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Abstract
Kernel-classifiers comprise a powerful class of non-linear decision functions for binary classification. The

support vector machine is an example of a learning algorithm for kernel classifiers that singles out the con-
sistent classifier with the largest margin, i.e. minimal real-valued output on the training sample, within the set
of consistent hypotheses, the so-calledversion space. We suggest theBayes point machine as a well-founded
improvement which approximates the Bayes-optimal decision by the centre of mass of version space. We
present two algorithms to stochastically approximate the centre of mass of version space: a billiard sampling
algorithm and a sampling algorithm based on the well known perceptron algorithm. It is shown how both
algorithms can be extended to allow for soft-boundaries in order to admit training errors. Experimentally, we
find that — for the zero training error case — Bayes point machines consistently outperform support vector
machines on both surrogate data and real-world benchmark data sets. In the soft-boundary/soft-margin case,
the improvement over support vector machines is shown to be reduced. Finally, we demonstrate that the real-
valued output of single Bayes points on novel test points is a validconfidence measure and leads to a steady
decrease in generalisation error when used as a rejection criterion.

1. Introduction

Kernel machines have recently gained a lot of attention due to the popularisation of the support vector ma-
chine (Vapnik, 1995) with a focus on classification and the revival of Gaussian processes for regression
(Williams, 1999). Subsequently, support vector machines have been modified to handle regression (Smola,
1998) and Gaussian processes have been adapted to the problem of classification (Williams and Barber, 1998;
Opper and Winther, 2000). Both schemes essentially work in the same function space that is characterised
by kernels and covariance functions, respectively. Whilst the formal similarity of the two methods is striking,
the underlying paradigms of inference are very different. The support vector machine was inspired by results
from statistical/PAC learning theory while Gaussian processes are usually considered in a Bayesian frame-
work. This ideological clash can be viewed as a continuation in machine learning of the by now classical
disagreement between Bayesian and frequentistic statistics (Aitchison, 1964). With regard to algorithmics
the two schools of thought appear to favour two different methods of learning and predicting: the support
vector community — as a consequence of the formulation of the support vector machine as a quadratic pro-
gramming problem — focuses on learning as optimisation while the Bayesian community favours sampling
schemes based on the Bayesian posterior. Of course there exists a strong relationship between the two ideas,
in particular with the Bayesian maximum a posteriori (MAP) estimator being the solution of an optimisation
problem.

In practice, optimisation based algorithms have the advantage of a unique, deterministic solution and the
availability of the cost function as an indicator of the quality of the solution. In contrast, Bayesian algorithms
based on sampling and voting are more flexible and enjoy the so-called “anytime” property, providing a
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relatively good solution at any point in time. Often, however, they suffer from the computational costs of
sampling the Bayesian posterior.

In this paper we present the Bayes point machine as an approximation to Bayesian inference for linear
classifiers in kernel space. In contrast to the Gaussian process viewpoint we do not define a Gaussian prior
on the length‖w‖ of the weight vector. Instead, we only consider weight vectors of length‖w‖= 1 because
it is only the spatial direction of the weight vector that matters for classification. It is then natural to define a
uniform prior on the resulting ball-shaped hypothesis space. Hence, we determine the centre of mass of the
resulting posterior that is uniform in version space, i.e. in the zero training error region. It should be kept
in mind that the centre of mass is merely an approximation to the real Bayes point from which the name of
the algorithm was derived. In order to estimate the centre of mass we suggest both a dynamic system called
a kernel billiard and an approximative method that uses the perceptron algorithm trained on permutations
of the training sample. The latter method proves to be efficient enough to make the Bayes point machine
applicable to large data sets.

An additional insight into the usefulness of the centre of mass comes from the statistical mechanics
approach to neural computing where the generalisation error for Bayesian learning algorithms has been cal-
culated for the case of randomly constructed and unbiased patternsx (Opper and Haussler, 1991). Thus ifζ
is the number of training examples per weight andζ is large, the generalisation error of the centre of mass
scales as 0.44/ζ whereas scaling withζ is poorer for the solutions found by the linear support vector machine
(scales as 0.50/ζ; see Opper and Kinzel, 1995), Adaline (scales as 0.24/

√
ζ; see Opper et al., 1990) and

other approaches.
Of course many of the viewpoints and algorithms presented in this paper are based on extensive previous

work carried out by numerous authors in the past. In particular it seems worthwhile to mention that linear
classifiers have been studied intensively in two rather distinct communities: The machine learning community
and the statistical physics community. While it is beyond the scope of this paper to review the entire history
of the field we would like to emphasise that our geometrical viewpoint as expressed later in the paper has
been inspired by the very original paper “Playing billiard in version space” by P. Ruján (Ruján, 1997). Also,
in that paper the term “Bayes point” was coined and the idea of using a billiard-like dynamical system for
uniform sampling was introduced. Both we (Herbrich et al., 1999a,b, 2000a) and Ruján and Marchand (2000)
independently generalised the algorithm to be applicable in kernel space. Finally, following a theoretical
suggestion of Watkin (1993) we were able to scale up the Bayes point algorithm to large data sets by using
different perceptron solutions from permutations of the training sample.

The paper is structured as follows: In the following section we review the basic ideas of Bayesian infer-
ence with a particular focus on classification learning. Along with a discussion about the optimality of the
Bayes classification strategy we show that for the special case of linear classifiers in feature space the centre
of mass of all consistent classifiers is arbitrarily close to the Bayes point (with increasing training sample size)
and can be efficiently estimated in the linear span of the training data. Moreover, we give a geometrical pic-
ture of support vector learning in feature space which reveals that the support vector machine can be viewed
as an approximation to the Bayes point machine. In Section 3 we present two algorithms for the estimation
of the centre of mass of version space — one exact method and an approximate method tailored for large
training samples. An extensive list of experimental results is presented in Section 4, both on small machine
learning benchmark datasets as well as on large scale datasets from the field of handwritten digit recognition.
In Section 5 we summarise the results and discuss some theoretical extensions of the method presented. In
order to unburden the main text, the lengthy proofs as well as the pseudocode have been relegated to the
appendix.

We denoten–tuples by italic bold letters (e.g.x = (x1, . . . ,xn)), vectors by roman bold letters (e.g.x),
random variables by sans serif font (e.g.X) and vector spaces by calligraphic capitalised letters (e.g.X ).
The symbolsP,E andI denote a probability measure, the expectation of a random variable and the indicator
function, respectively.

246



BAYES POINT MACHINES

2. A Bayesian Consideration of Learning

In this section we would like to revisit the Bayesian approach to learning (see Buntine, 1992; MacKay,
1991; Neal, 1996; Bishop, 1995, for a more detailed treatment). Suppose we are given a training sample
z = (x,y) = ((x1,y1) , . . . ,(xm,ym))∈ (X ×Y )m of sizem drawn iid from an unknown distributionPZ = PXY.
Furthermore, assume we are given afixed setH ⊆ Y X of functionsh : X → Y referred to ashypothesis
space. The task of learning is then to find the functionh∗ which performs best on new yet unseen patterns
z = (x,y) drawn according toPXY.

Definition 1 (Learning Algorithm) A (deterministic) learning algorithmA :
⋃∞

m=1 Zm → Y X is a map-
ping from training samples z of arbitrary size m ∈ N to functions from X to Y . The image of A, i.e.
{A(z) | z ∈ Zm } ⊆ Y X , is called the effective hypothesis spaceHA,m of the learning algorithm A for the
training sample size m ∈ N. If there exists a hypothesis space H ⊆ Y X such that for every training sample
size m ∈ N we have HA,m ⊆H we shall omit the indices on H .

In order to assess to quality of a functionh ∈H we assume the existence of aloss function l : Y ×Y → R
+.

The lossl (y,y′) ∈R
+ is understood to measure the incurred cost when predictingy while the true output was

y′. Hence we always assume that for ally ∈ Y , l (y,y) = 0. A typical loss function for classification is the so
calledzero-one lossl0−1 defined as follows.

Definition 2 (Zero-One Loss) Given a fixed output space Y , the zero-oneloss is defined by

l0−1
(
y,y′
)

:= Iy=y′ .

Based on the concept of a lossl, let us introduce several quality measures for hypothesesh ∈H .

Definition 3 (Generalisation and Training Error) Given a probability measure PXY and a loss l : Y ×
Y → R

+ the generalisation errorR [h] of a function h : X → Y is defined by

R [h] := EXY [l (h(X) ,Y)] .

Given a training sample z = (x,y) ∈ (X ×Y )m of size m and a loss l : Y ×Y → R
+ the training error

Remp[h,z] of a function h : X → Y is given by

Remp[h,z] :=
1
m

m

∑
i=1

l (h(xi) ,yi) .

Clearly, only the generalisation errorR [h] is appropriate to capture the performance of afixed classifierh∈H
on new patternsz = (x,y). Nonetheless, we shall see that the training error plays a crucial role as it provides
an estimate of the generalisation error based on the training sample.

Definition 4 (Generalisation Error of Algorithms) Suppose we are given a fixed learning algorithm A :⋃∞
m=1 Zm → Y X . Then for any fixed training sample size m ∈ N the generalisation errorRm [A] of A is

defined by
Rm [A] := EZm [R [A(Z)]] ,

that is, the expected generalisation error of the hypotheses found by the algorithm.

Note that for any loss functionl : Y × Y → R
+ a small generalisation errorRm [A] of the algorithmA

guarantees a small generalisation error for most randomly drawn training samplesz because by Markov’s
inequality we have forε > 0,

PZm (R [A(Z)] > ε ·EZm [R [A(Z)]])≤ 1
ε

.

Hence we can viewRm [A] also as a performance measure ofA’s hypotheses for randomly drawn training
samplesz. Finally, let us consider a probability measurePH over the space of all possible mappings fromX
to Y . Then, theaverage generalisation error of a learning algorithm A is defined as follows.
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Definition 5 (Average Generalisation Error of Algorithms) Suppose we are given a fixed learning algo-
rithm A :

⋃∞
m=1 Zm → Y X . Then for each fixed training sample size m ∈ N the average generalisation error

Rm [A] of A is defined by

Rm [A] := EH

[
EZm|H=h

[
EX

[
EY|X=x,H=h [l ((A(Z))(x) ,Y)]

]]]
, (1)

that is, the average performance of the algorithm’s A solution learned over the random draw of training
samples andtarget hypotheses.

The average generalisation error is the standard measure of performance of an algorithmA if we have little
knowledge about the potential functionh∗ that labels all our data expressed viaPH. Then, the measure (1)
averages out our ignorance about the unknownh∗ thus considering performance ofA on average.

There is a noticeable relation betweenRm [A] and Rm [A] if we assume that given a measurePH, the
conditional distribution of outputsy givenx is governed by1

PY|X=x (y) = PH (H(x) = y) . (2)

Under this condition we have that
Rm [A] = Rm [A] .

This result, however, is not too surprising taking into account that under the assumption (2) the measurePH

fully encodes the unknown relationship between inputsx and outputsy.

