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Abstract

We provide small sample size bounds on the
generalisation error of linear classifiers that
take advantage of large observed margins on
the training set and sparsity in the data de-
pendent expansion coefficients. It is already
known from results in the luckiness frame-
work that both criteria independently have
a large impact on the generalisation error.
Our new results show that they can be com-
bined which theoretically justifies learning al-
gorithms like the Support Vector Machine [4]
or the Relevance Vector Machine [12]. In
contrast to previous studies we avoid using
the classical technique of symmetrisation by
a ghost sample but directly using the sparsity
for the estimation of the generalisation er-
ror. We demonstrate that our result leads to
practical useful results even in case of small
sample size if the training set witnesses our
prior belief in sparsity and large margins.

1 Introduction
In this paper we present a bound on the generalisa-
tion error of linear classifiers that takes advantage of
the sparsity in terms of data dependent expansion co-
efficients and the margin attained at the given train-
ing set. It is already known that both criteria inde-
pendently have an impact on the generalisation error
of linear classifiers (see [13, 10]). We show that com-
bining both criteria results in a bound that is tighter
by orders of magnitudes and thus for the first time a
practically useful bound for linear classifiers. Usually,
bounds in the PAC framework are derived using a tech-
nique known as symmetrisation by a ghost sample [14],
i.e. the probability over the random draw of the training
set Z that there exists a classifier f with high generali-
sation error (larger than ε ) but zero training error is up-
per bounded by twice the probability that there exists a
classifier with zero training error on m iid examples but
training error larger than ε

2 on a second ghost sample
of size m drawn iid. This analysis then naturally leads
to covering numbers for the function class because on a

double sample of size 2m the number of different func-
tions (in terms of training errors or attained margins) is
finite (see [3, Lemma 4] or [11, Theorem 6.8]). For linear
classifiers, a direct application of a lemma due to Alon
et. al. [1] finally gives the margin bound in [10] having
an additional log2 (m) factor. For comparison purposes
we quote the bound here but using the slightly tighter
bound on the fat shattering dimension contained in [2].
The result states that with probability at least 1−δ over
m randomly drawn samples Z , the generalisation error
(see equation (2.4)) of a hyperplane with margin (see
equation (2.2)) at least γ on the training set is bounded
by
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where ς is the radius of a ball containing the support
of the distribution. Better results can be obtained by
using tighter bounds on the covering numbers for linear
function classes, in particular avoiding the double log
factor, but even with these improvements the result will
still give trivial bounds for most practical applications.
We will demonstrate albeit artificial examples, where
our new bound is non trivial with training set sizes as
small as 300 .

Curiously, we shall totally avoid using the ghost
sample technique. Conceptually, however, we in fact
will make use of a ghost sample but from within the
training set Z of size m . This can be accomplished by
exploiting the sparseness of the classifier. If the clas-
sifier is determined by just d training points, we use
the remaining m − d points for testing the generalisa-
tion error of the classifier. This strategy was first pro-
posed by Littlestone and Warmuth [6] for compression
schemes. The novelty of the current paper is to combine
their compression scheme argument with the large mar-
gin bounds on the growth function, resulting in bounds
that are tighter than can be obtained by one or other
approach on its own.

The paper is structured as follows: in the follow-
ing section we will introduce the learning scenario we
consider. In Section 3 we present our two main results
together with some experiments. For the sake of read-
ability the main proofs are delegated to Appendix A.



We denote vectors by bold letters, whereas scalars are
typeset in roman letters. Random variables are typeset
in sans serif font; vector spaces are denoted by calli-
graphic capitalised letters. The symbols P,E and I de-
note a probability measure, the expectation of a random
variable and the indicator function, respectively.

2 Preliminaries

Suppose we are given a fixed domain X of objects to-
gether with a fixed set Y = {−1,+1} of classes −1 and
+1 abbreviated by Z = X × Y . Furthermore let us
assume that there exists a stationary distribution PZ

from which we generate iid training sets Z = (X,Y ) of
size m . Given a fixed mapping ϕ : X → K we know
that there exists a function k : X × X → R such that
k (x, z) = ⟨ϕ (x) ,ϕ (z)⟩K where k is known as the kernel
for the fixed feature space K . Alternatively, we could
choose a symmetric positive definite function k so as to
assure that there exists a fixed space K by Mercer’s the-
orem [8]. For a given training set Z we define the set of
classifiers considered for learning as

H (Z) = {sign (f) : f ∈ F (Z)} , (2.1)

F (Z) =

{
x 7→

m∑
i=1

αiyik (x,xi) + b : α ∈ A, b ∈ R

}
.

