
Learning on Graphs in the Game of GoThore Graepel, Mike Goutri�e, Marco Kr�uger and Ralf HerbrichComputer Science DepartmentTechnical University of BerlinBerlin, Germanyfguru,mikepg,grisu,ralfhg@cs.tu-berlin.deAbstract We consider the game of Go from the point of view of machinelearning and as a well-de�ned domain for learning on graph representa-tions. We discuss the representation of both board positions and candi-date moves and introduce the common fate graph (CFG) as an adequaterepresentation of board positions for learning. Single candidate movesare represented as feature vectors with features given by subgraphs rela-tive to the given move in the CFG. Using this representation we train asupport vector machine (SVM) and a kernel perceptron to discriminategood moves from bad moves on a collection of life-and-death problemsand on 9 � 9 game records. We thus obtain kernel machines that solveGo problems and play 9� 9 Go.1 IntroductionGo (Chinese: Wei-Qi, Korean: Baduk) is an ancient oriental game that origi-nated in China over 4000 years ago. The game has elegantly simple rules thatlead to intricate tactical and strategic challenges. Its complexity by far exceedsthat of chess, an observation well supported by the fact that the human worldchampion of chess found a worthy challenger in the computer program DeepBlue, while numerous attempts at reproducing such a result for the game of Gohave been unsuccessful: so far no computer program is a serious challenger evenfor the average Go amateur. As a consequence, Go appears to be an interestingtesting ground for machine learning [2]. In particular, we consider the problemof representation because an adequate representation of the board position is anessential prerequisite for the application of machine learning to the game of Go.A particularly elegant statement of the rules of Go is due to Tromp andTaylor1 and is only slightly paraphrased for our purpose:1. Go is played on an N �N square grid of points, by two players called Blackand White.2. Each point on the grid may be coloured black, white or empty. A point P issaid to reach a colour C, if there exists a path of (vertically or horizontally)adjacent points of P 's colour from P to a point of colour C. Clearing a colouris the process of emptying all points of that colour that do not reach empty.1 See http://www.cwi.nl/~tromp/go.html for a detailed description.

3. Starting with an empty grid, the players alternate turns, starting with Black.A turn is either a pass; or a move that does not repeat an earlier gridcolouring. A move consists of colouring an empty point one's own colour;then clearing the opponent colour, and then clearing one's own colour.4. The game ends after two consecutive passes. A player's score is the numberof points of her colour, plus the number of empty points that reach onlyher colour. The player with the higher score at the end of the game is thewinner. Equal scores result in a tie.While the majority of computer Go programs work in the fashion of rule-basedexpert systems [4], several attempts have been made to apply machine learningtechniques to Go. Two basic learning tasks can be identi�ed:1. Learning an evaluation function for board positions2. Learning an evaluation function for moves in given positionsThe �rst task was tackled in the framework of reinforcement learning by Schrau-dolph and Sejnowski [7] who learned a pointwise evaluation function by the ap-plication of TD (�) to a multi-layer perceptron (MLP). The second task found anapplication to tsume Go in [6] who used an MLP to �nd problem-solving moves.Eventually, both learning tasks should be combined into a composite system.All the known approaches su�er from a rather naive representation of boardpositions and candidate moves. The board is commonly represented as a simpletwo-dimensional array and single points or candidate moves are characterised bythe pattern of stones in their surroundings. These representations obviously donot take into account the speci�c structure imposed by the rules of the game.In this paper we introduce a new representation for both board positions andcandidate moves based on what we call a common fate graph (CFG). Our CFGrepresentation builds on ideas �rst presented by Markus Enzensberger in thecontext of his Go program Neurogo II2. While our discussion is focused onthe game of Go, our considerations about representation should be of interestwith regard to all those domains were the standard feature vector representationdoes not adequately capture the structure of the learning problem. A naturalproblem domain that shares this characteristics is the classi�cation of organicchemical compounds represented as graphs of atoms (nodes) and bounds (edges)[5]. The CFG representation is introduced in Section 2 and complemented withthe relative subgraph feature (RSF) representation. After brie
y introducing thekernel perceptron and support vector machine we demonstrate the e�ectivenessof the new representation in Section 3. We train both a kernel perceptron and asupport vector machine on a data base of life-and-death problems and on 9� 9game records: The resulting classi�er is able to discriminate between good andbad local moves.2 \The Integration of A Priori Knowledge into a Go Playing Neural Network" availablevia http://www.cgl.ucsf.edu/home/pett/go/Programs/NeuroGo-PS.html