2.1 The Bayesian Solution

In the Bayesian framework we are not simply interested inh∗ := argminh∈H R [h] itself but in ourknowledge
or belief in h∗. To this end, Bayesians use the concept ofprior andposterior belief, i.e. the knowledge ofh∗
before having seen any data andafter having seen the data — which in the current case is our training sample
z. It is well known that under consistency rules known as Cox’s axioms (Cox, 1946) beliefs can be mapped
onto probability measuresPH. Under these rather plausible conditions the only consistent way to transfer
prior beliefPH into posterior beliefPH|Zm=z is therefore given by Bayes’ theorem:

PH|Zm=z (h) =
PZm|H=h (z)

EH

[
PZm|H=h (z)

] ·PH (h) =
PYm|Xm=x,H=h (y)

EH

[
PYm|Xm=x,H=h (y)

] ·PH (h) . (3)

The second expression is obtained by noticing that

PZm|H=h (z) = PYm|Xm=x,H=h (y)PXm|H=h (x) = PYm|Xm=x,H=h (y)PXm (x)

because hypotheses do not have an influence on the generation of patterns. Based on a given loss function
l we can further decompose the first term of the numerator of (3) — known as the likelihood ofh. Let us
assume that the probability of a classy given an instancex and an hypothesish is inverse proportional to the
exponential of the loss incurred byh on x. Thus we obtain

PY|X=x,H=h (y) =
exp(−β · l (h(x) ,y))

∑
y′∈Y

exp(−β · l (h(x) ,y′))
=

1
C (x)

exp(−β · l (h(x) ,y))

=

{
1

1+exp(−β) if l (h(x) ,y) := l0−1 (h(x) ,y) = 0
exp(−β)

1+exp(−β) if l (h(x) ,y) := l0−1 (h(x) ,y) = 1
, (4)

whereC (x) is a normalisation constant which in the case of the zero-one lossl0−1 is independent2 of x and
β≥ 0 controls the assumed level of noise. Note that the loss used in the exponentiated loss likelihood function

1. In fact, it already suffices to assume thatEY|X=x [l (y,Y)] =EH [l (y,H(x))], i.e. the prior correctly models the conditional distribution
of the classes as far as the fixed loss is concerned.

2. Note that for loss functions with real-valued arguments this need not be the case which makes a normalisation independent ofx
quite intricate (see Sollich, 2000, for a detailed treatment).

248



BAYES POINT MACHINES

is not to be confused with the decision-theoretic loss used in the Bayesian framework, which is introduced
only after a posterior has been obtained in order to reach a risk optimal decision.

Definition 6 (PAC Likelihood) Suppose we are given an arbitrary loss function l : Y ×Y → R
+. Then, we

call the function
PY|X=x,H=h (y) := Iy=h(x) , (5)

of h the PAC likelihood forh. Note that (5) is the limiting case of (4) for β→ ∞.

Assuming the PAC likelihood it immediately follows that for any prior beliefPH the posterior beliefPH|Zm=z
simplifies to

PH|Zm=z (h) =

{
PH(h)

PH(V (z)) if h ∈V (z)
0 if h /∈V (z)

, (6)

where the version spaceV (z) is defined as follows (see Mitchell, 1977, 1982).

Definition 7 (Version Space) Given an hypothesis space H ⊆Y X and a training sample z =(x,y)∈ (X ×Y )m

of size m ∈ N the version spaceV (z)⊆H is defined by

V (z) :=
{

h ∈H | ∀i ∈ {1, . . . ,m} : h(xi) = yi
}

.

Since all information contained in the training samplez is used to update the priorPH by equation (3) all that
will be used to classify a novel test pointx is theposterior belief PH|Zm=z.

2.2 The Bayes Classification Strategy

In order to classify a new test pointx, for each classy the Bayes classification strategy3 determines the
loss incurred by each hypothesish ∈ H applied tox and weights it according to its posterior probability
PH|Zm=z (h). The final decision is made for the classy ∈ Y that achieves the minimum expected loss, i.e.

Bayesz (x) := argmin
y∈Y

EH|Zm=z [l (H(x) ,y)] . (7)

This strategy has the following appealing property.

Theorem 8 (Optimality of the Bayes Classification Strategy) Suppose we are given a fixed hypothesis space
H ⊆ Y X . Then, for any training sample size m ∈ N, for any symmetric loss l : Y ×Y → R

+, for any two
measures PH and PX, among all learning algorithms the Bayes classification strategy Bayesz given by (7)
minimises the average generalisation error Rm [Bayesz] under the assumption that for each h with PH (h) > 0

∀y ∈ Y : ∀x ∈ X : EY|X=x,H=h [l (y,Y)] = l (y,h(x)) . (8)

Proof Let us consider a fixed learning algorithmA. Then it holds true that

Rm [A] = EH

[
EZm|H=h

[
EX

[
EY|X=x,H=h [l ((A(Z))(x) ,Y)]

]]]
= EX

[
EH

[
EZm|H=h

[
EY|X=x,H=h [l ((A(Z))(x) ,Y)]

]]]
= EX

[
EZm

[
EH|Zm=z

[
EY|X=x,H=h [l ((A(Z))(x) ,Y)]

]]]
= EX

[
EZm

[
EH|Zm=z [l ((A(Z))(X) ,H(X))]

]]
, (9)

where we exchanged the order of expectations overX in the second line, applied the theorem of repeated
integrals (see, e.g. Feller, 1966) in the third line and finally used (8) in the last line. Using the symmetry
of the loss function, the inner-most expression of (9) is minimised by the Bayes classification strategy (7)

3. The reason we do not call this mapping fromX to Y a classifier is that the resulting mapping is (in general) not within the hypothesis
space considered beforehand.
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for any possible training samplez and any possible test pointx. Hence, (7) minimises the whole expression
which proves the theorem.

In order to enhance the understanding of this result let us consider the simple case ofl = l0−1 and Y =
{−1,+1}. Then, given a particular classifierh ∈ H having non-zero prior probabilityPH (h) > 0, by as-
sumption (8) we require that the conditional distribution of classesy givenx is delta peaked ath(x) because

EY|X=x,H=h (l0−1 (y,Y)) = l0−1 (y,h(x)) ,

PY|X=x,H=h (−y) = Iy=h(x) ,

PY|X=x,H=h (y) = Ih(x)=y .

Although for a fixedh ∈ H drawn according toPH we do not know thatBayesz achieves the smallest gen-
eralisation errorR [Bayesz] we can guarantee that on average over the random draw ofh’s the Bayes classifi-
cation strategy is superior. In fact, the optimal classifier for a fixedh ∈ H is simplyh itself4 and in general
Bayesz (x) = h(x) for at least a fewx ∈ X .

2.3 The Bayes Point Algorithm

Although the Bayes classification strategy ison average the optimal strategy to perform when given limited
amount of training dataz, it is computationally very demanding as it requires the evaluation ofPH|Zm=z (l (H(x) ,y))
for each possibley at each new test pointx (Graepel et al., 2000). The problem arises because the Bayes clas-
sification strategy does not correspond to any one single classifierh∈H . One way to tackle this problem is to
require the classifierA(z) learned from any training samplez to lie within afixed hypothesis spaceH ⊆ Y X

containing functionsh ∈ H whose evaluation at a particular test pointx can be carried out efficiently. Thus
if it is additionally required to limit the possible solution of a learning algorithm to a given hypothesis space
H ⊆ Y X , we can in general only hope to approximateBayesz.

Definition 9 (Bayes Point Algorithm) Suppose we are given a fixed hypothesis space H ⊆ X Y and a fixed
loss l : Y ×Y → R

+. Then, for any two measures PX and PH, the Bayes point algorithmAbp is given by

Abp(z) := argmin
h∈H

EX

[
EH|Zm=z [l (h(X) ,H(X))]

]
,

that is, for each training sample z ∈ Zm the Bayes point algorithm chooses the classifier hbp := Abp(z) ∈H
that mimics best the Bayes classification strategy (7) on average over randomly drawn test points. The
classifier Abp(z) is called the Bayes point.

Assuming the correctness of the model given by (8) we furthermore remark that the Bayes point algorithmAbp

is the best approximation to the Bayes classification strategy (7) in terms of the average generalisation error,
i.e. measuring the distance of the learning algorithmA for H using the distance‖A−Bayes‖ = Rm [A]−
Rm [Bayes]. In this sense, for a fixed training samplez we can view theBayes point hbp as a projection of
Bayesz into the hypothesis spaceH ⊆ Y X .

The difficulty with the Bayes point algorithm, however, is the need to know the input distributionPX for
the determination of the hypothesis learned fromz. This somehow limits the applicability of the algorithm as
opposed to the Bayes classification strategy which requires only broad prior knowledge about the underlying
relationship expressed via some prior beliefPH.

4. It is worthwhile mentioning that the only information to be used in any classification strategy is the training samplez and the prior
PH. Hence it is impossible todetect which classifierh ∈ H labels a fixedm–tuplex only on the basis of them labelsy observed
on the training sample. Thus, although we might be lucky in guessingh for a fixed h ∈H andz ∈ Zm we cannot do better than the
Bayes classification strategyBayesz when considering the average performance — the average being taken over the random choice
of the classifiers and the training samplesz.
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2.3.1 THE BAYES POINT FOR LINEAR CLASSIFIERS

We now turn our attention to the special case of linear classifiers where we assume thatN measurements of
the objectsx are taken by featuresφi : X → R thus forming a (vectorial) feature mapφ : X → K ⊆ �N

2 =
(φ1 (x) , . . . ,φN (x))′. Note that by this formulation the special case of vectorial objectsx is automatically
taken care of by the identity mapφ(x) = x. For notational convenience we use the shorthand notation5 x for
φ(x) such that〈x,w〉 := ∑N

i=1 φi (x)wi. Hence, for a fixed mappingφ the hypothesis space is given by

H :=
{

x �→ sign(〈x,w〉) ∣∣ w ∈W
}

, W := {w ∈K | ‖w‖= 1} . (10)

As each hypothesishw is uniquely defined by itsweight vector w we shall in the following consider prior
beliefsPW over W , i.e. possible weight vectors (of unit length), in place of priorsPH. By construction,
the output space isY = {−1,+1} and we furthermore consider the special case ofl = l0−1 as defined by
Definition 2. If we assume that the input distribution is spherically Gaussian in the feature spaceK of
dimensionalityd = dim(K ), i.e.

fX (x) =
1

π
d
2

exp
(
−‖x‖2

)
, (11)

then we find that the centre of mass

wcm =
EW|Zm=z [W]∥∥EW|Zm=z [W]

∥∥ (12)

is a very good approximation to the Bayes pointwbp and converges towardswbp if the posterior belief
PW|Zm=z becomes sharply peaked (for a similar result see Watkin, 1993).

Theorem 10 (Optimality of the Centre of Mass) Suppose we are given a fixed mapping φ : X → K ⊆ �N
2 .

Then, for all m ∈ N, if PX possesses the density (11) and the prior belief is correct, i.e. (8) is valid, the
average generalisation error of the centre of mass as given by (12) always fulfils∣∣Rm [Acm]−Rm

[
Abp
]∣∣≤ EZm [κ(ε(Z))] ,

where

κ(ε) :=
{ arccos(ε)

π − 1−ε
2 if ε < 0.23

0.11 otherwise
,

and
ε(z) := min

w:PW|Zm=z(w)>0
|〈wcm,w〉| .

