
Classi�cation on Pairwise Proximity DataThore Graepely, Ralf Herbrichz,Peter Bollmann-Sdorraz, Klaus ObermayeryTechnical University of Berlin,z Statistics Research Group, Sekr. FR 6-9,y Neural Information Processing Group, Sekr. FR 2-1,Franklinstr. 28/29, 10587 Berlin, GermanyAbstractWe investigate the problem of learning a classi�cation task on datarepresented in terms of their pairwise proximities. This representa-tion does not refer to an explicit feature representation of the dataitems and is thus more general than the standard approach of us-ing Euclidean feature vectors, from which pairwise proximities canalways be calculated. Our �rst approach is based on a combinedlinear embedding and classi�cation procedure resulting in an ex-tension of the Optimal Hyperplane algorithm to pseudo-Euclideandata. As an alternative we present another approach based on alinear threshold model in the proximity values themselves, which isoptimized using Structural Risk Minimization. We show that priorknowledge about the problem can be incorporated by the choice ofdistance measures and examine di�erent metrics w.r.t. their gener-alization. Finally, the algorithms are successfully applied to proteinstructure data and to data from the cat's cerebral cortex. Theyshow better performance than K-nearest-neighbor classi�cation.1 IntroductionIn most areas of pattern recognition, machine learning, and neural computation ithas become common practice to represent data as feature vectors in a Euclideanvector space. This kind of representation is very convenient because the Euclideanvector space o�ers powerful analytical tools for data analysis not available in otherrepresentations. However, such a representation incorporates assumptions aboutthe data that may not hold and of which the practitioner may not even be aware.And { an even more severe restriction { no domain-independent procedures for theconstruction of features are known [3].A more general approach to the characterization of a set of data items is to de-



�ne a proximity or distance measure between data items { not necessarily given asfeature vectors { and to provide a learning algorithm with a proximity matrix ofa set of training data. Since pairwise proximity measures can be de�ned on struc-tured objects like graphs this procedure provides a bridge between the classical andthe "structural" approaches to pattern recognition [3]. Additionally, pairwise dataoccur frequently in empirical sciences like psychology, psychophysics, economics,biochemistry etc., and most of the algorithms developed for this kind of data { pre-dominantly clustering [5, 4] and multidimensional scaling [8, 6]{ fall into the realmof unsupervised learning.In contrast to nearest-neighbor classi�cation schemes [10] we suggest algorithmswhich operate on the given proximity data via linear models. After a brief discus-sion of di�erent kinds of proximity data in terms of possible embeddings, we suggesthow the Optimal Hyperplane (OHC) algorithm for classi�cation [2, 9] can be appliedto distance data from both Euclidean and pseudo-Euclidean spaces. Subsequently,a more general model is introduced which is formulated as a linear threshold modelon the proximities, and is optimized using the principle of Structural Risk Mini-mization [9]. We demonstrate how the choice of proximity measure in
uences thegeneralization behavior of the algorithm and apply both algorithms to real-worlddata from biochemistry and neuroanatomy.2 The Nature of Proximity DataWhen faced with proximity data in the form of a matrix P = fpijg of pairwiseproximity values between data items, one idea is to embed the data in a suitablespace for visualization and analysis. This is referred to as multidimensional scaling,and Torgerson [8] suggested a procedure for the linear embedding of proximity data.Interpreting the proximities as Euclidean distances in some unknown Euclideanspace one can calculate an inner product matrix H = XTX w.r.t. to the center ofmass of the data from the proximities according to [8](H)ij = �12  jpij j2 � 1̀ X̀m=1 jpmj j2 � 1̀ X̀n=1 jpinj2 + 1̀2 X̀m;n=1 jpmnj2! : (1)Let us perform a spectral decomposition H = UDUT = XTX and choose Dand U such that their columns are sorted in decreasing order of magnitude ofthe eigenvalues �i of H. The embedding in an n-dimensional space is achievedby calculating the �rst n rows of X = D 12UT . In order to embed a new dataitem characterized by a vector p consisting of its pairwise proximities pi w.r.t. tothe previously known data items, one calculates the corresponding inner productvector h using (1) with (H)ij , pij , and pmj replaced by hi, pi, and pm respectively,and then obtains the embedding x = D� 12UTh.The matrix H has negative eigenvalues if the distance data P were not Eu-clidean. Then the data can be isometrically embedded only in a pseudo-Euclideanor Minkowski space <(n+;n�), equipped with a bilinear form �, which is notpositive de�nite. In this case the distance measure takes the form p(xi;xj) =p�(xi � xj) =p(xi � xj)TM(xi � xj), where M is any n� n symmetric matrixassumed to have full rank, but not necessarily positive de�nite. However, we canalways �nd a basis such that the matrixM assumes the formM = diag(In+ ;�In�)with n = n+ + n�, where the pair (n+; n�) is called the signature of the pseudo-Euclidean space [3]. Also in this case (1) serves to reconstruct the symmetric bilinearform, and the embedding proceeds as above with D replaced by �D, whose diagonalcontains the modules of the eigenvalues of H.



