
= PW∼U(

∏M
k=1{xk,x̃k})

{∣∣∣βf (W1, . . . ,WM , W̃1, . . . , W̃M )
∣∣∣ ≥ ε

2

}
,

where W = (W1, . . . ,WM ) and W̃k =
{

x̃k, if Wk = xk

xk, if Wk = x̃k
.
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Now, for f : X→R and x,x′ ∈ X , let

α(f ;x,x′) ≡ I{f(x)>f(x′)} +
1
2
I{f(x)=f(x′)} .

Then for any f ∈ F ,

EW∼U(
∏M

k=1{xk,x̃k})

{
βf (W1, . . . ,WM , W̃1, . . . , W̃M )

}
=

1
mn

∑
{i:yi=+1}

∑
{j:yj=−1}

EWi∼U({xi,x̃i}),Wj∼U({xj ,x̃j})

{
α(f ;Wi,Wj)− α(f ; W̃i, W̃j)

}
=

1
mn

∑
{i:yi=+1}

∑
{j:yj=−1}

1
4

[(
α(f ;xi,xj)− α(f ; x̃i, x̃j)

)
+
(
α(f ; x̃i,xj)− α(f ;xi, x̃j)

)
+

(
α(f ;xi, x̃j)− α(f ; x̃i,xj)

)
+
(
α(f ; x̃i, x̃j)− α(f ;xi,xj)

)]
= 0 .

Also, it can be verified that for any f ∈ F , a change in the value of a single random variable
Wk can bring a change of at most 2/m in the value of

βf (W1, . . . ,WM , W̃1, . . . , W̃M )

for k : yk = +1, and a change of at most 2/n for k : yk = −1. Therefore, by McDiarmid’s
inequality (Theorem 3), it follows that for any f ∈ F ,

PW∼U(
∏M

k=1{xk,x̃k})

{∣∣∣βf (W1, . . . ,WM , W̃1, . . . , W̃M )
∣∣∣ ≥ ε

2

}
≤ 2e−2ε2/4(m( 2

m
)2+n( 2

n
)2)

= 2e−mnε2/8(m+n) .

Putting everything together, we get that

PSX |SY =y

{
sup
f∈F

∣∣∣Â(f ;S)−A(f)
∣∣∣ ≥ ε} ≤ 4 · r(F , 2m, 2n) · e−mnε2/8(m+n) ,

for mnε2/(m+ n) ≥ 2. In the other case, i.e., for mnε2/(m+ n) < 2, the bound is greater
than one and therefore holds trivially.
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Appendix B. Proof of Theorem 27

We shall need to extend the notion of error rate to Y∗-valued functions (recall that Y∗ =
{−1, 0,+1}). Given a function h : X→Y∗ and a data sequence T = ((x1, y1), . . . , (xN , yN )) ∈
(X × Y)N , let the empirical error rate of h with respect to T be denoted by L̂∗(h;T ) and
defined as

L̂∗(h;T ) =
1
N

N∑
i=1

{
I{h(xi) 6=0}I{h(xi) 6=yi} +

1
2
I{h(xi)=0}

}
. (25)

Similarly, for an underlying distribution D over X × Y, let the expected error rate of h be
denoted by L∗(h) and defined as

L∗(h) = EXY∼D

{
I{h(X) 6=0}I{h(X) 6=Y } +

1
2
I{h(X)=0}

}
. (26)

Then, following the proof of a similar result given in (Vapnik, 1982) for binary-valued
functions, it can be shown that if H is a class of Y∗-valued functions on X and M ∈ N,
then for any ε > 0,

PS∼DM

{
sup
h∈H

∣∣∣L̂∗(h;S)− L∗(h)
∣∣∣ ≥ ε} ≤ 6s(H, 2M)e−Mε2/4 . (27)

Proof [of Theorem 27]
To keep notation concise, for f : X→R and x,x′ ∈ X , let

η(f ;x,x′) ≡ I{f(x)<f(x′)} +
1
2
I{f(x)=f(x′)} ,

and for h : X→Y∗, x ∈ X , y ∈ Y, let

ν(h;x, y) ≡ I{h(x) 6=0}I{h(x) 6=y} +
1
2
I{h(x)=0} .