The lengthy proof of this theorem is given in Appendix A.1. The interesting fact to note about this result is
that limε→1 κ(ε) = 0 and thus whenever the prior beliefPW is not vanishing for somew,

lim
m→∞

EZm [κ(ε(Z))] = 0,

because for increasing training sample size the posterior is sharply peaked at the weight vector labelling the
data6. This shows that for increasing training sample size the centre of mass (under the posteriorPW|Zm=z)
is a good approximation to the optimal projection of the Bayes classification strategy — theBayes point.
Henceforth, any algorithm which aims at returning the centre of mass under the posteriorPW|Zm=z is called
a Bayes point machine. Note that in the case of the PAC likelihood as defined in Definition 6 the centre of
mass under the posteriorPW|Zm=z coincides with the centre of mass of version space (see Definition 7).

5. This should not be confused withx which denotes the sample(x1, . . . ,xm) of training objects.
6. This result is a slight generalisation of the result in Watkin (1993) which only proved this to be true for the uniform priorPW.
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fwjhx;wi = 0g

a

b(a)
w

a

x

fxjhx;wi = 0g

Figure 1: Shown is the margina = γx (w) = 〈x,w〉 under the assumption that‖w‖ = ‖x‖ = 1. At the same
time, a (length of the dotted line) equals the distance ofx from the hyperplane{x | 〈x,w〉= 0}
(dashed line) as well as the distance of the weight vectorw from the hyperplane{w | 〈x,w〉= 0}
(dashed line). Note, however, that the Euclidean distance ofw from the separating boundary{

w ∈W | 〈x,w〉= 0
}

equalsb(a) whereb is a strictly monotonic function of its argument.

2.4 A (Pseudo) Bayesian Derivation of the Support Vector Machine

In this section we would like to show that the well known support vector machine (Boser et al., 1992; Cortes,
1995; Vapnik, 1995) can also be viewed as an approximation to the centre of mass of version spaceV (z) in
the noise free scenario, i.e. considering the PAC likelihood given in Definition 6, and additionally assuming
that

∀xi ∈ x : ‖xi‖= ‖φ(xi)‖= const.

In order to see this let us recall that the support vector machine aims at maximising themargin γz (w) of the
weight vector w on the training sample z given by

γz (w) := min
i∈{1,...,m}

yi 〈xi,w〉
‖w‖︸ ︷︷ ︸
γxi (w)

=
1
‖w‖ min

i∈{1,...,m}
yi 〈xi,w〉 , (13)

which for all w of unit length is merely the minimal real-valued output (flipped to the correct sign) over the
whole training sample. In order to solve this problem algorithmically one takes advantage of the fact that
fixing the real-valued output to one (rather than the norm‖w‖ of the weight vectorw) renders the problem
of finding the margin maximiserwSVM as a problem with a quadratic objective function (‖w‖2 = w′w) under
linear constraints (yi 〈xi,w〉 ≥ 1), i.e.

wSVM := argmax
w∈W

(
min

i∈{1,...,m}
yi 〈xi,w〉

)
(14)

∝ argminw∈{v |mini∈{1,...,m} yi〈xi,v〉=1}
(
‖w‖2

)
. (15)

Note that the set of weight vectors in (15) are called the weight vectors of thecanonical hyperplanes (see
Vapnik, 1998, p. 412) and that this set ishighly dependent on the given training sample. Nonetheless, the
solution to (15) is (up to scaling) equivalent to the solution of (14) — a formulation much more amenable for
theoretical studies.

Interestingly, however, the quantityγxi (w) as implicitly defined in (13) is not only the distance of the
point yixi from the hyperplane having the normalw but also‖xi‖ times the Euclidean distance of the point
w from the hyperplane having the normalyixi (see Figure 1). Thusγz (w) can be viewed as the radius of
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the ball
{

v ∈W | ‖w−v‖ ≤ b(γz (w))
}

that only contains weight vectors in version spaceV (z). Here,
b : R

+ → R
+ is a strictly monotonic function of its argument and its effect is graphically depicted in Figure

1. As a consequence thereof, maximising the marginγz (w) over the choice ofw returns the classifierwSVM

that is the centre of the largest ball still inscribable in version space. Note that the whole reasoning relied
on the assumption that all training pointsxi have a constant norm in feature spaceK . If this assumption is
violated, each distance of a classifierw to the hyperplane having the normalyixi is measured on a different
scale and thus the points with the largest norm‖xi‖ in feature spaceK have the highest influence on the
resulting solution. To circumvent this problem is has been suggested elsewhere that input vectors should be
normalised in feature space before applying any kernel method — in particular the support vector machine
algorithm (see Herbrich and Graepel, 2001; Schölkopf et al., 1999; Joachims, 1998; Haussler, 1999). Fur-
thermore, all indicesISV ⊆ {1, . . . ,m} at which the minimumyi 〈xi,wSVM〉 in (14) is attained are the ones
for which yi 〈xi,w〉 = 1 in the formulation (15). As the latter are calledsupport vectors we see that the sup-
port vectors are the training points at which the largest inscribable ball touches the corresponding hyperplane{

w ∈W | (yi 〈xi,w〉= 0)
}

.

2.5 Applying the Kernel Trick

When solving (15) over the possible choices ofw ∈W it is well known that the solutionwSVM admits the
following representation

wSVM =
m

∑
i=1

αixi ,

that is the solution to (15) must live in the linear span of the training points. This follows naturally from the
following theorem (see also Schölkopf et al., 2001).

Theorem 11 (Representer Theorem) Suppose we are given a fixed mapping φ : X → K ⊆ �N
2 , a training

sample z = (x,y) ∈ Zm, a cost function c : X m×Y m×R
m → R∪{∞} strictly monotonically decreasing in

the third argument and the class of linear functions in K as given by (10). Then any wz ∈W defined by

wz := argmin
w∈W

c(x,y,(〈x1,w〉 , . . . ,〈xm,w〉)) (16)

admits a representation of the form

∃α ∈ R
m : wz =

m

∑
i=1

αixi . (17)

The proof is given in Appendix A.2. In order to see that this theorem applies to support vector machines note
that (14) is equivalent to the minimiser of (16) when using

c(x,y,(〈x1,w〉 , . . . ,〈xm,w〉)) = min
yi∈y

−yi 〈xi,w〉 ,

which is strictly monotonically decreasing in its third argument. A slightly more difficult argument is neces-
sary to see that the centre of mass (12) can also be written as a minimiser of (16) using a specific cost function

c. At first we recall that the centre of mass has the property of minimisingEW|Zm=z

[
‖w−W‖2

]
over the

choice ofw ∈W (see also (30)).

Theorem 12 (Sufficiency of the linear span) Suppose we are given a fixed mapping φ : X → K ⊆ �N
2 . Let

us assume that PW is uniform and PY|X=x,W=w (y) = f (sign(y〈x,w〉)), i.e. the likelihood depends on the
sign of the real-valued output y〈x,w〉 of w. Let Lx := {∑m

i=1 αixi | α ∈ R
m } be the linear span of mapped

data points {x1, . . . ,xm} and Wx := W ∩Lx. Then for any training sample z ∈ Zm and any w ∈W∫
W
‖w−v‖2 dPW|Zm=z (v) = C ·

∫
Wx

‖w−v‖2 dPW|Zm=z (v) , (18)
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that is, up to a constant C ∈ R
+ that is independent of w it suffices to consider vectors of unit length in the

linear span of the mapped training points {x1, . . . ,xm}.

The proof is given in Appendix A.3. An immediate consequence of this theorem is the fact that we only
need to consider them–dimensional sphereWx in order to find the centre of mass under the assumption of a
uniform priorPW. Hence a loss functionc such that (16) finds the centre of mass is given by

c(x,y,(〈x1,w〉 , . . . ,〈xm,w〉)) = 2

(
1−

∫
Rm

∑αi 〈xi,w〉dPA|Zm=(x,y)

)
wherePA|Zm=z is only non-zero for vectorsα such that‖∑m

i=1 αixi‖= 1 and is independent ofw.
The tremendous advantage of a representation of the solutionwz by (17) becomes apparent when consid-

ering the real-valued output of a classifier at any given data point (either training or test point)

〈wz,x〉=
〈

m

∑
i=1

αixi,x

〉
=

m

∑
i=1

αi 〈xi,x〉=
m

∑
i=1

αik (xi,x) .

Clearly, all that is needed in the feature spaceK is theinner product function

k (x, x̃) := 〈φ(x) ,φ(x̃)〉 . (19)

Reversing the chain of arguments indicates how the kernel trick may be used to find an efficient implementa-
tion. We fix a symmetric functionk : X ×X → R calledkernel and show that there exists a feature mapping
φk : X → K ⊆ �N

2 such that (19) is valid for allx, x̃ ∈ X . A sufficient condition fork being a valid inner
product function is given by Mercer’s theorem (see Mercer, 1909). In a nutshell, whenever the evaluation of
k at any given sample(x1, . . . ,xm) results in a positive semidefinite matrixGi j := k (xi,x j) thenk is a so called
Mercer kernel. The matrixG is called the Gram matrix and is the only quantity needed in support vector and
Bayes point machine learning. For further details on the kernel trick the reader is referred to Schölkopf et al.
(1999); Cristianini and Shawe-Taylor (2000); Wahba (1990); Vapnik (1998).

3. Estimating the Bayes Point in Feature Space

In order to estimate the Bayes point in feature spaceK we consider a Monte Carlo method, i.e. instead
of exactly computing the expectation (12) we approximate it by an average over weight vectorsw drawn
according toPW|Zm=z and restricted toWx (see Theorem 12) . In the following we will restrict ourselves to
the PAC likelihood given in (5) andPW being uniform on the unit sphereW ⊂ K . By this assumption we
know that the posterior is uniform over version space (see (6)). In Figure 2 we plotted an example for the
special case ofN = 3–dimensional feature spaceK .

It is, however, already very difficult to sample uniformly from version spaceV (z) as this set of points
lives on a convex polyhedron on the unit sphere in7 Wx. In the following two subsections we present two
methods to achieve this sampling. The first method develops on an idea of Ruján (1997) (later followed up by
a kernel version of the algorithm in Ruján and Marchand, 2000) that is based on the idea of playing billiards
in version spaceV (z), i.e. after entering the version space with a very simple learning algorithm such as the
kernel perceptron (see Algorithm 1) the classifierw is considered as a billiard ball and is bounced for a while
within the convex polyhedronV (z). If this billiard is ergodic with respect to the uniform distribution over
V (z), i.e. the travel time of the billiard ball spent in a subsetW ⊆V (z) is proportional to W

V (z) , then averaging
over the trajectory of the billiard ball leads in the limit of an infinite number of bounces to the centre of mass
of version space.