Though this is a data dependent set of classifiers we
know by Mercer’s theorem that each f is a linear classi-
fier in the space K . As we often bound the probability
that a subset Z ′ ⊆ Z of size exactly d ∈ {1, . . . ,m} has
a certain property we introduce the following notation:
the symbol i denotes the index vector i = (i1, . . . , id) ∈
{1, . . . ,m}d of d distinct indices i1 < i2 < · · · < id from
the set {1, . . . ,m} . We use Id to denote the set of all in-
dex vectors i of {1, . . . ,m} of size d . Given a training set
Z of size m we denote by Zi = {(xi1 , yi1) , . . . , (xid , yid)} ⊆
Z the subset of size d obtained by selecting the i1 –
th to id –th element from Z . A learning algorithm
L :
∪∞

m=1 Zm 7→ A assigns a training set Z to a vector
α of coefficients L (Z) in A ⊆ Rm and is assumed to be
invariant under permutation of the sample. We assume
that the setting of the threshold b can then be inferred
by a fixed rule from the examples. We denote by iL(Z)

the set of indices for which the coefficients are non zero,
and by fL(Z) = f b

L(Z) the corresponding function with
appropriately chosen threshold b . If a learning algo-
rithm L is applied to a subset Z ′ ⊂ Z of the training
set Z of size m we assume that L assigns all correspond-
ing coefficients αi not present in Z ′ to zero, i.e.

∀i ∈ {1, . . . ,m} : (xi, yi) ∈ (Z \ Z ′) ⇒ (L (Z ′))i = 0 .

Furthermore we assume that if the learning algorithm L
is applied to ZiL(Z)

the result obtained is L (Z) , that is
the same function (and threshold) is reconstructed from
the subsample. Note that this implies that the function
fL(Z) is determined by the subsample ZiL(Z)

. Hence
two distinct dichotomies of the same inputs must give
rise to distinct sets of indices. Given a training set Z ,

the margin γZ (α, b) is defined by

γZ (α, b) = min
(xi,yi)∈Z

(
yif

b
α (xi)

∥f b
α∥

)
(2.2)

∥∥f b
α

∥∥2 =
m∑
i=1

m∑
j=1

αiαiyiyjk (xi,xj) .

Normally, the threshold b will be chosen to maximise
γZ (α, b) for the set of training examples. We define
the training error Remp [f, Z] of a classifier f on a given
training set Z by

Remp [f, Z] =
1

m
|{(xi, yi) ∈ Z : yif (xi) ≤ 0}| . (2.3)

Accordingly, the generalisation error R [f ] of a classifier
f is defined by

R [f ] = PXY (Y · f (X) ≤ 0) . (2.4)

We will also be interested in the following conditional
generalisation error Rγ [f ] given that a margin γ is ob-
served on a test example

Rγ [f ] = PXY| |f(X)|≥γ (Y · f (X) ≤ 0) . (2.5)

Our ultimate interest is to obtain bounds on R [f ] given
only the observable training error Remp [f, Z] and some
easy–to–determine complexity measure of f , e.g. the
margin or the sparsity in terms of ∥L (Z)∥0 . In course
of derivation of such bounds we often proceed as follows:
assuming a fixed value of the complexity measure shall
allow us to determine that with high probability (at
least 1 − δ ) the generalisation error will be small (not
more than ε (δ) ). In order to plug in the observed value
of the complexity measure we stratify over all s possible
values of the complexity measure using the following
stratification lemma.

Lemma 2.1 (Stratification Lemma). Suppose we are
given s logical formulas Υi : Zm × R 7→ {true, false}
such that

∀i ∈ {1, . . . , s} ∀δ ∈ [0, 1] : PZm (Υi (Z, δ)) ≥ 1− δ .

Then for any set p1, . . . , ps of s positive numbers whose
sum is upper bounded by one

∀δ ∈ [0, 1] : PZm (Υ1 (Z, δp1) ∧ . . . ∧Υs (Z, δps)) ≥ 1−δ .

