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Generalisation Error Bounds for Sparse Linear Classi�ers
Thore GraepelStatistics Research GroupDepartment of Computer ScienceTechnical University of BerlinBerlin, Germany Ralf HerbrichStatistics Research GroupDepartment of Computer ScienceTechnical University of BerlinBerlin, Germany John Shawe-TaylorDepartment of Computer ScienceRoyal HollowayUniversity of LondonEgham, UKAbstractWe provide small sample size bounds on thegeneralisation error of linear classi�ers that aresparse in their dual representation given bythe expansion coe�cients of the weight vec-tor in terms of the training data. These re-sults theoretically justify algorithms like theSupport Vector Machine, the Relevance Vec-tor Machine and K-nearest-neighbour. Thebounds are a-posteriori bounds to be evalu-ated after learning when the attained level ofsparsity is known. In a PAC-Bayesian styleprior knowledge about the expected sparsityis incorporated into the bounds. The proofsavoid the use of double sample arguments bytaking into account the sparsity that leaves un-used training points for the evaluation of clas-si�ers. We furthermore give a PAC-Bayesianbound on the average generalisation error oversubsets of parameter space that may pave theway combining sparsity in the expansion coef-�cients and margin in a single bound. Finally,reinterpreting a mistake bound for the classi-cal perceptron algorithm due to Noviko� wedemonstrate that our new results put classi-�ers found by this algorithm on a �rm theo-retical basis.1 IntroductionSparseness in the representation of knowledge has longbeen considered advantageous. While sparsity in theoriginal features is addressed in feature selection [11]we deal with a di�erent kind of sparsity. Many learningalgorithms are based on a dual representation of linearclassi�ers: The weight vector is represented as a linearcombination of input vectors in a kernel-space whose ex-istence can be ensured by the application of Mercer ker-nels. Examples are the Support Vector Machine (SVM)[2], the Relevance Vector Machine (RVM) [13] and theK-nearest-neighbour (KNN) classi�er [3, 4], that can beviewed as a linear classi�er in a collapsed kernel spacein the limit of vanishing kernel bandwidth.If a classi�er is represented in terms of only a sub-set of the training sample and succeeds on the remain-

ing training data it e�ectively compresses the sample[5]. We derive a posteriori results to be evaluated af-ter learning by combining bounds under prior expec-tations, e.g. about the attained sparsity. In particular,we consider the complexity of hypothesis classes onlyw.r.t. particular learning algorithms. The sparsity al-lows us to avoid the double sample argument of the Ba-sic Lemma [14]. In addition, we present a PAC-Bayesiantheorem [9] about the average generalisation error overa subset of version space.Finally, we reinterpret Noviko�'s well known percep-tron convergence theorem [12] as a sparsity guaranteefor the classi�er found by the well known perceptronlearning algorithm: the mere existence of large mar-gin classi�ers implies the existence of sparse consistentclassi�ers. By combining the perceptron mistake boundwith a compression bound that originated from the workof Littlestone and Warmuth [8] we are able to providea PAC like generalisation error bound for the classi�erfound by the perceptron algorithm whose size is deter-mined by the magnitude of the maximally achievablemargin on the dataset.The paper is structured as follows: In Section 2 weintroduce the basic learning setting and provide thestrati�cation lemma that will enable us later to com-bine bounds using prior knowledge. In Section 3 we givesparsity bounds for the zero-error case and the agnos-tic case. In Section 4 we give the PAC-Bayesian subsetbound for sparse classi�ers. Finally, we present an ap-plication of the sparsity result for the zero-error case forclassi�ers found by the perceptron learning algorithm.Most of the proofs have been delegated to the appendix.2 PreliminariesWe assume a �xed domain X of objects together witha �xed set Y = f�1;+1g and Z = X � Y from whichwe draw a training sample Z = (X;Y ) of size m iidaccording to PZ � PXY. Given a �xed mapping � : X !K we know that there exists a function k : X �X ! Rsuch that k (x; z) = h� (x) ;� (z)iK where k is known asthe kernel for the �xed feature space K [10]. For a given