The second method presented tries to overcome the large computational demands of the billiard method
by only approximately achieving a uniform sampling of version space. The idea is to use the perceptron

7. Note that by Theorem 12 it suffices to sample from the projection of the version space ontoWx.
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Figure 2: Plot of a version space (convex polyhedron containing the black dot)V (z) in a 3–dimensional
feature spaceK . Each hyperplane is defined by a training example via its normal vectoryixi.

learning algorithm in dual variables with different permutationsΠ : {1, . . . ,m} → {1, . . . ,m} so as to obtain
different consistent classifierswi ∈ V (z) (see Watkin, 1993, for a similar idea). Obviously, the number of
different samples obtained is finite and thus it is impossible to achieve exactness of the method in the limit of
considering all permutations. Nevertheless, we shall demonstrate that in particular for the task of handwritten
digit recognition the achieved performances are comparable to state-of-the-art learning algorithms.

Finally, we would like to remark that recently there have been presented other efficient methods to es-
timate the Bayes point directly (Rychetsky et al., 2000; Minka, 2001). The main idea in Rychetsky et al.
(2000) is to work out all cornerswi of version space and average over them in order to approximate the
centre of mass of version space. Note that there are exactlym corners because thei–th cornerwi satisfies〈
x j,wi

〉
= 0 for all j = i andyi 〈xi,wi〉> 0. If X = (x1, . . . ,xm) is theN×m matrix of mapped training points

x = (x1, . . . ,xm) flipped to their correct side and we use the approach (17) forw this simplifies to

X′wi = X′Xαi = Gαi = (0, . . . ,0,yi,0. . . ,0)′ =: yiei

where the r.h.s. is thei–th unit vector multiplied byyi. As a consequence, the expansion coefficientsαi of the
i–th cornerwi can easily be computed asαi = yiG−1ei and then need to be normalised such that‖wi‖ = 1.
The difficulty with this approach, however, is the fact that the inversion of them×m Gram matrixG is O

(
m3
)

and is thus as computationally complex as support vector learning while not enjoying the anytime property
of a sampling scheme.

The algorithm presented in Minka (2001, Chapter 5) (also see Opper and Winther, 2000, for an equivalent
method) uses the idea of approximating the posterior measurePW|Zm=z by a product of Gaussian densities
so that the centre of mass can be computed analytically. Although the approximation of the cut-off posterior
overPW|Zm=z resulting from the delta-peaked likelihood given in Definition 6 by Gaussian measures seems
very crude at first glance, Minka could show that his method compares favourably to the results presented in
this paper.

3.1 Playing Billiards in Version Space

In this subsection we present the billiard method to estimate the Bayes point, i.e. the centre of mass of version
space when assuming a PAC likelihood and a uniform priorPW over weight vectors of unit length (the pseudo
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. fw j y4hx4;wi = 0g fw j y3hx3;wi = 0g

fw j y2hx2;wi = 0g

fw j y1hx1;wi = 0g

b0

b1

b2

b3

b4

b5

ŵcm

Figure 3: Schematic view of the kernel billiard algorithm. Starting atb0 ∈ V (z) a trajectory of billiard
bouncesb1, . . . ,b5, . . . is calculated and then averaged over so as to obtain an estimateŵcm of the
centre of mass of version space.

code is given on page 275). By Theorem 12 each positionb of the billiard ball and each estimatewi of the
centre of mass ofV (z) can be expressed as linear combinations of the mapped input points, i.e.

w =
m

∑
i=1

αixi, b =
m

∑
i=1

γixi , α,γ ∈ R
m .

Without loss of generality we can make the following ansatz for the direction vectorv of the billiard ball

v =
m

∑
i=1

βixi , β ∈ R
m .

Using this notation inner products and norms in feature spaceK become

〈b,v〉=
m

∑
i=1

m

∑
j=1

γiβ jk (xi,x j) , ‖b‖2 =
m

∑
i, j=1

γiγ jk (xi,x j) , (20)

wherek : X ×X → R is a Mercer kernel and has to be chosen beforehand. At the beginning we assume
thatw0 = 0⇔ α = 0. Before generating a billiard trajectory in version spaceV (z) we first run any learning
algorithm to find an initial starting pointb0 inside the version space (e.g. support vector learning or the kernel
perceptron (see Algorithm 1)). Then the kernel billiard algorithm consists of three steps (see also Figure 3):

1. Determine the closest boundary in directionvi starting from current positionbi.

Since it is computationally very demanding to calculate the flight time of the billiard ballon geodesics
of the hyper-sphereWx (see also Neal, 1997) we make use of the fact that the shortest distance in
Euclidean space (if it exists) is also the shortest distance on the hyper-sphereWx. Thus, we have for
the flight timeτ j of the billiard ball at positionbi in directionvi to the hyperplane with normal vector
y jx j

τ j =−
〈
bi,x j

〉〈
vi,x j

〉 . (21)

After calculating allm flight times, we look for the smallest positive, i.e.

c = argmin
j∈{i | τi>0}

τ j .
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Determining the closest bounding hyperplane in Euclidean space rather than on geodesics causes prob-
lems if the surface of the hyper-sphereWx is almost orthogonal to the direction vectorvi, in which case
τc → ∞. If this happens we randomly generate a direction vectorvi pointingtowards the version space
V (z). Assuming that the last bounce took place at the hyperplane having normalyc′xc′ this condition
can easily be checked by

yc′ 〈vi,xc′ 〉> 0. (22)

Note that since the samples are taking from the bouncing points the above procedure of dealing with
the curvature of the hyper-sphere does not constitute an approximation but is exact. An alternative
method of dealing with the problem of the curvature of the hyper-sphereW can be found in Minka
(2001, Section 5.8)

2. Update the billiard ball’s position tobi+1 and the new direction vector tovi+1.

The new pointbi+1 and the new directionvi+1 are calculated from

bi+1 = bi + τcvi , (23)

vi+1 = vi−2
〈vi,xc〉
‖xc‖2 xc . (24)

Afterwards the positionbi+1 and the direction vectorvi+1 need to be normalised. This is easily achieved
by equation (20).

3. Update the centre of masswi of the whole trajectory by the new line segment frombi to bi+1 calculated
on the hyper-sphereWx.

Since the solutionw∞ lies on the hyper-sphereWx (see Theorem 11) we cannot simply update the
centre of mass using a weighted vector addition. Let us introduce the operation⊕µ acting on vectors
of unit length. This function has to have the following properties∥∥s⊕µ t

∥∥2 = 1,∥∥t− s⊕µ t
∥∥ = µ‖t− s‖ ,

s⊕µ t = ρ1 (〈s, t〉 ,µ)s+ρ2 (〈s, t〉 ,µ) t ,

ρ1 (〈s, t〉 ,µ)≥ 0 , ρ2 (〈s, t〉 ,µ)≥ 0.

This rather arcane definition implements a weighted addition ofs and t such thatµ is the fraction
between the resulting chord length

∥∥t− s⊕µ t
∥∥ and the total chord length‖t− s‖. In Appendix A.4

it is shown that the following formulae forρ1 (〈s, t〉 ,µ) andρ2 (〈s, t〉 ,µ) implement such a weighted
addition

ρ1 (〈s, t〉 ,µ) = µ

√
−µ2−µ2 〈s, t〉−2

〈s, t〉+1
,

ρ2 (〈s, t〉 ,µ) = −ρ1 (〈s, t〉 ,µ)〈s, t〉± (µ2 (1−〈s, t〉)−1
)

.

By assuming a constant line density on the manifoldV (z) the whole line betweenbi andbi+1 can be
represented by the midpointm on the manifoldV (z) given by

m =
bi +bi+1

‖bi +bi+1‖ .

Thus, one updates the centre of mass of the trajectory by

wi+1 = ρ1

(
〈wi,m〉 , Ξi

Ξi +ξi

)
wi +ρ2

(
〈wi,m〉 , Ξi

Ξi +ξi

)
m ,
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whereξi = ‖bi−bi+1‖ is the length of the trajectory in thei–th step andΞi = ∑i
j=1 ξ j for the ac-

cumulated length up to thei–th step. Note that the operation⊕µ is only an approximation to addition
operation we sought because an exact weighting would require the arc lengths rather than chord lengths.

As a stopping criterion we suggest computing an upper bound onρ2, the weighting factor of the new part of
the trajectory. If this value falls below a pre-specified threshold (TOL) we stop the algorithm. Note that the
increase inΞi will always lead to termination.

3.2 Large Scale Bayes Point Machines

Clearly, all we need for estimating the centre of mass of version space (12) is a set of unit length weight
vectorswi drawn uniformly fromV (z). In order to save computational resources it might be advantageous
to achieve a uniform sample only approximately. The classical perceptron learning algorithm offers the
possibility to obtain up tom! different classifiers in version space simply by learning on different permutations
of the training sample. Of course due to the sparsity of the solution the number of different classifiers obtained
is usually considerably less.

A classical theorem to be found in Novikoff (1962) guarantees the convergence of this procedure and
furthermore provides an upper bound on the numbert of mistakes needed until convergence. More precisely,
if there exists a classifierwSVM with margin γz (wSVM) > 0 (see (13)) then the number of mistakes until
convergence — which is an upper bound on the sparsity of the solution — is not more thanς2γ−2

z (wSVM),
whereς is the smallest real number such that‖xi‖K ≤ ς. The quantityγz (wSVM) is maximised for the
solutionwSVM found by the support vector machine, and whenever the support vector machine is theoretically
justified by results from learning theory (see Shawe-Taylor et al., 1998; Vapnik, 1998) the ratioς2γ−2

z (wSVM)
is considerably less thanm, sayd � m. Algorithmically, we can benefit from this sparsity by the following
“trick”: since

w =
m

∑
i=1

αixi

all we need to store is them–dimensional vectorα. Furthermore, we keep track of them–dimensional vector
o of real-valued outputs

oi = 〈xi,wt〉=
m

∑
j=1

α jk (xi,x j)

of the current solution at thei–th training point. By definition, in the beginningα = o = 0. Now, if oiyi < 0
we updateαi by αi + yi and updateo by o j ← o j + yik (xi,x j) which requires onlym kernel calculations (the
evaluation of thei–th row of the Gram matrixG). In summary, the memory requirement of this algorithm
is 2m and the number of kernel calculations is not more thand ·m. As a consequence, the computational
requirement of this algorithm is no more than the computational requirement for the evaluation of the margin
γz (wSVM)! We suggest to use this efficient perceptron learning algorithm in order to obtain sampleswi for
the computation of the centre of mass (12).

In order to investigate the usefulness of this approach experimentally, we compared the distribution of
generalisation errors of samples obtained by perceptron learning on permuted training samples with samples
obtained by a full Gibbs sampling (see Graepel and Herbrich, 2001, for details on the kernel Gibbs sampler).
For computational reasons, we used only 188 training patterns and 453 test patterns of the classes “1” and
“2” from the MNIST data set8. In Figure 4 (a) and (b) we plotted the distribution over 1000 random samples
using the kernel9

k
(
x,x′
)

=
(〈

x,x′
〉
+1
)5

. (25)

Using a quantile-quantile (QQ) plot technique we can compare both distributions in one graph (see Figure 4
(c)). These plots suggest that by simple permutation of the training sample we are able to obtain a sample
of classifiers exhibiting a similar distribution of generalisation error to the one obtained by time-consuming
Gibbs sampling.