2 RepresentationAn adequate representation of the learning problem at hand is an essential pre-requisite for successful learning. One could even go as far as saying that anadequate representation should render the actual learning task trivial. If the ob-jects to be classi�ed are represented such that the intra-class distances are zero,while the inter-class distances are strictly greater than zero a simple nearestneighbour classi�er would be able to solve the learning problem perfectly. Morerealistically, we aim at �nding a representation that captures the structure ofboard positions by mapping similar positions (in the sense of the learning prob-lem) to similar representations. Another desirable feature of a representation isa reduction in complexity: only those features relevant to the learning problemat hand should be retained.
(a) (b) (c)Figure1. Illustration of the feature extraction process: (a) board position (FGR),(b) corresponding common fate graph (CFG), and (c) a selection of extracted relativesubgraph features (RSF) w.r.t. the node marked by a gray circle in (a) and (b).2.1 Common Fate GraphThe value of a given Go position is invariant under rotation and mirroring of theboard. Also the rules of the game refer essentially only to the local neighbourhoodstructure of the game. A board position is thus adequately represented by itsfull graph representation (FGR), a graph with the structure of an N �N squaregrid. In fact, the visual structure of a classical Go board supports this view(see Figure 1 (a)). More formally, let us de�ne the FGR GFGR = (P;E) as anundirected connected graph GFGR 2 Guc. The set P = fp1; : : : ; pNP g of nodes pirepresents the points on the board. Also, each node p 2 P has any of three givenlabels l : P ! fblack; white; emptyg. The symmetric binary \edge" relationE = fe1; : : : ; eNEg with ei 2 ffp;p0g : p; p0 2 Pg represents vertical or horizontalneighbourhood between points.

However, the rules of the game provide us with more structural information.In particular, we observe that black or white points that belong to the same chain(i.e. points of the same colour that see each other) will always have a commonfate: either all of them remain on the board or all of them are cleared. In any casewe can represent them in a single node. We also reduce the number of edges byrequiring that any two nodes may be connected by only a single edge representingtheir neighbourhood relation. The resulting reduced graph representation will becalled a common fate graph (CFG) and will serve as the basic representationfor our experiments. More formally, we de�ne the graph transformation T :Guc ! Guc by the following rule: given two nodes p; p0 2 P that are neighboursfp; p0g 2 E and that have the same non-empty label l (p) = l (p0) 6= empty,perform the following transformation1. P 7! P n fp0g to melt the node p0 into p.2. E 7! (E n ffp0; p00g 2 Eg)[ffp; p00g : fp0; p00g 2 Eg to connect the remainingnode p to those nodes p00 formerly connected to p0.Repeated application of the transformation T toGFGR until no two neighbouringnodes have the same colour leads to the common fate graph GCFG. The resultof such a transformation is shown in Figure 1 (b). Clearly, the complexity ofthe representation has been greatly reduced while retaining essential structuralinformation in the representation.In how far is the CFG a suitable representation for learning in the game ofGo? Go players' intuition is often driven by a certain kind of aesthetics thatrefers to the local structure of positions and is called good or bad shape. As anexample consider the two white groups in Figure 1 (a) and (b). Although theylook quite distinct to the layman in Figure 1 (a) they share the property of beingalive, because they both have two eyes (i.e. two isolated internal empty pointscalled liberties). This essential property of stability is preserved in the CFG: atypical living group may be represented by a coloured node with two danglingempty points (see Figure 1 (b)), irrespective of the particular bulk structure ofthe group. The abstraction implemented by the CFG lies in the fact that onlychains of stones are collapsed into joint nodes and that the structure of libertiesis preserved. Of course, some information like, e.g. the number of points andtheir structure within a node is lost.2.2 Relative Subgraph FeaturesUnfortunately, almost all algorithms that aim at learning on graph representa-tions directly su�er from severe scalability problems (see [5]). Most practicallyapplicable learning algorithms operate on object representations known as fea-ture vectors x 2 Rd. We would thus like to extract feature vectors x from GCFGfor learning. Both learning tasks mentioned in the introduction can be formulatedin terms of mappings from single points to real values: the position evaluationfunction can be (approximately) decomposed into a sum of pointwise evaluationfunctions [7] and the move evaluation function is naturally formulated as a func-tion from (empty) points to real numbers. In both cases we would like to �nd