Now, given SY = y, we have for all f ∈ F∣∣∣Â(f ;S)−A(f)
∣∣∣

=
∣∣∣(1− Â(f ;S))− (1−A(f))

∣∣∣
=

∣∣∣∣∣∣ 1
mn

∑
{i:yi=+1}

∑
{j:yj=−1}

η(f ;Xi, Xj)−EX∼D+1,X′∼D−1

{
η(f ;X,X ′)

}∣∣∣∣∣∣
=

∣∣∣∣∣∣ 1
mn

∑
{i:yi=+1}

∑
{j:yj=−1}

η(f ;Xi, Xj)−
1
m

∑
{i:yi=+1}

EX′∼D−1

{
η(f ;Xi, X

′)
}

+
1
m

∑
{i:yi=+1}

EX′∼D−1

{
η(f ;Xi, X

′)
}
−EX∼D+1,X′∼D−1

{
η(f ;X,X ′)

}∣∣∣∣∣∣
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=

∣∣∣∣∣∣ 1
m

∑
{i:yi=+1}

 1
n

∑
{j:yj=−1}

η(f ;Xi, Xj)−EX′∼D−1

{
η(f ;Xi, X

′)
}

+ EX′∼D−1

 1
m

∑
{i:yi=+1}

η(f ;Xi, X
′)−EX∼D+1

{
η(f ;X,X ′)

}
∣∣∣∣∣∣

≤ 1
m

∑
{i:yi=+1}

∣∣∣∣∣∣ 1n
∑

{j:yj=−1}

η(f ;Xi, Xj)−EX′∼D−1

{
η(f ;Xi, X

′)
}∣∣∣∣∣∣

+EX′∼D−1


∣∣∣∣∣∣ 1
m

∑
{i:yi=+1}

η(f ;Xi, X
′)−EX∼D+1

{
η(f ;X,X ′)

}
∣∣∣∣∣∣

≤ sup
f ′∈F ,z∈X

∣∣∣∣∣∣ 1n
∑

{j:yj=−1}

η(f ′; z, Xj)−EX′∼D−1

{
η(f ′; z, X ′)

}∣∣∣∣∣∣
+ sup

f ′∈F ,z∈X

∣∣∣∣∣∣ 1
m

∑
{i:yi=+1}

η(f ′;Xi, z)−EX∼D+1

{
η(f ′;X, z)

}∣∣∣∣∣∣
= sup

f̌z∈F̌

∣∣∣∣∣∣ 1n
∑

{j:yj=−1}

ν(f̌z;Xj ,−1)−EX′∼D−1

{
ν(f̌z;X ′,−1)

}∣∣∣∣∣∣
+ sup

f̌z∈F̌

∣∣∣∣∣∣ 1
m

∑
{i:yi=+1}

ν(f̌z;Xi,+1)−EX∼D+1

{
ν(f̌z;X,+1)

}∣∣∣∣∣∣ .
If we augment the notation L∗(h) used to denote the expected error rate with the distribu-
tion, e.g., L∗D(h), we thus get

sup
f∈F

∣∣∣Â(f ;S)−A(f)
∣∣∣ ≤ sup

f̌z∈F̌

∣∣∣L̂∗(f̌z;S(n)
−1 )− L∗D−1

(f̌z)
∣∣∣+ sup

f̌z∈F̌

∣∣∣L̂∗(f̌z;S(m)
+1 )− L∗D+1

(f̌z)
∣∣∣ , (28)

where S(m)
+1 and S(n)

−1 denote the subsequences of S containing the m positive and n negative
examples, respectively. Now, from the confidence interval interpretation of the result given
in Eq. (27), we have

P
S

(m)
+1 ∼Dm

+1

 sup
f̌z∈F̌

∣∣∣L̂∗(f̌z;S(m)
+1 )− L∗D+1

(f̌z)
∣∣∣ ≥ 2

√
ln s(F̌ , 2m) + ln

(
12
δ

)
m

 ≤ δ

2
, (29)

P
S

(n)
−1∼Dn

−1

 sup
f̌z∈F̌

∣∣∣L̂∗(f̌z;S(n)
−1 )− L∗D−1

(f̌z)
∣∣∣ ≥ 2

√
ln s(F̌ , 2n) + ln

(
12
δ

)
n

 ≤ δ

2
. (30)

Combining Eqs. (28-30) gives the desired result.
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