8. This data set is publicly available athttp://www.research.att.com/~yann/ocr/mnist/.
9. We decided to use this kernel because it showed excellent generalisation performance when using the support vector machine.
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Figure 4: (a) Histogram of generalisation errors (estimated on a test set) using a kernel Gibbs sampler.(b)
Histogram of generalisation errors (estimated on a test set) using a kernel perceptron.(c) QQ plot
of distributions (a) and (b). The straight line indicates that the two distributions only differ by an
additive and multiplicative constant, i.e. they exhibit the same rate of decay.

A very advantageous feature of this approach as compared to support vector machines are its adjustable
time and memory requirements and the “anytime” availability of a solution due to sampling. If the training
sample grows further and we are not able to spend more time learning, we can adjust the number of samples
w used at the cost of slightly worse generalisation error (see also Section 4).

3.3 Extension to Training Error

To allow for training errors we recall that the version space conditions are given by

∀(xi,yi) ∈ z : yi 〈xi,w〉= yi

m

∑
j=1

α jk (xi,x j) > 0. (26)

Now we introduce the following version space conditions in place of (26):

∀(xi,yi) ∈ z : yi

m

∑
j=1

α jk (xi,x j) >−λyiαik(xi,xi) , (27)

whereλ≥ 0 is an adjustable parameter related to the “softness” of version space boundaries.
Clearly, considering this from the billiard viewpoint, equation (27) can be interpreted as allowing pene-

tration of the walls, an idea already hinted at in Ruján (1997). Since the linear decision function is invariant
under any positive rescaling of expansion coefficientsα, a factorαi on the right hand side makesλ scale in-
variant as well. Although other ways of incorporating training errors are conceivable our formulation allows
for a simple modification of the algorithms described in the previous two subsections. To see this we note
that equation (27) can be rewritten as

∀(xi,yi) ∈ z : yi

(
m

∑
j=1

α j (1+λIi= j)k (xi,x j)

)
> 0.

Hence we can use the above algorithms but with an additive correction to the diagonal terms of the Gram ma-
trix . This additive correction to the kernel diagonals is similar to the quadratic margin loss used to introduce
a soft margin during training of support vector machines (see Cortes, 1995; Shawe-Taylor and Cristianini,
2000). Another insight into the introduction of soft boundaries comes from noting that the distance between
two pointsxi andx j in feature spaceK can be written∥∥xi−x j

∥∥2 = ‖xi‖2 +
∥∥x j
∥∥2−2

〈
xi,x j

〉
,
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Figure 5: Parameter spaces for a two dimensional toy problem obtained by introducing training error via an
additive correction to the diagonal term of the kernel matrix. In order to visualise the resulting
parameter space we fixedm = 3 and normalised all axes by the product of eigenvalues

√
λ1λ2λ3.

See text for further explanation.

which in the case of points of unit length in feature space becomes 2(1+λ− k (xi,x j)). Thus, if we addλ
to the diagonal elements of the Gram matrix, the points become equidistant forλ→ ∞. This would give the
resulting version space a more regular shape. As a consequence, the centre of the largest inscribable ball
(support vector machine solution) would tend towards the centre of mass of the whole of version space.

We would like to recall that the effective parameter space of weight vectors considered is given by

Wx :=

{
w =

m

∑
i=1

αixi

∣∣∣∣∣ ‖w‖2 =
m

∑
i=1

m

∑
j=1

αiα j
〈
xi,x j

〉
= 1

}
.

In terms ofα this can be rewritten as{
α ∈ R

m
∣∣ α′Gα = 1

}
Gi j =

〈
xi,x j

〉
= k (xi,x j) .

Let us represent the Gram matrix by its spectral decomposition, i.e.G = UΛU′ whereU′U = I and Λ =
diag(λ1, . . . ,λm) being the diagonal matrix of eigenvaluesλi. Thus we know that the parameter space is the
set of all coefficients̃α = U′α which fulfil {

α̃ ∈ R
m : α̃′Λα̃ = 1

}
.

This is the defining equation of anm–dimensional axis parallel ellipsoid. Now adding the termλ to the
diagonal ofG makesG a full rank matrix (see Micchelli, 1986). In Figure 5 we plotted the parameter space
for a 2D toy problem using onlym = 3 training points. Although the parameter space is 3–dimensional for
all λ > 0 we obtain a pancake like parameter space for small values ofλ. Forλ→ ∞ the set̃α of admissible
coefficients becomes them–dimensional ball, i.e. the training examples become more and more orthogonal
with increasingλ. The way we incorporated training errors corresponds to the choice of a new kernel given
by

kλ (x, x̃) := k (x, x̃)+λ · Ix=x̃ .

260



BAYES POINT MACHINES

.

.
.

.

.

.

.

.
.

.

.

.

.

.
.

.

.

.

.
.

.

.

.

.

.

..

. .
.

.

.

.

.

.

.

.

.

.

.

. ..

.

..

.

.

.

.

.
.

.

..

. .
.

.

.

.

.

.
.

.

.
.

.

.

.

..

.. .

.

.

...

.

.

.

.

.

.
.

. .

.

.

...

.

.

. .

.

.

.

.
. ..

.

.
..

.

.

.

.
.

.
.

...

. .

.

..

.

.

.

.

.
.

.

.

.

.

.

.
.

.

. .
.

.

.

.

.
.

.

.

. ..

. .

.

.

...

.

.

.

.

.

..

.

. .

.

..

.
.

.

.

.

.

.

.

.
.

.

.

.

..

. ..

.

.

.
..

.

.

. ..

.

. ..
.

.

.

. .

.

.
.

.

.
.

.

.

.

.

.

..

. .

.

.

.

.

.

.

.

.

.
.

.
..

.
..

..
.

.

.
.

.

.

.
.

.

.

.

.

.
.

.

.

. .

.

..

. .
.

.

.

. . .

.

.

.

. ..

.

. ..

.

.

.

. ..

.

.
.

.
.

.
.

.

.

.
.

.
. .

.

.
.

.

..

.

.

.
.

.
.

.

.
..

.

. .
.

.

.

. .

.
.
....

.

. .
.

.

.

..
.

.
.

.

.
. .

.

.
.

.

.

.

. .

.
.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.
.

.
.

.
.

.

.

..
.

.

..

.

.
.

.

.

.

.
.

.

.

.

. .
.

.

.

.
. ..

.

. .
.

.

.

.
.

.

..

.

. .

.

.

.

.

..

.

. .

... .

.

.

.

.

.

.

...

.
.

. .

. ..

. .

.

.

.
.

.
.

. .

.

.
.

.

.

.

.
.

..

.

. .

.

.
.

.

. .
.

.

.
. .

.

.
.

.

.

.

.
.

.

.

.
.

.
.

.

.

.
.

.

.

.....

.

.

. .

.

.

.
.

.

. .

.

.

.

.
.

..

.
.

.

.

.

.

.

.

.
. ...

.
.

.

.

.

.

.

.
.

.

...

.

.

.

. .. ..

.

.
.

.

. .
.

.

.
.

.

..
.

..

.

..

. .

.

.

......

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.
.

.

. . .

.
.

.

.

. .. ..

.

. .

.

.

.

. ..

.

.

..
.

.

.

.

.

.

.

.
.

.

.

.

.

.

.

.
.

.

.

.

. ..

.
.

.
.

.
.

.

.

.

.

.

.
.

.

.

. ..

.
.

.

.

.
.

.

.

.

.
. .

.

.

.

.
.

.

.
..

. .

.

.

.

.

.
.

.

.

.

...

.

.

.

.

.
...

. .

.

.

..

.
.

.
.

. .
.

..

.
.

.
.

.

.

.
.

.

.

.

..

. .
.

.

.
.

.

.
.

.

.

.
.. ..
.

.

.

.

. ..

. .

.

.

.

.

.

.

.

.
..

.
.

.

. .
.

.
.

.

.
.

.

.

.

.

.

.
.

.
.

..

.

..

.
.

.
.

.

. .

.

.
.

.
.

... .
.

.

.

...

.

.

.
.

. .
.

.

. .

.

. .
.

.

.

..

.

.

....

. .

.

.

.

.

.

.

.

.
. ..

. .

.

.

.

.
.

.

. .

.
...

.

.

.

.

.

.

.
.

.
.

.
.

.
.

.

.

...

.

.

.
.

.
.

.

.. ...

. .

.

.
.

.

..
.

.

.

.

.

.

.

.

.

.
.

.

.

.

.

.

.
..

.

.

.

.

. .

.

.
.

.

.

.

.

.

.

.

.

.
.

.

.

. .

.

.

.

.

.

. .

.

..

.

.

.
.

. ..
.

.

.

..
.

.

.
.

.

.

.

.

.

. .
.

. ..

.

.
.

.

.
.

.

.

.
..

.

.

. ..

..
..

.

.

.

.

.

. ..
..

.

.

.
.

.

.
.

.
.

.

.
.

.
.

. .

.

..

.

.

.

.
.

.

.

.

.
.

. .

. ..

.

.

.
.

.

. .

.

.

.

..

.

.

.

. .
.

..

.
....

.

.

.
..
..

..

.

.

.

.

..

.

.

.

.

.

.

.

.

.

..
.

.
.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

.

.
..

.
.

.

.

.

.

.

.

.

...

.

.
.

.

..

..

.

.

.

.

.

.
..

.

.

. .

.

..

.

.

..
.

.

.

.

. ..

. ..

.

.
..

.

.

.

.
..

.

.

.

.

.

.

.

.

.

.

.

.

.
..

.

.

.

.

.

.
.

. .

.

..

. .

...

.

.

. ..

..

.

.

..

.

.

.

.

.

. ..

.

.
.

.

.

.

.

.

.

..

.

. ..

.

.

. ..

.

.

.

.

.

.
.

.

.

.

.

.
.

.

.

.

. ..

.

.
.

.
.

.

.
.

.

. .

.

.
.

.

.

.

.

.

.

.

..

.
.

.

.

.

.

. .

.

.

.

.

.

.
.

.

.

.

. .
.

.

.

.
.

.. .

.

.

....

.

.

.

.

.
.

.

.

.

.

.

.
.

.

.
.

..

.

.

.

.

.

.

.
.

.

..

.

.
.

.

..

..

.

.
.

.
.

. .

.

.
.

..

.

.
.

.

.

.

.

.

.

.

.

.
.

.

..

.

.
.

.
.

.

.

.
.

.

.

.
.

.

.

.

.

.

.

.
..

.

.

.

.

.

.
.

.

. .

. .

. .

.

.

.

.

.

.

.

.

. ....

.

.

.

. .

.

..
.

. .

.

.

.
.

.

..
.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

. .

.
.

.

.

. .

.

.
.

..

.
..

.

.
.

. ..

.

.

. ..

.

. ..
.

..

.

.

..

. .

.
..
.

.

.
.

.

.

.

.

.

.
.

.

.
.

..

.

.

.

. .
..

.

.

.
..

.

.

. ..

.

.

.

.

. .

.

.
.

.

.

. .. .
.

.

.
.

...

. .. .

.

.
.

.
.

.

.

. .

.
.

.

. .

.

..

.

.
.

.

.

..

.

.

.

.

.

. .

.

.

.

.

.
..

.

.
.

.

..

.

.

.

.

..

.

.

.
.

.

. .

.