From the eigenvalue spectrum of H the e�ective dimensionality of the proximitypreserving embedding can be obtained. (i) If there is only a small number of largepositive eigenvalues, the data items can be reasonably embedded in a Euclideanspace. (ii) If there is a small number of positive and negative eigenvalues of largeabsolute value, then an embedding in a pseudo-Euclidean space is possible. (iii) Ifthe spectrum is continuous and relatively 
at, then no linear embedding is possiblein less than `� 1 dimensions.3 Classi�cation in Euclidean and Pseudo-Euclidean SpaceLet the training set S be given by an `�`matrix P of pairwise distances of unknowndata vectors x in a Euclidean space, and a target class yi 2 f�1;+1g for each dataitem. Assuming that the data are linearly separable, we follow the OHC algorithm[2] and set up a linear model for the classi�cation in data space,y(x) = sign(xTw+ b) : (2)Then we can always �nd a weight vector w and threshold b such thatyi(xTi w + b) � 1 i = 1; : : : ; `: (3)Now the optimal hyperplane with maximal margin is found by minimizing kwk2under the constraints (3). This is equivalent to maximizing the Wolfe dual W (�)w.r.t. �, W (�) = �T1� 12�TYXTXY� ; (4)withY = diag(y), and the `-vector 1. The constraints are �i � 0;8i, and 1TY�� =0. Since the optimal weight vector w� can be expressed as a linear combination oftraining examples w� = XY�� ; (5)and the optimal threshold b� is obtained by evaluating b� = yi � xTi w� for anytraining example xi with �i 6= 0, the decision function (2) can be fully evaluatedusing inner products between data vectors only. This formulation allows us to learnon the distance data directly.In the Euclidean case we can apply (1) to the distance matrix P of the trainingdata, obtain the inner product matrix H = XTX, and introduce it directly {without explicit embedding of the data { into the Wolfe dual (4). The same is truefor the test phase, where only the inner products of the test vector with the trainingexamples are needed.In the case of pseudo-Euclidean distance data the inner product matrix H obtainedfrom the distance matrix P via (1) has negative eigenvalues. This means thatthe corresponding data vectors can only be embedded in a pseudo-Euclidean space<(n+;n�) as explained in the previous section. Also H cannot serve as the Hessianin the quadratic programming (QP) problem (4). It turns out, however, that theinde�niteness of the bilinear form in pseudo-Euclidean spaces does not forestalllinear classi�cation [3]. A decision plane is characterized by the equation xTMw =0, as illustrated in Fig. 1. However, Fig. 1 also shows that the same plane can justas well be described by xT �w = 0 { as if the space were Euclidean { where �w =Mwis simply the mirror image of w w.r.t. the axes of negative signature. For theOHC algorithm this means, that if we can reconstruct the Euclidean inner productmatrix XTX from the distance data, we can proceed with the OHC algorithm asusual. �H = XTX is calculated by \
ipping" the axes of negative signature, i.e.,with �D = diag(j�1j; : : : ; j�`j), we can calculate �H according to�H = U �DUT ; (6)
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xTMw = 0 Figure 1: Plot of a decision line (thick)in a 2D pseudo-Euclidean space with sig-nature (1; 1), i.e., M = diag(1;�1). Thedecision line is described by xTMw = 0.When interpreted as Euclidean it is at rightangles with �w, which is the mirror imageof w w.r.t. the axis x� of negative signa-ture. In physics this plot is referred to as aMinkowski space-time diagram, where x+corresponds to the space axis and x� to thetime axis. The dashed diagonal lines indi-cate the points xTMx = 0 of zero length,the light cone.which serves now as the Hessian matrix for normal OHC classi�cation. Note, that�H is positive semi-de�nite, which ensures a unique solution for the QP problem (4).4 Learning a Linear Decision Function in Proximity SpaceIn order to cope with general proximity data (case (iii) of Section 2) let the trainingset S be given by an ` � ` proximity matrix P whose elements pij = p(xi; xj) arethe pairwise proximity values between data items xi; i = 1; : : : ; `, and a target classyi 2 f�1;+1g for each data item. Let us assume that the proximity values satisfyre