Note that for the stratification we can encode some prior
belief which complexity value we expect to observe us-
ing positive real numbers pi that sum up to at most
one. This idea allows to combine Bayesian priors (the
numbers pi ) with PAC bounds finally leading to PAC–
Bayesian theorems (see [7] for details).

3 A Sparse Margin Bound
The core idea to obtain a generalisation error bound for
a fixed learning algorithm is to exploit the (assumed)
sparseness of a the returned linear classifier fL(Z) be-
cause if the learned classifier uses d training points,



i.e. ∥L (Z)∥0 = d , but has also large margins with cor-
rect classification on the remaining m−d points, the lat-
ter can effectively be used as iid test points. The number
of equivalence classes is then determined by the margin
γZ (L (Z) , b) ≥ γ attained on the whole training set Z .
Note that the condition of a margin γ on the correctly
classified m − d points forces us to consider the con-
ditional generalisation error Rγ [f

b
L(Z)] rather than the

more usual quantity — the generalisation error R[f b
L(Z)]

.

Lemma 3.1 (Margin Compression Lemma). Fix γ ∈
(0, ς) , d ∈ {1, . . . ,m} and a learning algorithm L . For
any measure PZ such that PX ({x : ∥ϕ (x)∥K ≤ ς}) = 1
the probability that m examples Z drawn iid according
to PZ contain a subset Zd ⊆ Z of exactly d exam-
ples and the linear classifier f b

L(Zd)
achieves a margin

γZ (L (Zd) , b) of at least γ and has conditional general-
isation error Rγ [f

b
L(Zd)

] larger than ε is less than(em
κ

)κ
exp {−ε (m− d)} ,

where κ =

⌈(
ς
γ

)2⌉
< m .

The lemma implies the following statement that holds
with probability at least 1− δ over the random draw of
the training set Z :

∀Zd ⊂ Z : (|Zd| ̸= d) ∨

(⌈(
ς

γ

)2
⌉
̸= κ

)
∨

(γZ (L (Zd) , b) < γ) ∨(
Rγ

[
f b
L(Zd)

]
≤

κ ln
(
em
κ

)
+ ln

(
1
δ

)
m− d

)
. (3.1)

Using a double stratification over possible values of d
and κ gives the following powerful theorem.

Theorem 3.2 (Sparse margin conditional bound). Fix
a learning algorithm L . For any measure PZ such that
PX ({x : ∥ϕ (x)∥K ≤ ς}) = 1 , with probability at least
1 − δ over the random draw of the training set Z of
size m for all linear classifier f b

L(Z) that have margin
γZ (L (Z) , b) = γ the conditional generalisation error
Rγ [f

b
L(Z)] is bounded from above by⌈(

ς
γ

)2⌉
ln

(
em⌈
( ς

γ )
2
⌉)+ 2 ln (m) + ln

(
1
δ

)
m− d

, (3.2)

provided d = ∥L (Z)∥0 > 0 and γ > ς√
m

.

Proof. The proof is obtained by an application of Lemma
2.1 to equation (3.1) using the sequence pd = 1

m and
pκ = 1

m . Note that κ is by definition always strictly
positive.

The two results given above only cover the conditional
generalisation error. This may be useful if we are willing
to discard test points falling within γ of the margin. We
can, however, use these as intermediate results to obtain
the following sparse margin bound on the generalisation
error.

Theorem 3.3 (Sparse margin bound). Fix a learning
algorithm L . For any measure PZ such that all points
are contained in a ball of radius ς in feature space K
, i.e. PX ({x : ∥ϕ (x)∥K ≤ ς}) = 1 , with probability at
least 1 − δ over the random draw of the training set Z
of size m for all linear classifier f b

L(Z) that have margin
γZ (L (Z) , b) = γ the generalisation error R[f b

L(Z)] is
bounded from above by

2
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γ

)2⌉
ln

(
em⌈
( 2ς
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2
⌉)+ 2 ln (m) + ln

(
2
δ

)
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, (3.3)

provided d = ∥L (Z)∥0 > 0 and γ > ς√
m

.