. .
.

.

.. .. .

.

.

.

.
.

.

.

.

.
.

.
.

.
.

.
.

.

.

.

..

.
.

.
.

. .
.

.

.
.

.

.

.

.
.

.

.. ..

.

.
.

.

.

.

.

.

.

.

.
.. ..

..

.

.

.
.

.

.

.

.
.

.

. ..

.

.

. .

.

.

.

. .

.
.

.

.

.

.

.

.

.

. ..

.

.

.

.

.

.

....

.

.

.

.
..

.
.

.

.
.

.

.

.

.

.

.

.
.

.

.
.

.
.

.

.

.
.

.

.

. .

.
.

.
.

.

.
.

.
.

.

.
.

.

.

.

.
. .

..

.

.

.
.

.

.

.

.

...

.

.
.

.

.

.

.

. .. .

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...

.

..

.

.

.

. .

. .

.

.

.

. .

. .

.
..

.

.

. ..

.
.

. ..
.

.

.

.

.

.

. ..

.

.

.

.

.

.
.

.

.

.

. .
.

.

.

.

.

.

.

.

.. .
.

.
.

.

.

.

.

.
.

.

.

.

.

.

.

.

.

.

.

. .

.

.

.

.

.

.

. .

.

.

.

.

..

.

. ..

.

.
..

. ..

.

.

.

.

.
..

.

.
.

.
. .

Figure 6: Version spacesV (z) for two 3–dimensional toy problems.(Left) One can see that the approxima-
tion of the Bayes point (diamond) by the centre of the largest inscribable ball (cross) is reasonable
if the version space is regularly shaped.(Right) The situation changes in the case of an elongated
and asymmetric version spaceV (z).

Finally, note that this modification of the kernel hasno effect on new test pointsx /∈ x that are not elements
of the training samplex. For an explanation of the effect ofλ in the context of Gaussian processes see Opper
and Winther (2000).

4. Experimental Results

In this section we present experimental results both onUniversity of California, Irvine (UCI) benchmark
datasets10 and on two bigger task of handwritten digit recognition, namelyUS postal service (USPS) and
modified National Institute of Standards (MNIST) digit recognition tasks. We compared our results to the
performance of a support vector machine using reported test set performance from Rätsch et al. (2001) (UCI)
Schölkopf (1997, p. 57) (USPS) and Cortes (1995) (MNIST). All the experiments were done using Algorithm
2 in Appendix B.

4.1 Artificial Data

For illustration purposes we setup a toy dataset of 10 training and 10000 test points inR
3. The data points

were uniformly generated in[−1,1]3 and labelled by a randomly generated linear decision rule using the
kernel k (x, x̃) = 〈x, x̃〉. In Figures 6 we illustrate the potential benefits of a Bayes point machine over a
support vector machine for elongated version spaces. By using the billiard algorithm to estimate the Bayes
point (see Subsection 3.1), we were able to track all positionsbi where the billiard ball hits a version space
boundary. This allows us to easily visualise the version spacesV (z). For the example illustrated in Figure
6 (right) the support vector machine and Bayes point solutions with hard margins/boundaries are far apart
resulting in a noticeable reduction in generalisation error of the Bayes point machines (8.0%) compared to
the support vector machine (15.1%) solution whereas for regularly shaped version spaces (Figure 6 (left)) the
difference is negligible (6.1% to 6.0%).

10. publicly available athttp://www.ics.uci.edu/~mlearn/MLRepository.html.
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Figure 7: Decision functions for a 2D toy problem of a support vector machine (SVM)(left) and Bayes point
machine (BPM)(right) using hard margins (λ = 0) and RBF kernels withσ = 1. Note that the
Bayes point machine result in a much “flatter” function sacrificing margin (γz (wSVM) = 0.036→
γz (wcm) = 0.020) for smoothness.

In a second illustrative example we compared the “smoothness” of the resulting decision function when
using kernels both with support vector machines and Bayes point machines. In order to model a non-linear
decision surface we used the radial basis function (RBF) kernel

k (x, x̃) = exp

(
−‖x− x̃‖2

2σ2

)
. (28)

Figure 7 shows the resulting decision functions in the hard margin/boundary case. Clearly, the Bayes point
machine solution appears much smoother than the support vector machine solution although its geometrical
margin of 0.020 is significantly smaller.

The above examples should only be considered as aids to enhance the understanding of the Bayes point
machines algorithm’s properties rather than strict arguments about general superiority.

4.2 UCI Benchmark Datasets

To investigate the performance on real world datasets we compared hard margin support vector machines to
Bayes point machines with hard boundaries (λ = 0) when using the kernel billiard algorithm described in
Subsection 3.1. We studied the performance on 5 standard benchmarking datasets from the UCI Repository,
andbanana andwaveform, two toy datasets (see Rätsch et al., 2001). In each case the data was randomly
partitioned into 100 training and test sets in the ratio 60%:40%. The means and standard deviations of the
average generalisation errors on the test sets are presented as percentages in the columns headedSVM (hard
margin) andBPM (λ = 0) in Table 1. As can be seen from the results, the Bayes point machine outperforms
support vector machines on almost all datasets at a statistically significant level. Note, however, that the
result of thet-test is strictly valid only under the assumption that training and test data were independent —
an assumption which may be violated by the procedure of splitting the one data set into 100 different pairs of
training and test sets (Dietterich, 1998). Thus, the resultingp–values should serve only as an indication for
the significance of the result.

In order to demonstrate the effect of positiveλ (soft boundaries) we trained a Bayes point machine with
soft boundaries and compared it to training a support vector machine with soft margin using the same Gram
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SVM (hard margin) BPM (hard boundary) σ p-value
Heart 25.4±0.40 22.8±0.34 10.0 1.00
Thyroid 5.3±0.24 4.4±0.21 3.00 1.00
Diabetes 33.1±0.24 32.0±0.25 5.0 1.00
Waveform 13.0±0.10 12.1±0.09 20.0 1.00
Banana 16.2±0.15 15.1±0.14 0.5 1.00
Sonar 15.4±0.37 15.9±0.38 1.0 0.01
Ionosphere 11.9±0.25 11.5±0.25 1.5 0.99

Table 1: Experimental results on seven benchmark datasets. We used the RBF kernel given in (28) with
values ofσ found optimal for SVMs. Shown is the estimated generalisation error in percent. The
standard deviation was obtained on 100 different runs. The final column gives thep–values of
a pairedt–test for the hypothesis “BPM is better than SVM” indicating that the improvement is
statistically significant.

matrix (see equation (27)). It can be shown that such a support vector machine corresponds to a soft margin
support vector machine where the margin slacks are penalised quadratically (see Cortes, 1995; Shawe-Taylor
and Cristianini, 2000; Herbrich, 2001). In Figure 8 we have plotted the generalisation error as a function ofλ
for the toy problem from Figure 6 and the datasetheart using the same setup as in the previous experiment.
We observe that the support vector machine with an�2 soft margin achieves a minimum of the generalisation
error which is close to, or just above, the minimum error which can be achieved using a Bayes point machine
with positiveλ. This may not be too surprising taking the change of geometry into account (see Section 3.3).
Thus, also the soft margin support vector machine approximates Bayes point machine with soft boundaries.

Finally we would like to remark that the running time of the kernel billiard was not much different from
the running time of our support vector machine implementation. We did not use any chunking or decomposi-
tion algorithms (see, e.g. Osuna et al., 1997; Joachims, 1999; Platt, 1999) — which in case of support vector
machines would have decreased the running time by orders of magnitudes. The most noticeable difference in
running time was with thewaveform andbanana dataset where we are givenm = 400 observations. This can
be explained by the fact that the computational effort of the kernel billiard method isO

(
B ·m2

)
whereB is the

number of bounces. As we set our tolerance criterion TOL for stopping very low (≈ 10−4), the approximate
numberB of bounces for these datasets wasB ≈ 1000. Hence, in contrast to the computational effort of
using the support vector machines ofO

(
m3
)

the numberB of bounces lead to a much higher computational
demand when using the kernel billiard.

4.3 Handwritten Digit Recognition

For the two tasks we now consider our inputs aren×n grey value images which were transformed inton2–
dimensional vectors by concatenation of the rows. The grey values were taken from the set{0, . . . ,255}.
All images were labelled by one of the ten classes “0” to “9”. For each of the ten classesy = {0, . . . ,9} we
ran the perceptron algorithmL = 10 times each time labelling all training points of classy by +1 and the
remaining training points by−1. On a Pentium III 500 MHz with 128 MB memory each learning trial took
10−20 minutes (MNIST) or 1−2 minutes (USPS), respectively11. For the classification of a test imagex

11. Note, however, that we made use of the fact that≈ 40% of the grey values of each image are 0 since they encode background.
Therefore, we encoded each image as an index-value list which allows much faster computation of the inner products〈x, x̃〉 and
speeds up the algorithm by a factor of 2–3.
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Figure 8: Comparison of soft boundary Bayes point machine with soft margin support vector machine. Plot-
ted is the generalisation error versusλ for a toy problem using linear kernels(left) and theheart
dataset using RBF kernels withσ = 3.0 (right). The error bars indicate one standard deviation of
the estimated mean.

we calculated the real-valued output of all 100 different classifiers12 by

fi (x) =
〈x,wi〉
‖wi‖‖x‖ =

m
∑
j=1

(αi) j k (x j,x)√
m
∑

r=1

m
∑

s=1
(αi)r (αi)s k (xr,xs)

√
k (x,x)

,

where we used the kernelk given by (25). Here,(αi) j refers to the expansion coefficient corresponding to the
i–th classifier and thej–th data point. Now, for each of the ten classes we calculated the real-valued decision
of the Bayes point estimatêwcm,y by13

fbp,y (x) = 〈x, ŵcm,y〉= 1
L

L

∑
i=1

〈x,wi+yL〉 .

In a Bayesian spirit, the final decision was carried out by

hbp(x) := argmax
y∈{0,...,9}

fbp,y (x) .

Note thatfbp,y (x) can be interpreted as an (unnormalised) approximation of the posterior probability thatx is
of classy when restricted to the function class (10) (see Platt, 2000). In order to test the dependence of the
generalisation error on the magnitude maxy fbp,y (x) we fixed a certain rejection rater ∈ [0,1] and rejected the
set ofr ·10000 test points with the smallest value of maxy fbp,y (x).

MNIST Handwritten Digits In the first of our large scale experiment we used the full MNIST dataset
with 60000 training examples and 10000 test examples of 28×28 grey value images of handwritten digits.
The plot resulting from learning only 10 consistent classifiers per class and rejection based on the real-
valued output of the single Bayes points is depicted in Figure 9 (left). As can be seen from this plot, even
without rejection the Bayes point has excellent generalisation performance when compared to support vector
machines which achieve a generalisation error of14 1.4%. Furthermore, rejection based on the real-valued

12. For notational simplicity we assume that the firstL classifiers are classifiers for the class “0”, the nextL for class “1” and so on.
13. Note that in this subsectiony ranges from{0, . . . ,9}.
14. The result of 1.1% with the kernel (25) and a polynomial degree of four could not be reproduced and is thus considered invalid

(personal communication with P. Haffner). Note also that the best results with support vector machines were obtained when using
a soft margin.
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Figure 9: Generalisation error as a function of the rejection rate for the MNIST and USPS data set.(Left)
For MNIST, the support vector machine achieved 1.4% without rejection as compared to 1.46% for
the Bayes point machine. Note that by rejection based on the real-valued output the generalisation
error could be reduced to 0.1% indicating that this measure is related to the probability of mis-
classification of single test points.(Right) On USPS, the support vector machine achieved 4.6%
without rejection as compared to 4.73% for the Bayes point machine.

output fbp(x) turns out to be excellent thus reducing the generalisation error to 0.1%. One should also bear
in mind that the learning time for this simple algorithm was comparable to that of support vector machines
which need≈ 8 hours per digit15 (see Platt, 1999, p. 201, Table 12.2).