a mapping � : Guc � P ! Rd that maps a particular node p 2 P to a featurevector x 2 Rd given the context provided by the graph G = (P;E) 2 Guc, anidea inspired by [5], who apply context dependent classi�cation to the muta-genicity of chemical compounds. We enumerate d possible connected subgraphs~Gi = (~Pi; ~Ei) 2 Guc; i = f1; : : : ; dg of G such that p 2 ~Pi. The relative subgraphfeature xi = �i (p) is then taken proportional to the number of times ni thesubgraph ~Gi can be found in G and normalised to kxk = 1.Clearly, �nding and counting subgraphs ~Gi of G becomes quickly infeasi-ble with increasing subgraph complexity as measured, e.g. by j ~Pijand j ~Eij. Wetherefore restrict ourselves to connected subgraphs ~Gi with the shape of chainswithout branches or loops. In practice, we limit the features to a local contextj ~Pij � s, which | given the other two constraints | also limits the number d ofdistinguishable features. It should be noted, however, that even with a relativelysmall number of s, e.g. s = 6, a considerable range on the board is achieveddue to the compact CFG representation. Also, the relative subgraph featuresextracted from the CFG can be partly interpreted in terms of Go terminology.As an example, consider the feature in Figure 1 (c) row 3. This feature e�ectivelycounts the liberties of the point relative to which it is extracted (marked by grayring), a number that constitutes an important feature for human Go players andis a measure of the tactical safety of a chain of stones.3 Experimental ResultsLearning Algorithms In our experiments we focused on learning the distinc-tion between \good" and \bad" moves. However, we are really interested in thereal-valued output of the classi�er which enables us to order and select candidatemoves according to their quality. Given the RSFs extracted from the CFG anylearning machine that takes feature vectors as inputs and provides a real-valuedoutput is suitable for the task. In order to take into account the relatively highnumber of features we choose the class of binary kernel classi�ers for learning.The predictions of these classi�ers are given byŷ (x) = sign (f (x)) = sign�Xmi=1 �ik (xi;x)� :The �i are the adjustable parameters and k : Rd�Rd! R is the kernel function.These classi�ers can be viewed as linear classi�ers in a space that is spanned bynon-linear features and have recently gained a lot of popularity due to the successof the support vector machine (SVM) [8]. We decided to use an RBF kernel withdiagonal penalty term of the formk (x;x0) = exp ��kx � x0k2 =�2�+ �Ix=x0 :Two methods of \learning" the expansion coe�cients �i were employed:1. A simple kernel perceptron [1] that | initialised at � = 0| passes throughthe training vectors xi and increments the coe�cient �i by yi whenever xiis incorrectly classi�ed until convergence.

2. A soft margin support vector machine3 [3] that �nds the solution to theQP problem of minimising CPmi=1 �i +Pmi;j=1�i�jk (xi;xj) under the con-straints 8j 2 f1; : : : ;mg :Pmi=1 �jk (xi;xj) � 1� �i and � � 0.test n train white black w&b #probs #moves %goodwhite 65.8/65.3 48.0/48.8 63.8/62.6 1455 10.4 13.4black 57.7/57.3 66.4/64.5 65.9/65.9 1711 9.8 23.0w&b 61.5/61.0 58.0/57.3 64.9/64.4 3166 10.0 18.0# pts 2718 2682 5400Table 1. Results of the selection of tsume Go moves by an SVM (left) and a kernelperceptron (right). Shown is the percentage of successful determination of a problem-solving move. The numbers should be compared to the last column that indicates theaverage percentage of moves that solve the problem.
��!
��
�
��
�
����
��
�
�
�
�
��(
0
�
�
�
�
�
�*��

/
$
��
����
�
�
"
�
���)��	
%
&
��
���'
-
�

������#
Æ
.
�������Æ+Æ,Æ����	

�������
�����
����
�
���
�
�
�

Æ
�
�!��
�
�
�
�
�
�
���	
�
�
�
�

�
�"�

�
��
�
��������
��
�������������������	(a) (b)Figure2. Two examples of games played by a support vector machine (Black) againstGnu-Go (White). The SVM was trained on 9 � 9 game records from good amateurgames. Despite the fact that the SVM eventually looses both games it �nds a numberof remarkable moves, creates stable groups, and surrounds territory.Life and Death An interesting challenge in the game of Go | referred to astsume Go | is to kill opponent groups and to save one's own groups from dying.Our tsume Go study was based on a database of 40000 computer-generated Goproblems with solution by Thomas Wolf [9]. In order to calibrate the parametersof both the representation and the learning schemes, we created a simple task:The training set consisted of m = 2700 moves, where we took the best move3 Publicly available via http://www.kernel-machines.org/