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training set Z we de�ne the set of classi�ers consideredH (Z) = fsign (f) : f 2 F (Z)g ;F (Z) = (x 7! mXi=1 �iyik (x;xi) : � 2 A) :A learning algorithm L : S1m=1 Zm ! A maps from atraining set Z to a vector � of coe�cients in A � Rm ,where the resulting hypothesis is assumed invariant un-der the permutation of the training set. If a learningalgorithm L is applied to a subset Z 0 � Z of the train-ing set Z of size m we assume that L assigns zero toall corresponding coe�cients �i not present in Z 0. Wede�ne the training error Remp [f; Z] of a classi�er f ona given training sample Z byRemp [f; Z] = 1m jf(xi; yi) 2 Z : yif (xi) � 0gj ;and the generalisation error R [f ] of a classi�er f byR [f ] = PXY (Y � f (X) � 0) :Finally, the version space V (Z) for a given training setZ is V (Z) = f� 2 A : Remp [f�; Z] = 0g :Our goal is a bound on R [f ] given only Remp [f; Z] andsome easy-to-determine complexity measure of f . As-suming a �xed value of the complexity measure we provethat with high probability (at least 1� �) the generali-sation error will be small (not more than � (�)). In orderto plug in the observed value of the complexity measurewe stratify over all r possible values of the complex-ity measure thereby encoding prior belief about whichcomplexity value we expect to observe using probabili-ties pi. Thus we combine a Bayesian prior (the numberspi) with PAC bounds leading to PAC-Bayesian theorems(see [9]).Lemma 1 (Strati�cation Lemma). Suppose we aregiven r logical formulas �i : Zm � R 7! ftrue; falsegsuch that8i 2 f1; : : : ; rg 8� 2 [0; 1] : PZm (�i (Z; �)) � 1� � :Then for any set p1; : : : ; pr of positive numbers whosesum is upper bounded by one8� 2 [0; 1] : PZm (�1 (Z; �p1) ^ : : : ^�r (Z; �pr)) � 1� � :3 Sparsity Bounds3.1 The Zero Error CaseLet us start with a sparsity bound for classi�ers f withRemp [f; Z] = 0 using the following lemma [5].Lemma 2 (Compression lemma). Fix d 2 f1; : : : ;mgand a learning algorithm L. For any measure PZ, theprobability that m examples Z drawn iid according to PZcontain a subset Zd � Z of exactly d examples and thelinear classi�er fL(Zd) is both consistent with Z and hasgeneralisation error R �fL(Zd)� larger than " is at most�md� (1� ")m�d :
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s =  0.99Figure 3.1: Bound values of Theorem 3 vs. attainedsparsity level bs (Z) for m = 1000 and � = 0:05.Using equation (7.1) the lemma implies that the follow-ing statement holds with probability at least 1� � overthe random draw of the training set Z:8Zd � Z : (jZdj 6= d) _ �Remp �fL(Zd); Z� 6= 0� _ R �fL(Zd)� � ln ��md ��+ ln � 1� �m� d ! : (3.1)By a simple application of Lemma 1 we obtain our �rstsparsity bound.Theorem 3 (Sparsity bound). Fix a learning algo-rithm L and s 2 (0; 1). For any measure PZ, with prob-ability 1 � � over the random draw of the training setZ of size m for all linear classi�er fL(Z) that have zerotraining error Remp �fL(Z); Z� = 0, the generalisationerror R �fL(Z)� is bounded from above byln�1s�+ d � ln� 11�s�+ ln (1� sm) + ln � 1� �m� d ; (3.2)provided d = kL (Z)k0 > 0.Proof. Apply Lemma 1 to equation (3.1) using the se-quence pd = �md�sm�d (1� s)d1� sm ; (3.3)where s expresses our belief in sparsity.In terms of the attained sparsity level bs (Z) = 1� kL(Z)k0mwe have that with probability at least 1 � � over therandom draw of the training set Z for all linear classi�ersfL(Z) with zero training error Remp �fL(Z); Z� = 0R �fL(Z)� � ln�1� ss �+ ln� 11� s� 1bs (Z)+ln (1� sm) + ln � 1� �mbs (Z) :A good match of s and bs (Z) leads to low bound valuesas can be seen in Figure 3.1.