Proof. The result is obtained by an application of The-
orem 3.2 with two different settings of the value for the
threshold b . Since γZ (L (Z) , b) = γ , we can take a
threshold of

b′ = b+
γ

2
∥∥∥f b

L(Z)

∥∥∥ ,

and still obtain a margin of γ
2 . Since we are assuming

the threshold b was chosen by a fixed rule, we can adapt
the rule to choose b′ . The same applies for the threshold

b′′ = b− γ

2
∥∥∥f b

L(Z)

∥∥∥ .

We now apply the theorem for these two threshold val-
ues using δ

2 in place of δ . In both cases we have a
margin of at least γ

2 , hence obtaining a conditional
generalisation error of

R γ
2

[
f b′

L(Z)

]
≤

⌈(
2ς
γ

)2⌉
ln

(
em⌈
( 2ς

γ )
2
⌉)+ 2 ln (m) + ln

(
2
δ

)
m− d

,

Now consider the errors made by the classifier f b
L(Z) .

Since any test point must have margin γ
2 for either f b′

L(Z)

or f b′′

L(Z) , a misclassified point must be conditionally
misclassified by one of these two functions. Hence the
probability of a randomly drawn test point being mis-
classified by f b

L(Z) is bounded by the sum of the γ
2 con-

ditional error bounds for the functions f b′

L(Z) and f b′′

L(Z)

. The result follows.

In order to check the practical usefulness of the
bounds (3.2) and (3.3) we generated training sets on
the unit sphere in R50 using normalised points x drawn
according to two multidimensional Gaussian with mean
vectors µ+1 = (1, . . . , 1)

′ and µ−1 = (−1, . . . ,−1)
′ and

the same covariance matrix σ2I . For the determination



σ2 eqn. (3.2) R̂γ [f
b
L(Z)] eqn. (3.3) R̂[fb

L(Z)]

0.1 0.29 0.00 0.69 0.00

1 0.34 0.00 0.83 0.00

10 1.00 0.07 1.00 0.07

Table 1: Bound values of Theorem 3.2 (m = 100 ) and
3.3 (m = 300 ) over 100 random draws of the training
set with δ = 0.05 . Small values of σ2 lead to training
sets that can be separated with a large margin.

of the classes we applied the fixed rule y = sign
(∑50

i=1 xi

)
. Our learning algorithm maximises the margin using
only 0.25 · m training points. In Table 1 we see that
even for very small training set sizes, e.g. m = 100 , our
bound provides non trivial values if σ2 was such that
with high probability the margin as well as the sparsity
is large. Note that the sparsity of 75 % alone does not
suffice to give non trivial generalisation error bounds
(see [2]). Similarly, in order to achieve a bound value of
0.29 for maximally large margins γZ (L (Z) , b) = ς with
the classical margin bound given by equation (1.1) we
would need the astronomical number of m = 153 892 as
the minimal training set size.

4 Conclusion

In this paper we have proven a conditional generalisa-
tion and a generalisation error bound for linear classi-
fiers both in terms of margins and sparsity. The novelty
with the approach is the avoidance of moving to a ghost
sample by using the points not appearing in the sparse
representation as test points. By using this technique we
are able to avoid using covering number bounds working
instead with the VC dimension of large margin hyper-
planes together with Sauer’s Lemma. The result is a
bound which is significantly tighter than previous large
margin bounds and indeed many standard PAC results.

A Proofs

A.1 Proof of Lemma 2.1
Proof. The proof is a simple union bound argument. By
definition

∀δ ∈ [0, 1] : PZm (Υ1 (Z, δp1) ∧ . . . ∧Υs (Z, δps))

= 1− PZm (¬Υ1 (Z, δp1) ∨ . . . ∨ ¬Υs (Z, δps))

≥ 1−
s∑

i=1

PZm (¬Υi (Z, δpi)) > 1−
s∑

i=1

δpi

≥ 1− δ .

A.2 Proof of Lemma 3.1
Before proving the lemma we recall the following bound
on the number of dichotomies realisable with hyper-
planes having margin γ (see [13, p. 128] and [2, 5, 9] for
details).

Lemma A.1 (VC dimension of hyperplanes). For any
measure PZ such that PX ({x : ∥ϕ (x)∥K ≤ ς}) = 1 the
number of different classifications Y realisable on m
randomly drawn points X by a linear classifier f b

α of
the form (2.1) with γ(X,Y ) (α, b) ≥ γ is bounded from
above by (em

κ

)κ
,

where κ =

⌈(
ς
γ

)2⌉
< m .