provided by Wolf's problem solver GoTools [9] to be \good" and the worst oneto be \bad". The length s of the subgraph chains was chosen to be s = 6resulting in d � 400 features. Using a held-out data set of size mheldout � 3000we systematically scanned parameter space. For the SVM we set � = 0 (relyingon C for regularisation) and found the optimal parameter values to be � = 1 andC = 10 . For the kernel perceptron we used the same value of � and found � =0:05 to be optimal. Both solutions had a sparsity level k�k0 =m of approximately50% and lead to a success rate of up to 85% for discriminating between the bestand the worst move in a given problem.Given these parameters we turned to the more interesting task of picking thecorrect move among all the possible moves in a problem. Using essentially thesame training paradigm as above we applied the resulting classi�er to all thepossible moves in a problem and used the real-valued output f (x) for each legalmove x for ranking. We counted a success when the move ranked highest by theclassi�er was indeed one of the winner moves. The results of these experimentsare given in Table 1. Focusing on the full training and test sets (w&b) the successrate is more than 3 times that of random guessing. Although we were not ableto obtain the data-base used in [6] due to copyright problems, our result of a65% success rate compares favourably with the 50% reported in [6] on similarproblems using a naive local context representation and a multi-layer perceptronwith backpropagation.In the problems used, white was the attacker and black the defender. Thesections of the table refer to subsets of the whole training set containing onlyblack, only white, or black and white moves. It turns out that in accordance withthe Go proverb \Your opponent's move is your own move" the quality of certainmoves does not depend on whether they are played for the purpose of attackor defense. It should be noted that the performance of the kernel perceptronis absolutely comparable to that of the SVM | despite of the much simplertraining paradigm that requires much less computational resources than theSVM. We conjecture that in this special task the representation is so crucialthat the di�erence between the learning algorithms becomes negligible.Game Play The proof of the pudding is in the eating, and accordingly the testof the Go machine is in the playing. We applied the same learning paradigmas used above, but this time to a collection of 9 � 9 Go game records collectedfrom the Internet Go Server (IGS) and pre-processed and archived by NicolSchraudolph. We selected game records that were produced by players with aranking of at least amateur shodan, assuming that their moves could be viewedas optimal from the point of view of the learning machine. For each of them � 2500 moves played we randomly generated an arbitrary counterpart asa \bad" move. We provide two samples of the SVMs play against Gnu-Go4in Figure 2. Connoisseurs of the game will appreciate that the machine playsamazingly coherent considering that it takes into account only local shape andhas no concept of territory and urgency. Surprisingly, the program even creates4 Publicly available via http://www.gnu.org/software/gnugo/

situations of atari (in moves 9 and 45 of game (a) and moves 7, 25, and 29 ofgame (b)) and is able to capture attacked opponent stones in move 13 of game(a) and in move 11 of game (b).4 Conclusions and Future WorkWe presented Go as a successful application of learning based on feature vectorsthat are extracted from a graph representation. While the approach appears tobe particularly suitable for the game of Go it seems that other domains couldbene�t from these ideas as well. i In its present form, the system could serve asan intelligent move generator thus cutting down the width of the search tree inan evaluation function based system. In addition, the same representation thatserves now to learn move evaluations could be used to learn position evaluationfunctions decomposed into a sum of the nodes of the CFG. Both the move andposition evaluation combined with search would certainly lead to progress inplaying strength. Eventually, is seems plausible that the idea of abstraction asrepresented by the CFG must be carried out over a hierarchy of representationsmimicking the way human players think about the game of Go.Acknowledgements Wewould like to thank Nic Schraudolph and ThomasWolffor providing datasets. Also we thank the members of the computer-go mailinglist for invaluable comments and Klaus Obermayer for hosting our project.References1. M. Aizerman, E. Braverman, and L. Rozonoer. Theoretical foundations of thepotential function method in pattern recognition learning. Automation and RemoteControl, 25:821{837, 1964.2. J. Burmeister and J. Wiles. The challenge of go as a domain for ai research: Acomparison between go and chess. In Proceedings of the 3rd Australian and NewZealand Conference on Intelligent Information Systems, 1994.3. C. Cortes and V. Vapnik. Support Vector Networks. Machine Learning, 20:273{297,1995.4. D. Fotland. Knowledge representation in The Many Faces of Go, 1993.5. P. Geibel and F. Wysotzki. Learning relational concepts with decision trees. InMachine Learning: Proceedings of the Thirteenth International Conference, pages1141{1144. Morgan Kaufmann Publishers, 1998.6. N. Sasaki and Y. Sawada. Neural networks for tsume-go problems. In Proceedings ofthe Fifth International Conference on Neural Information Processing, pages 1141{1144, 1998.7. N. N. Schraudolph, P. Dayan, and T. J. Sejnowski. Temporal di�erence learning ofposition evaluation in the game of go. In J. D. Cowan, G. Tesauro, and J. Alspector,editors, Advances in Neural Information Processing Systems, volume 6, pages 817{824. Morgan Kaufmann Publishers, Inc., 1994.8. V. Vapnik. Statistical Learning Theory. John Wiley and Sons, New York, 1998.9. T. Wolf. The program GoTools and its computer-generated Tsume Go database.In Proceedings of the 1st Game Programming Workshop, 1994.