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3.2 The Agnostic CaseIn the case of non-zero training error we use the follow-ing analog of Lemma 2.Lemma 4 (Agnostic compression lemma). Fix d 2f1; : : : ;mg, q 2 f1; : : : ;m� dg and a learning algo-rithm L. For any measure PZ, the probability that mexamples Z drawn iid according to PZ contain a subsetZd � Z of exactly d examples and the linear classi�erfL(Zd) has a training error Remp �fL(Zd); Z� � qm on Zand has generalisation error R �fL(Zd)� larger than " isat most�md� exp(�2 (m� d)�"� qm� d�2) :The lemma implies the following statement that holdswith probability at least 1� � over the random draw ofthe training set Z:8Zd � Z : (jZdj 6= d) _ �Remp �fL(Zd); Z� > qm� _0@R �fL(Zd)� � qm� d +s ln ��md ��+ ln � 1� �2 (m� d) 1A :(3.4)By a double application of Lemma 1 and 4 we obtainTheorem 5 (Training error sparsity bound). Fix alearning algorithm L and s 2 (0; 1). For any measurePZ, with probability 1� � over the random draw of thetraining set Z of size m for all linear classi�er fL(Z),the generalisation error R �fL(Z)� is bounded from aboveby mm� dRemp �fL(Z); Z�+vuut12 ln�1s�+ d ln� 11�s�+ ln (1� sm) + ln �m� �2 (m� d) ;provided d � kL (Z)k0 > 0.Proof. Apply Lemma 1 to equation (3.4) using the se-quences (3.3) and pq = 1m .4 A PAC-Bayesian AnalysisIn the PAC-Bayesian framework [9] we aim at incor-porating Bayesian priors PA over the data dependentexpansion coe�cients � into PAC generalisation errorbounds. Our �rst result bounds the generalisation errorof a single classi�ers f� whereas Theorem 7 is concernedwith the average generalisation error over a subset ofversion space.Theorem 6 (PAC{Bayesian folk theorem). For anytwo measures PA and PZ with probability at least 1� �over the random draw of the training set Z for all classi-�ers f� that achieve zero training error Remp [f�; Z] =0 and PA (�) > 0 the generalisation error is boundedfrom above byR [f�] � 1m� k�k0 �ln� 1PA (�)�+ ln�1��� :

Proof. Apply Lemma 1 to the the statement�� (Z) � (Remp [f�; Z] 6= 0) _ R [f�] � ln � 1� �m� k�k0! ;that holds with probability at least 1�� over the randomdraw of Z for all �. For a �xed vector � let i� e the in-dices of non zero coe�cients �i and d = k�k0. By notic-ing that Remp [f�; Z] = 0 implies Remp [f�; Z n Zi� ] = 0we have8� : PZm ((Remp [f�;Z] = 0) ^ (R [f�] > "))� PZm ((Remp [f�;Z n Zi� ] = 0) ^ (R [f�] > "))= PZm�d ((Remp [f�;Z] = 0) ^ (R [f�] > "))< (1� ")m�d � exp f�" (m� d)g ;because for a �xed index vector i� the classi�er f� doesnot change over the random draw of the m� d randomvariables Zj with indices j 2 f1; : : : ;mgni�. The resultfollows by solving for ".Theorem 7 (PAC-Bayesian subset bound). For anytwo measures PA and PZ with probability at least 1� �over the random draw of the training set Z for all sub-sets A 2 V (Z) of �xed sparsity d, i.e. 8� 2 A : k�k0 =d, and PA (A) > 0 the average generalisation error overA is bounded from above byEA2A [R [fA]] � ln� 1PA(A)�+ 2 ln (m) + ln � 1� �+ 1m� d :As it stands this result bounds the generalisation errorof the so-called Gibbs classi�er that draws classi�ersrandomly from A according to the prior measure PA. Itthus justi�es this simple Bayesian classi�cation strategy.Furthermore, recent results [6] indicate that Theorem 7may be useful for providing a PAC-Bayesian bound thatbene�ts from both sparseness and margin of a classi�er.5 From Margin To SparsityIn this section we present an application of Theorem 3 tothe perceptron learning algorithm formulated in featurespace K using kernels k. Given a �xed permutation� : f1; : : : ;mg ! f1; : : : ;mg, the perceptron learningalgorithm L� is as follows:1. Start in step zero, i.e. t = 0, with the vector�t = 0.2. For all i 2 f1; : : : ;mg, if y�(i)f� �x�(i)� � 0 then(�t+1)�(i) = (�t)�(i) + 1 : (5.1)and t t+ 1.3. Stop, if there is no i 2 f1; : : : ;mg such thaty�(i)f� �x�(i)� � 0 :In the early 60's Noviko� and Aizerman et al. [12, 1]were able to give an upper bound on the number tof mistakes made by this learning procedure. Given