exivity, pii = 0;8i, and symmetry, pij = pji;8i; j. We can make a linear modelfor the classi�cation of a new data item x represented by a vector of proximitiesp = (p1; : : : ; p`)T where pi = p(x; xi) are the proximities of x w.r.t. to the items xiin the training set, y(x) = sign(pTw + b) : (7)Comparing (7) to (2) we note, that this is equivalent to using the vector of proxim-ities p as the feature vector x characterizing data item x. Consequently, the OHCalgorithm from the previous section can be used to learn a proximity model whenx is replaced by p in (2), XTX is replaced by P2 in the Wolfe dual (4), and thecolumns pi of P serve as the training data.Note that the formal correspondence does not imply that the columns of the prox-imity matrix are Euclidean feature vectors as used in the SV setting. We merelyconsider a linear threshold model on the proximities of a data item to all the trainingdata items. Since the Hessian of the QP problem (4) is the square of the proximitymatrix, it is always at least positive semi-de�nite, which guarantees a unique solu-tion of the QP problem. Once the optimal coe�cients ��i have been found, a testdata item can be classi�ed by determining its proximities pi from the elements xi ofthe training set and by using conditions (2) together with (5) for its classi�cation.5 Metric ProximitiesLet us consider two examples in order to see, what learning on pairwise metric dataamounts to. The �rst example is the minimalistic 0-1-metric, which for two objectsxi and xj is de�ned as follows:p0(xi; xj) = � 0 if xi = xj1 otherwise : (8)



a) b) c)Figure 2: Decision functions in a simple two-class classi�cation problem for di�erentMinkowski metrics. The algorithm described in Sect. 4 was applied with (a) thecity-block metric (r = 1), (b) the Euclidean metric (r = 2), and (c) the maximummetric (r ! 1). The three metrics result in considerably di�erent generalizationbehavior, and use di�erent Support Vectors (circled).The corresponding `� ` proximity matrix P0 has full rank as can be seen from itsnon-vanishing determinant det(P0) = (�1)`�1(` � 1). From the de�nition of the0-1 metric it is clear that every data item x not contained in the training set isrepresented by the same proximity vector p = 1, and will be assigned to the sameclass. For the 0-1 metric the QP problem (4) can be solved analytically by matrixinversion, and using P�10 = (`� 1)�111T � I we obtain for the classi�cationy = sign �1T ((`� 1)�111T � I)Y1� = sign 1`� 1 X̀i=1 yi! : (9)This result means, that each new data item is assigned to the majority class ofthe training sample, which is { given the available information { the Bayes optimaldecision. This example demonstrates, how the prior information { in the case of the0-1 metric the minimal information of identity { is encoded in the chosen distancemeasure.As an easy-to-visualize example of metric distance measures on vectors x 2 <n letus consider the Minkowski r-metrics de�ned for r � 1 asp(xi;xj) =  X� jx�i � x�j jr!1=r : (10)For r = 2 the Minkowski metric is equivalent to the Euclidean distance. The caser = 1 corresponds to the so-called city-block metric, in which the distance is givenby the sum of absolute di�erences for each feature. On the other extreme, the max-imum norm, r ! 1, takes only the largest absolute di�erence in feature values asthe distance between objects. Note that with increasing r more weight is given tothe larger di�erences in feature values, and that in the literature on multidimen-sional scaling [1] Minkowski metrics have been used to examine the dominance offeatures in human perception. Using the Minkowski metrics for classi�cation in atoy example, we observed that di�erent values of r lead to very di�erent generaliza-tion behavior on the same set of data points, as can be seen in Fig. 2. Since thereis no apriori reason to prefer one metric over the other, using a particular metric isequivalent to incorporating prior knowledge into the solution of the problem.