Proof of Lemma 3.1. We exploit the idea that for a fixed
value of d there are still m− d points drawn iid accord-
ing to PZ on which the classifier f b

L(Zd)
has to succeed.

For a fixed index set i ∈ Id and margin γ we define the
propositions

Ac
i (Z) ≡

(
iL(Z) = i

)
∧ (γZ (L (Zi) , b) ≥ γ) ∧(

Rγ

[
f b
L(Zi)

]
> ε
)
,

Ai (Z) ≡
(
iL(Z′) = i

)
∧ (γZ′ (L (Zi) , b) ≥ γ) ∧(

Rγ

[
f b
L(Zi)

]
> ε
)
,

where with examples Z ′ = Z[fL(Zi)] we denote the set of
training examples Z relabelled using the function fL(Zi)

. The idea behind these definition is that we use the ex-
amples indexed by i to find a hypothesis. For the first
proposition this is the hypothesis for the whole train-
ing set (the exponent c indicates consistency). For the
second proposition it is the hypothesis for the whole
training set when appropriately relabelled. We wish to
bound the probability

PZm (∃i ∈ Id : Ac
i (Z)) ≤

∑
i∈Id

PZm (Ac
i (Z))

=

(
m

d

)
PZm

(
Ac

i0 (Z)
)
,

where i0 = {1, . . . , d} which follows from the union
bound. The event Ac

i0
(Z) can be decomposed as fol-

lows

Ac
i0 (Z) ≡ Ai0 (Z)

m∧
j=d+1

(
yjf

b
L(Zi0

) (xj) ≥ γ
)
.

Hence, we can now write PZm

(
Ac

i0
(Z)
)

as

PZm (Ai0 (Z))PZm|Ai0
(Z)

 m∧
j=d+1

Yjf
b
L(Zi0

) (Xj) ≥ γ


= PZm (Ai0 (Z))

m∏
j=d+1

PZm|Ai0
(Z)

(
Yjf

b
L(Zi0

) (Xj) ≥ γ
)
.

By the independence assumption and the fact that the
effect of the conditional probability is the same as the
conditional generalisation error Rγ [f

b
L(Zi0)

] > ε , each



factor in the product is less than (1 − ε) so that we
obtain

PZm

(
Ac

i0 (Z)
)

< PZm (Ai0 (Z)) (1− ε)
m−d

≤ PZm (Ai0 (Z)) exp {−ε (m− d)} ,

where we have used ∀ε ∈ [0, 1] : (1− ε) ≤ exp {−ε}
. Let Σ be the set of permutations U of the m exam-
ples. By the invariance of the probability under permu-
tations of the sample, we can now write the probability
PZm (Ai0) as follows

PZm (Ai0 (Z)) = EU

[
EZm|U=U

[
IAi0

(U(Z))

]]
= EZm

[
EU|Zm=Z

[
IAi0

(U(Z))

]]
= EZm

[
1

m!

∑
U∈Σ

IAi0
(U(Z))

]
,

where we have used the uniform measure PU over the
m! possible permutations. We now bound the number
of non zero summands for a fixed set Z . First observe
that if the summand is non zero for some U ∈ Σ , then
all the d!(m − d)! permutations U ′ realising the same
split, that is with U ′(Z)i0 = U(Z)i0 , have non zero
summands. We must therefore bound the number of
index vectors i ∈ Id of d examples that when placed in
the first d positions give a non zero summand. For each
such set i we have γZ′ (L (Zi) , b) ≥ γ and iL(Z′) = i ,
where Z ′ = Z[f b

L(Zi)
] . Since the set iL(Z′) is uniquely

determined by Z ′ , distinct sets must correspond to dis-
tinct dichotomies of the examples in Z , each of which
is realised with margin at least γ . Thus, by Lemma
A.1 the number of non zero summands cannot exceed(em

κ

)κ
d! (m− d)! .

Putting together the partial results we obtain

PZm (∃i ∈ Id : Ac
i (Z)) ≤

(
m

d

)
PZm

(
Ac

i0 (Z)
)

<

(
m

d

)
PZm (Ai0 (Z)) exp {−ε (m− d)}

≤
(
m

d

)(em
κ

)κ d! (m− d)!

m!
exp {−ε (m− d)}

=
(em

κ

)κ
exp {−ε (m− d)} .
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