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a training set Z, the quantity determining the upperbound is the maximally achievable margin max� 
Z (�)on the training sample Z = (X;Y ) normalised by thetotal extent & of the data in feature space, i.e. & =maxxi2X k� (xi)kK. This margin 
Z (�) is given by
Z (�) = 1kf�k min(xi;yi)2Z yif� (xi) ;kf�k2 = mXi=1 mXj=1 yiyj�i�jk (xi;xj) :Theorem 8 (Mistake Bound for Perceptrons). Fixa permutation � : f1; : : : ;mg ! f1; : : : ;mg. Let Z =(X;Y ) be a training set of size m and let k : X �X ! Rbe a Mercer kernel. Suppose that there exists a vector�� 2 Rm such that 
Z (��) > 0. Then the number ofmistakes made by the perceptron learning algorithm L�on Z is at most � &
Z (��)�2 :Considering the form of the update rule (5.1) we observethat this result not only bounds the number of mistakesmade during learning but also the number k�k0 of non-zero coe�cients in the � vector. To be precise, it boundsthe `1 norm k�k1 of the coe�cient vector � which, inturn, bounds the zero norm k�k0 from above for all vec-tors with integer components. Theorem 8 thus estab-lishes a relation between the existence of a large marginclassi�er �� and the sparseness of any solution foundby the perceptron algorithm. Combining Theorem 8 andLemma 2 and 1 with pd = 1m thus gives the followingremarkable result.Theorem 9 (Margin Bound). Fix a permutation � :f1; : : : ;mg ! f1; : : : ;mg. For any measure PZ suchthat PX (k� (X)kK � &) = 1, with probability at least1� � over the random draw of the training set Z of sizem, if there exists a vector �� such that 
Z (��) > &pmthen the generalisation error R �fL�(Z)� of the classi�erfL�(Z) found by the perceptron learning algorithm L� isless than1m� d �ln��md��+ ln (m) + ln�1��� ; (5.2)where d = �&2
�2Z (��)�.The most intriguing feature of this result is that themere existence of a large margin classi�er f�� is su�-cient to guarantee a small generalisation error for thesolution fL�(Z) of the perceptron learning algorithm al-though its attained margin 
Z (�) is likely to be muchsmaller than 
Z (��). It has long been argued that theattained margin 
Z (�) itself is the crucial quantity con-trolling the generalisation error of �. In light of our newresult if there exists a consistent classi�er f�� with largemargin we know that there also exists at least one clas-si�er f� with high sparsity that can e�ciently be foundusing the perceptron learning algorithm. In fact, when-ever the SVM appears to be theoretically justi�ed by a

large observed margin, every solution found by the per-ceptron algorithm has a small guaranteed generalisationerror | mostly even smaller than current bounds onthe generalisation error of SVMs. Note that for a giventraining sample Z it is not unlikely that by permuta-tion of Z via � there exist exponentially many di�erentconsistent sparse classi�ers f�.6 ConclusionIn this paper we proved a series of bounds for linearclassi�ers exploiting sparsity and prior knowledge there-about. Double sample arguments could be avoided dueto the sparseness that leaves iid samples from the train-ing sample for witnessing the quality of the classi�er.Thus we established proof for the common conceptionthat sparse classi�ers lead to good generalisation. Fu-ture work will be concerned with a thorough explo-ration of PAC-Bayesian results with priors on the data-dependent expansion coe�cients in dual representationsof linear classi�ers.AcknowledgementsWe would like to thank Bob Williamson, Jon Baxter,Peter Bartlett, Alex Smola and Bernhard Sch�olkopf formany inspiring discussions. Parts of this work were doneduring a research stay of RH and TG at the AustralianNational University in Canberra.7 ProofsFor subsets Z 0 � Z of size exactly d 2 f1; : : : ;mg we de-note by i the index