USPS Handwritten Digits In the second of our large scale experiments we used the USPS dataset with
7291 training examples an 2007 test examples of 16× 16 grey value images of handwritten digits. The
resulting plot of the generalisation error when rejecting test examples based on the real-valued outputs of
the single Bayes points is shown in Figure 9 (right). Again, the resulting classifier has a generalisation error
performance comparable to support vector machines whose best results are 4.5% when using a soft margin
and 4.6% in the hard margin scenario. In Figure 10 we plotted the 25 most commonly used imagesxi ∈ x
with non-zero coefficients(α j)i across the 100 different classifiers learned. Though no margin maximisation
was performed it turns out that in accordance with the “support vector philosophy” these are the hard patterns
in the datasets with respect to classification. Moreover, as can be seen from the 1–st, 6–th and 8–th example
there is clearly noise in the dataset which could potentially be taken into account using the techniques outlined
in Subsection 3.3 at no extra computational cost.

5. Discussion and Conclusion

In this paper we presented two estimation methods for the Bayes point for linear classifiers in feature spaces.
We showed how the support vector machine can be viewed as an (spherical) approximation method to the
Bayes point hyperplane. By randomly generating consistent hyperplanes playing billiards in version space we
showed how to stochastically approximate this point. In the field of Markov Chain Monte Carlo methods such
approaches are known asreflective slice sampling (Neal, 1997). Current investigations in this field include
the question of ergodicity of such methods. The second method of estimating the Bayes point consists of
running the perceptron algorithm with several permutation of the training sample in order to average over the
sample thereby obtained. By its inherent simplicity it is much more amenable to large scale problems and in
particular compares favourably to state-of-the-art methods such as support vector learning.

15. Recently, DeCoste and Schölkopf (2002) demonstrated that an efficient implementation of the support vector machine reduces the
amount of learning time to≈ 1 hour per digit.
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39/5 33/3 32/6 31/4 31/8

31/7 31/3 30/5 30/7 29/4

29/4 28/9 28/4 28/2 28/4

27/7 27/4 27/8 27/4 27/4

27/2 26/3 26/6 26/4 26/2

Figure 10: Shown are the 25 most commonly used examplesxi ∈ x (non-zero coefficients(α j)i for many
j ∈ {1, . . . ,100}) from the USPS dataset across the 100 different classifiers learned using the per-
ceptron learning algorithm. The two numbers below each digit give the number of classifiers they
appeared in and the true classy ∈ {0, . . . ,9} in the training sample. Interestingly, in accordance
with the philosophy behind support vectors these are the “hardest” patterns with respect to the
classification task although no explicit margin maximisation was performed.
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The centre of mass approach may also be viewed as a multidimensional extension of thePitman estimator
(Pitman, 1939) if the weight vectorw is thought of as a location parameter to be estimated from the data.
Unfortunately, neither the centre of mass of version space nor the support vector solution are invariant under
general linear transformations of the data but only under the class of orthogonal transformations (see, e.g.
Schölkopf, 1997). For the centre of mass this is due to the normalisation of the weight vector. Note that it is
this normalisation that makes it conceptually hard to incorporate a bias dimension into our framework.

We presented a derivation of the Bayes point as the optimal projection of the Bayes classification strategy.
This strategy is known to be the optimal strategy, i.e. the classification strategy which results in classifications
with the smallest generalisation error, when considering the generalisation erroron average over the random
draw of target hypothesis according to the priorPH. It is worthwhile to mention, however, that recent results
in the PAC community allow one to obtain performance guarantees for the Bayesian classification strategy
evenfor single target hypotheses h ∼ PH which hold for most random draws of the training sample used
(see McAllester, 1998, 1999). The results indicate that the fraction of the volume of parameter space to the
volume of version space plays a crucial role in the generalisation error of Bayesian classifiers. It could be
shown elsewhere (Herbrich et al., 1999b) that these bounds can be extended tosingle classifiers and then
involve the volume of the largest point symmetric body around the classifier fully contained in version space
(see Figure 2). These results may additionally motivate the centre of mass as a classifier with good volume
ratio and thus good generalisation. The results also indicate that under circumstances where the shape of the
version space is almost spherical the classical support vector machine gives the best result (see, e.g. Herbrich
and Graepel, 2001).

In a series of experiments it has been shown that the Bayes point, i.e. the centre of mass of version space,
has excellent generalisation performance — even when only broadly approximated by the average classifier
found with simple perceptrons. Furthermore, it was be demonstrated that the real-valued output of the Bayes
point on new test points serves as a reliable confidence measure on its prediction. An interesting feature of the
Bayes point seems to be that the “hardest” patterns in the training sample tend to have the largest contribution
in the final expansion too. This is in accordance with the support vector philosophy although the Bayes point
machine algorithm does not perform any kind of margin maximisation explicitly.

Bayes points in feature space constitute an interesting bridge between the Bayesian approach to machine
learning and statistical learning theory. In this paper we have shown that they outperform hard margin sup-
port vector machines. It is well known that the introduction of a soft margin improves the generalisation
performance of support vector machines on most datasets by allowing for training errors. Consequently,
we introduced a mechanism for Bayesian learning with training errors admitted. A comparison of the gen-
eralisation performance of the two types of systems shows that they exhibit a much closer generalisation
performance than in the hard boundary/margin case.

Although it is generally believed that sparsity in terms of the expansion coefficientsα is an indicator for
good generalisation (see, e.g. Littlestone and Warmuth, 1986; Herbrich et al., 2000b) the algorithms presented
show that also dense classifiers exhibit a good generalisation performance. An interesting question arising
from our observation is therefore, which properties of single classifiers in version space are responsible for
good generalisation?
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Figure 11: The fraction of points on the circle which are differently classified byw andv is depicted by the
solid black arc. Note that this fraction is in general given by2α

2π = α
π = arccos(〈w,v〉)

π .

Appendix A. Proofs

A.1 Convergence of Centre of Mass to the Bayes Point

In this section we present the proof of Theorem 10. We start with a simple lemma.

Lemma 13 (Generalisation Error for Spherical Distributions in Feature Space) Suppose we are given a
fixed mapping φ : X → K ⊆ �N

2 resulting in {x := φ(x) | x ∈ X }. Furthermore let us assume that PX is
governed by (11). Then, for all w, ‖w‖= 1, and v, ‖v‖= 1, it holds true that

EX [l0−1 (sign(〈X,w〉) ,sign(〈X,v〉))] =
arccos(〈w,v〉)

π
.

Proof For a fixed valuer ∈R
+ let us consider allx such that‖x‖2 = r2. Givenw∈K andv∈K we consider

the projectionPw,v : K →K into the linear space spanned byw andv and its complementP⊥w,v, i.e.

∀x ∈K : x = Pw,v (x)+P⊥w,v (x) .

Then forw (andv) it holds true that

sign(〈x,w〉) = sign
(〈

Pw,v (x)+P⊥w,v (x) ,w
〉)

= sign
(
〈Pw,v (x) ,w〉+

〈
P⊥w,v (x) ,w

〉)
= sign(〈Pw,v (x) ,w〉) .

Hence for any value ofr ∈ R
+ the notion of Figure 11 applies and gives

∀r ∈ R
+ : EX| ‖X‖=r [l0−1 (sign(〈X,w〉) ,sign(〈X,v〉))] = arccos(〈w,v〉)

π
.

268



BAYES POINT MACHINES

Thus integrating overr results in

EX [l0−1 (sign(〈X,w〉) ,sign(〈X,v〉))] =
∫ +∞

0

2√
π

exp
(−r2) · arccos(〈w,v〉)

π
dr

=
arccos(〈w,v〉)

π
.

According to Definition 9 and the previous lemma, in order to find the Bayes pointwbp for a given training
samplez we need to find the vectorv which minimises the following function

EX

[
EW|Zm=z [l0−1 (sign(〈X,v〉) ,sign(〈X,W〉))]]
= EW|Zm=z [EX [l0−1 (sign(〈X,v〉) ,sign(〈X,W〉))]]

= EW|Zm=z

[
arccos(〈v,W〉)

π

]
subject to the constraint‖v‖= 1. Hence we have to determine the saddle point of the following Lagrangian

Lexact(v,α) = EW|Zm=z

[
arccos(〈v,W〉)

π

]
+α(〈v,v〉−1) ,

w.r.t. v andα. The difficulty with this expression, however, is that by

∇vLexact(v,α)|vbp
= EW|Zm=z

− W√
1− (〈vbp,W

〉)2
+2αvbp = 0,

2αvbp = EW|Zm=z

 W√
1− (〈vbp,W

〉)2
 ,

the resulting fix-point equations for all componentsvi are coupled because of the(1− (〈v,w〉)2)−
1
2 term

within the expectation thus involving all components. Nevertheless, we can find a good proxy for arccos(〈v,w〉)/π
by (1−〈v,w〉)/2 (see Figure 12 on page 270). This is made more precise in the following lemma.

Lemma 14 (Quality of Euclidean Distance Proxy) Suppose we are given a fixed mapping φ : X →K ⊆ �N
2

resulting in {x := φ(x) | x ∈ X }. Furthermore let us assume that PX is governed by (11). Given a fixed
vector v ∈K of unit length, i.e. ‖v‖= 1, let us finally assume that

min
w:PW|Zm=z(w)>0

|〈v,w〉|> ε . (29)

Then we know that

EW|Zm=z [EX [l0−1 (sign(〈X,W〉) ,sign(〈X,v〉))]] ≤ EW|Zm=z

[
1
4
‖W−v‖2

]
+κ(ε) ,

EW|Zm=z [EX [l0−1 (sign(〈X,W〉) ,sign(〈X,v〉))]] ≥ EW|Zm=z

[
1
4
‖W−v‖2

]
−κ(ε) ,

where

κ(ε) :=
{ arccos(ε)

π − 1−ε
2 if ε < 0.23

0.11 otherwise
.
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Figure 12: Plot of the functions arccos(x)/π and(1− x)/2 vs.x. As we can see, translating the latter func-
tion by not more than≈ 0.11 shows that it is a both an upper and lower bound for arccos(x)/π
and thus a reasonable proxy.

Proof Using Lemma 13 we only need to show that under the assumption (29) it holds true that

1
4
‖v−w‖2−κ(ε)≤ arccos(〈v,w〉)

π
≤ 1

4
‖v−w‖2 +κ(ε) .