Cat Cortex (leave-one-out) Proteins (10-fold)A V SS FL H-� H-� M GHSize of Class 10 19 17 19 72 72 37 30OHC-cut-o� 3.08 4.62 6.15 3.08 0.91 4.01 0.45 0.00OHC-
ip-axis 3.08 1.54 4.62 3.08 0.91 4.01 0.45 0.00OHC-proximity 3.08 4.62 3.08 1.54 0.45 3.60 0.45 0.001-NN 5.82 6.00 6.09 6.74 1.65 3.66 0.00 2.012-NN 6.09 4.46 7.91 5.09 2.01 5.27 0.00 3.443-NN 5.29 2.29 4.18 4.71 2.14 6.34 0.00 2.684-NN 6.45 5.14 3.68 5.17 2.46 5.13 0.00 4.875-NN 5.55 2.75 2.72 5.29 1.65 5.09 0.00 4.11Table 1: Classi�cation results for Cat Cortex and Protein data. Bold numbersindicate best results.6 Real-World Proximity DataIn the numerical experiments we focused on two real-world data sets, which are bothgiven in terms of a proximity matrix P and class labels y for each data item. Thedata set called \cat cortex" consists of a matrix of connection strengths between65 cortical areas of the cat. The data was collected by Scannell [7] from textand �gures of the available anatomical literature and the connections are assignedproximity values p as follows: self-connection (p = 0), strong and dense connection(p = 1), intermediate connection (p = 2), weak connection (p = 3), and absent orunreported connection (p = 4). From functional considerations the areas can beassigned to four di�erent regions: auditory (A), visual (V), somatosensory (SS),and frontolimbic (FL). The classi�cation task is to discriminate between these fourregions, each time one against the three others.The second data set consists of a proximity matrix from the structural comparison of224 protein sequences based upon the concept of evolutionary distance. The major-ity of these proteins can be assigned to one of four classes of globins: hemoglobin-�(H-�), hemoglobin-� (H-�), myoglobin (M), and heterogenous globins (GH). Theclassi�cation task is to assign proteins to one of these classes, one against the rest.We compared three di�erent procedures for the described two-class classi�cationproblems, performing leave-one-out cross-validation for the \cat cortex" datasetand 10-fold cross-validation for the \protein" data set to estimate the generaliza-tion error. Table 1 shows the results. OHC-cut-o� refers to the simple methodof making the inner product matrix H positive semi-de�nite by neglecting projec-tions to those eigenvectors with negative eigenvalues. OHC-
ip-axis 
ips the axesof negative signature as described in (6) and thus preserves the information con-tained in those directions for classi�cation. OHC-proximity, �nally, refers to themodel linear in the proximities as introduced in Section 4. It can be seen thatOHC-proximity shows a better generalization than OHC-
ip-axis, which in turnperforms slightly better than OHC-cut-o�. This is especially the case on the catcortex data set, whose inner product matrix H has negative eigenvalues. For com-parison, the lower part of Table 1 shows the corresponding cross-validation resultsfor K-nearest-neighbor, which is a natural choice to use, because it only needs thepairwise proximities to determine the training data to participate in the voting.The presented algorithms OHC-
ip-axis and OHC-proximity perform consistentlybetter than K-nearest-neighbor, even when the value of K is optimally chosen.
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