vector i = (i1; : : : ; id) 2 f1; : : : ;mgdof d distinct indices i1 < : : : < id from the set f1; : : : ;mg.We use Id to denote the set of all subsets i of f1; : : : ;mgof size d. Given a training set Z of size m we writeZi = f(xi1 ; yi1) ; : : : ; (xid ; yid)g � Z . Finally, we use8" 2 [0; 1] : (1� ") � exp f�"g : (7.1)7.1 Proof of Lemma 1Proof. The proof is a simple union bound argument. Byde�nition8� 2 [0; 1] : PZm (�1 (Z; �p1) ^ : : : ^�r (Z; �pr))= 1� PZm (:�1 (Z; �p1) _ : : : _ :�r (Z; �pr))� 1� rXi=1 PZm (:�i (Z; �pi)) > 1� rXi=1 �pi� 1� � :7.2 Proof of Lemma 2Proof. We exploit the idea that for a �xed value of dthere are still m � d points drawn iid according to PZon which the classi�er fL(Zd) has succeeded. Thus, fora �xed set Zd 2 Zd let us de�ne the event� (Zd; Zm�d) � �Remp �fL(Zd); Zm�d� = 0� ^�R �fL(Zd)� > "� ;
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where Zm�d 2 Zm�d. By the binomial tail bound weknow that8Zd 2 Zd : PZm�d �� �Zd;Zm�d�� < (1� ")m�d : (7.2)Thus we concludePZm �9Zd � Z : �Remp �fL(Zd);Z� = 0� ^ �R �fL(Zd)� > "��= PZm (9i : � (Zi;Z n Zi))�Xi PZm (� (Zi;Z n Zi)) ;where the last inequality follows from the union bound.Since the number of summands is �md � and the sum-mands are bounded by equation (7.2) we �nally havethat the probability under consideration is at most�md� (1� ")m�d :7.3 Proof of Lemma 4Proof. For a �xed set Zd 2 Zd let us de�ne the� (Zd; Zm�d) � �Remp �fL(Zd); Zm�d� � qm� d� ^�R �fL(Zd)� > "� ;where Zm�d 2 Zm�d. We have chosen qm�d because iffL(Zd) commits not more than q errors on Z, the numberof errors on the subset Zm�d is upper bounded by q. ByHoe�ding's inequality [7] we know that8Zd 2 Zd : PZm�d (� (Zd;Zm�d))< exp(�2 (m� d)�"� qm� d�2) : (7.3)Thus we concludePZm �9Zd � Z : �Remp �fL(Zd);Z� � qm� ^ �R �fL(Zd)� > "��= PZm (9i : � (Zi;Z n Zi))�Xi PZm (� (Zi;Z n Zi)) ;where the last inequality follows from the union bound.Since the number of summands is �md � and the sum-mands are bounded by equation (7.3) we �nally havethat the probability under consideration is at most�md� exp(�2 (m� d)�"� qm� d�2) :7.4 Proof of Theorem 7Let us recall the quanti�er reversal lemma [9].Lemma 10 (Quanti�er Reversal Lemma). Let X andY be random variables and let � range over (0; 1]. Let� : X�Y�R 7! ftrue; falseg be any measurable formula

on the product space X �Y such that for any x 2 X andy 2 Y we havef� 2 (0; 1] : � (x; y; �)g = (0; �max]for some �max. If8x8� 2 (0; 1] : PYjX=x (� (x;Y; �)) � 1� �then we have for all � 2 (0; 1) and � 2 (0; 1]PY �8
 2 (0; 1] : PXjY=y ���X; y; (
��) 11�� �� � 1� 
� � 1� � :Proof of Theorem 7. We decompose the expectation atsome point " 2 R byEA2A [R [fA]] � " � PA2A (R [fA] � ") + 1 � PA2A (R [fA] > ") ;using R [fA] < 1 by de�nition. In the proof of Theorem6 we have already shown that for all � 2 A and for all� 2 (0; 1]PZmjA=� (� =2 V (Z)) _ R [f�] � ln � 1� �m� k�k0!! � 1� � :By Lemma 10 this implies that for all � 2 (0; 1) withprobability at least 1 � � over the random draw of thetraining set Z for all 
 2 (0; 1]PAjZm=Z 0BBB@(A 2 V (Z)) ^0BBB@R [fA] > 11� � ln� 1�
��m� kAk0| {z }"(
;�) 1CCCA1CCCA < 
 :By assumption of the theorem PAjZm=Z = PA fromwhich it follows thatPA2A (R [fA] > " (
; �)) = PA ((A 2 A) ^ (R [fA] > " (
; �)))PA (A)� 
PA (A) ;because A 2 V (Z). If we set 
 = PA(A)m and � = 1m we�nally obtain that with probability at least 1 � � overthe random draw of the training set ZEA2A [R [fA]] � ln� 1PA(A)�+ 2 ln (m) + ln � 1� �m� d + 1m ;because by assumption for all � 2 A : k�k0 = d.Bounding 1m by 1m�d from above completes the proof.References[1] M. Aizerman, E. Braverman, and L. Rozonoer.Theoretical foundations of the potential functionmethod in pattern recognition learning. Automa-tion and Remote Control, 25:821{837, 1964.[2] C. Cortes and V. Vapnik. Support Vector Net-works. Machine Learning, 20:273{297, 1995.
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