At first we notice that

1
4
‖v−w‖2 =

1
4

(
‖v‖2−2〈v,w〉+‖w‖2

)
=

1−〈v,w〉
2

.

Thus let us determine the maximal difference in

f (x) =
arccos(x)

π
− 1− x

2

in the interval(−1,1). A straightforward calculation reveals that the maximum occurs atx∗ =
√

1−4π−2 and
is 0.10< f (x∗) < 0.11. Hence wheneverε < 1−√1−4π−2 < 0.23 we can directly usef (x) which itself is
in the worst case upper bounded by 0.11. Noticing that∀x ∈ (0,1) : f (x) =− f (−x) proves the lemma.

If we replace arccos(〈v,w〉)/π by ‖w−v‖2/4 on the basis of the previous lemma we obtain the simpler
problem of determining the saddle point of the Lagrangian

Lapprox(v,α) = EW|Zm=z

[
1
4
‖W−v‖2

]
+α

(
v′v−1

)
.

Taking the derivative w.r.t.v thus yields

∇vLapprox(v,α)
∣∣
vcm

= EW|Zm=z

[
−1

2
W

]
+2αvcm = 0,

2αvcm = EW|Zm=z

[
1
2
W

]
. (30)
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The value ofα is determined by multiplying the whole expression byvcm and utilising the constraintv′cmvcm =
1, i.e.

2αv′cmvcm = 2α = EW|Zm=z

[
1
2
〈W,vcm〉

]
α =

1
4
EW|Zm=z [〈W,vcm〉] .

Resubstituting this expression into (30) finally yields

vcm =
1

4α
EW|Zm=z [W] =

EW|Zm=z [W]〈
EW|Zm=z [W] ,vcm

〉 ,

whose only solution is given by

vcm =
EW|Zm=z [W]∥∥EW|Zm=z [W]

∥∥ .

A.2 Proof of Theorem 11

Proof Givenz = (x,y)∈Zm we consider the projectionPx : W →K that maps all vectors of unit length in the
linear span of the points{φ(x1) , . . . ,φ(xm)} = {x1, . . . ,xm} and the projectionP⊥x : W → K that maps into
the complement of the linear span of{x1, . . . ,xm}. Thus, for any vectorw ∈K we havew = Px (w)+P⊥x (w)
which immediately implies that for all(xi,yi) ∈ z

〈xi,w〉=
〈

xi,Px (w)+P⊥x (w)
〉

= 〈xi,Px (w)〉+
〈

xi,P⊥x (w)
〉

= 〈xi,Px (w)〉 .

Supposewz is a minimiser of (16) butPx (wz) = wz, i.e. ‖Px (wz)‖< ‖wz‖= 1. Then

c(x,y,(〈x1,wz〉) , . . . ,〈xm,wz〉) = c(x,y,(〈x1,Px (wz)〉) , . . . ,〈xm,Px (wz)〉)
> c

(
x,y,‖Px (wz)‖−1 (〈x1,Px (wz)〉) , . . . ,〈xm,Px (wz)〉

)
= c

(
x,y,

(〈
x1,

Px (wz)∥∥Px(wz)
∥∥
〉)

, . . . ,

〈
xm,

Px (wz)∥∥Px(wz)
∥∥
〉)

,

where the second line follows from the assumption thatc is strictly monotonically decreasing in the third
argument. We see thatwz cannot be the minimiser of (16) and by contradiction it follows that the minimiser
must admit the representation (17).

A.3 Sufficiency of the Linear Span — Proof of Theorem 12

Proof Let us rewrite the l.h.s. of (18)∫
W
‖w−v‖2 dPW|Zm=z (v) =

∫
W

2(1−〈w,v〉) dPW|Zm=z (v)

= 2−2
∫

W
∑

b∈{−1,+1}m

m

∏
i=1

Isign(yi〈xi,v〉)=bi
〈w,v〉 dPW|Zm=z (v)

= 2−2C ∑
b∈{−1,+1}m

∫
W

m

∏
i=1

Isign(yi〈xi,v〉)=bi
〈w,v〉 f (bi) dv︸ ︷︷ ︸

A(w,z,b)

, (31)
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where the first line follows by the assumption thatw,v ∈W , the second line is true because only one sum-
mationb leads to a non-zero product and the third line follows from

dPW|Zm=z (v) =
∏m

i=1 f (sign(yi 〈xi,v〉)) · 1∫
W dw̃∫

W ∏m
i=1 f (sign(yi 〈xi,u〉)) 1∫

W dw̃ du
dv

= ∏m
i=1 f (sign(yi 〈xi,v〉))∫

W ∏m
i=1 f (sign(yi 〈xi,u〉)) du

dv = C ·
m

∏
i=1

f (bi) dv .

Let us consider the expressionA(w,z,b). For a fixed setz = (x,y) ∈ Zm let Px : W → K andP⊥x : W →
K be the projection of unit length vectors intoLx and its orthogonal complement, respectively. Then, by
construction we know that

yi 〈xi,v〉= yi

〈
xi,Px (v)+P⊥x (v)

〉
= yi 〈xi,Px (v)〉+ yi

〈
xi,P⊥x (v)

〉
= yi 〈xi,Px (v)〉 .

As a consequence,

sign
(

yi

〈
xi,Px (v)+P⊥x (v)

〉)
= bi ⇔ sign

(
yi

〈
xi,Px (v)−P⊥x (v)

〉)
= bi , (32)

which implies that

A(w,z,b) =
∫

W

m

∏
i=1

Isign(yi〈xi,Px(v)〉)=bi
〈w,Px (v)〉 f (bi) dv , (33)

because by (32) all the inner products with orthogonal components are vanishing. Noticing that∀v ∈W :
‖Px (v)‖ ≤ 1 we can rewrite (33) as

A(w,z,b) =
∫

K \Lx

∫
Lx

I‖v+u‖=1

m

∏
i=1

Isign(yi〈xi,u〉)=bi
〈w,u〉 f (bi) dudv

=
∫ 1

0

(∫
K \Lx

I‖v‖=1−r dv
)∫

Lx

I‖u‖=r

m

∏
i=1

Isign(yi〈xi,u〉)=bi
〈w,u〉 f (bi) dudr

Lastly, for allu with ‖u‖= r we use the fact that
m

∏
i=1

Isign(yi〈xi,u〉)=bi
〈w,u〉 = r ·

m

∏
i=1

Isign(r·yi〈xi,
u
r 〉)=bi

〈
w,

u
r

〉
= r ·

m

∏
i=1

Isign(yi〈xi,
u
r 〉)=bi

〈
w,

u
r

〉
, (34)

that is the feasibility of a pointu does not change under rescaling ofu. Combining (34), (33) and (31) we
have shown that there exists a constantC ∈ R

+ such that∫
W
‖w−v‖2 dPW|Zm=z (v) = C ·

∫
Wx

‖w−v‖2 dPW|Zm=z (v) .

A.4 A derivation of the operation ⊕µ

Let us derive operation⊕µ acting on vectors of unit length. This function has to have the following properties
(see Section 3.1) ∥∥s⊕µ t

∥∥2 = 1, (35)∥∥t− s⊕µ t
∥∥ = µ‖t− s‖ , (36)

s⊕µ t = ρ1s+ρ2t , (37)

ρ1≥ 0 , ρ2≥ 0. (38)
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Here we assume that‖s‖2 = ‖t‖2 = 1. Inserting equation (37) into (35) results in

‖ρ1s+ρ2t‖2 = 〈ρ1s+ρ2t,ρ1s+ρ2t〉= ρ2
1 +ρ2

2 +2ρ1ρ2 〈s, t〉= 1. (39)

In a similar fashion combining equation (37) and (36) gives∥∥t− s⊕µ t
∥∥2 = µ2‖t− s‖2

‖(1−ρ2) t−ρ1s‖2 = µ2‖t− s‖2

(1−ρ2)
2−2(1−ρ2)ρ1 〈s, t〉+ρ2

1 = 2µ2 (1−〈s, t〉) . (40)

Note that equation (39) is quadratic inρ2 and has the following solution

ρ2 = −ρ1 〈s, t〉±
√

ρ2
1 (〈s, t〉)2−ρ2

1 +1︸ ︷︷ ︸
A

. (41)

Let us insert equation (41) into the l.h.s. of equation (40). This gives the following quadratic equation inρ1

(1−ρ2)
2−2(1−ρ2)ρ1 〈s, t〉+ρ2

1 =
(1+ρ1 〈s, t〉−A)(1−A−ρ1 〈s, t〉)+ρ2

1 =

(1−A)2− (ρ1 〈s, t〉)2 +ρ2
1 =

2−2A = 2µ2 (1−〈s, t〉) .

Solving this equation forρ1 results in

ρ1 = µ

√
−µ2−µ2 〈s, t〉−2

〈s, t〉+1
.

Inserting this formula back into equation (41) we obtain

ρ2 =−ρ1 〈s, t〉±
(
µ2 (1−〈s, t〉)−1

)
.
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Appendix B. Algorithms

Algorithm 1 Dual perceptron algorithm with permutation

Require: A permutationΠ : {1, . . . ,m}→ {1, . . . ,m}
Ensure: Existence of a version spaceV (z), a linearly separable training sample in feature space

α = o = 0
repeat

for i = 1, . . . ,m do
if yΠ(i)oΠ(i) ≤ 0 then

αi ← αi + yΠ(i)
for j = 1, . . . ,m do

oΠ( j) ← oΠ( j) + yΠ(i)k
(
xΠ(i),xΠ( j)

)
end for

end if
end for

until the if branch was never entered within thefor loop
return the expansion coefficientsα
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Algorithm 2 Kernel billiard algorithm (in dual variables)

Require: A tolerance TOL∈ [0,1] andτmax∈ R
+

Require: Existence of a version spaceV (z), a linearly separable training sample in feature space
Ensure: for all i = 1, . . . ,m, yi ∑m

j=1 γ jk (xi,x j) > 0
α = 0, β = random, normaliseβ using equation (20)
Ξ = ξmax = 0, pmin = 1
while ρ2 (pmin,Ξ/(Ξ+ξmax)) > TOL do

repeat
for i = 1, . . . ,m do

di = ∑m
j=1 γ jk (x j,xi), νi = ∑m

j=1 β jk (x j,xi)
τi =−di/νi

end for
c′ = argmini:τi>0 τi

if τc′ ≥ τmax then
β = random, but fulfils equation (22), normaliseβ using equation (20)

else
c = c′

end if
until τc′ < τmax

γ′ = γ+ τcβ, normaliseγ′ using equation (20)
βc = βc−2νc/k (xc,xc)
ζ = γ+ γ′, normaliseζ using equation (20)

ξ =
√

∑m
i=1 ∑m

j=1 (γi− γ′i)
(

γ j− γ′j
)

k (xi,x j)

p = ∑m
i=1 ∑m

j=1 ζiα jk (xi,x j)

α = ρ1

(
p, Ξ

Ξ+ξ

)
α+ρ2

(
p, Ξ

Ξ+ξ

)
ζ

pmin = min(p, pmin), ξmax = max(ξ,ξmax), Ξ = Ξ+ξ, γ = γ′
end while
return the expansion coefficientsα
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