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Abstract

In image segmentation problems, there is usually a vast amount of filter

operations available, a subset of which has to be selected and instantiated

in order to obtain a satisfactory segmentation procedure for a particular do-

main. In supervised segmentation, a mapping from features,such as filter

outputs for individual pixels, to classes is induced automatically. However,

since the sample size required for supervised learning grows exponentially

in the number of features it is not feasible to learn a segmentation procedure

from a large amount of possible filters. But we argue that automatic model

selection methods are able to select a region model in terms of some filters.�This paper is printed in Proceedings of Workshop on Visual Information Processing, Sydney
1997, pp. 11-21
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We propose a wrapper algorithm that performs this task. We present results

on artificial textured images (Brodatz) and report on our experiences with

x–ray images.

Keywords: model based image segmentation, automatic model selection,

learning pixel classifier, texture segmentation

1 Introduction

The partitioning of an image into regions with similar properties based on sam-

ple segmentations is called supervised segmentation. Given a set of available

features, such as grey values or outputs ofa priori given filter operations and a

sample of classified images, the task is to induce a segmentation procedure which

approximates the segmentation observed on the sample images well. In general,

the potential number of features is very large. Since the sample size requiredin

order to learn a good hypothesis (independent of the algorithm which is used)

grows exponentially in the number of features (Blumeret al., 1987), it is not

feasible to automatically learn a segmentation procedure from a large library of

filters. Known supervised segmentation algorithms therefore require a restricted

region model in terms of few, relevant features,e.g.,based on the frequency spec-

trum (Boviket al., 1990), the second order statistics of the image (Houzelle & Gi-

raudon, 1992), or the assumption that the image is a Markov random field (Cross

& Jain, 1983).

Automatic model selection (for an overview, see,e.g., Kearnset al., 1997) deals

with the question how complex an optimal model should be, depending on the

problem and the available sample size. Too small a model is unlikely to contain

any “good” hypothesis, while too rich a model will inevitably incur over-fitting

– this problem is often referred to as the bias-variance tradeoff. Wrapperalgo-

rithms (Kohavi & John, 1997) find optimal models by repeatedly testing the best

hypotheses of different models on hold-out sets. In Section 2, we describe the

model selection problem briefly. Then, we discuss wrappers for feature subset se-
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lection and show how they can be applied for image segmentation. In Section 5,

we present some empirical results on the Brodatz texture data set and report on

experiences with the segmentation of x-ray images.

2 Classification and model selection

A classification problemcan be defined in terms of a distributionPD,D = X�Y ,

over pairs of instancesx 2 X and class labelsy 2 Y . Here, instances are feature

vectorsfxig 2 <n. Unfortunately, the underlying distributionPD is not known.

There is, however, a finite sequence of labelled training instancesS = h(xi; yi)i,
drawn according toPD. A hypothesish : X ! Y is a mapping from instances to

class labels. Thetrue error1 ED of a hypothesish is then defined byED(h) = ZX�Y L(h(x); y) dPD(x; y) (1)

whereL(ŷ; y) is the loss and returns 0 iff̂y = y 1; otherwise.

The true error of a hypothesis is therefore the expected error of the hypothesis

over the space of labelled instancesX � Y with respect to the distributionPD.

Unfortunately, since the distributionPD is unknown, only theempirical erroron

the training sampleS, ES(h) = 1=jSjP(x;y)2S L(h(x); y), can be observed.

Given a particular hypothesis language, ormodel, Hi, a learning algorithmfinds

the hypothesishmini 2 Hi, that minimizes the empirical errorES . Unfortunately,

given some large hypothesis spaceH, selecting the hypothesis which minimizes

the empiricalES error among all hypotheses is usually not a good strategy to find

a hypothesis with low true errorED. In general, the sample size required to assure

that a hypothesis which has a low empirical errorES also has a low true errorED
has to grow exponentially in the size of the model2 (e.g.,the number of attributes)1sometimes also calledgeneralizationerror2Learning theory explains and quantifies this over-fitting effect. The more hypotheses one
assesses on a sample, the more optimistically assessed the apparently best hypothesis will be –
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(Blumeret al., 1987).

Model selection algorithms stratify the hypothesis space into increasingly large

modelsH1;H2; : : : � H. The curve of true errors over the increasingly complex

models is normally U-shaped. There are two classes of approaches to decide,

which model incurs an optimally low error: hold-out testing –e.g., (Kohavi &

John, 1997) – and complexity penalization based approaches, such as Minimum

Description Length (Rissanen, 1985), or Guaranteed Risk Minimization (Vapnik,

1982).

3 Wrappers for model selection

In order to find the best model we need to estimate the true errorED of the best

hypothesishmini of each modelHi. A simple attempt is to split the training sampleS = T [ H into a (smaller) training setT and a hold-out setH. After learning

a hypothesishminT that minimizesET , the estimateEH(hminT ) on the hold-out setH is used to compare the best hypotheses of each model. This estimate is not

biased by the size of the model because only one hypothesis from each model

is assessed on the hold-out set. Unfortunately, this estimate is subject to high

variance. A variant of hold-out testing isn-fold cross validation. Here, the mean

of n estimates of the error on disjoint subsets of the training sample incurs a lower

variance.

All subsets of the given set of attributes form thefeature space. In the case ofn
features the feature space has exactly2n elements. Note, however, that there are� nn=2� subsets containingn=2 out of n features while there is only 1 subset that

contains none, or alln features respectively. Since evaluating these models via

cross validation incurs some variance, the apparently best model withn=2 fea-

tures will be assessed more optimistically than the only model with all features –

which would incur an inappropriate bias towards models with close ton=2 fea-

tures. In order to minimize this bias, wrappers usually perform a greedy search.

which increases the chance of selecting an apparently good hypothesis with a high true error.
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On each stepi, forward feature subset selection adds one new feature to a list ofi � 1 already selected features. In order to select a new feature, all the different

models that contain thei � 1 features selected earlier and one of the remainingn� (i�1) features are enumerated and assessed via cross validation. The process

stops as soon as adding another feature does not improve the cross validation er-

ror. If the total number of features is large compared to the number of features ac-

tually selected, this procedure incurs only a negligibly small bias towards smaller

models (whilen different models including one feature are assessed, onlyn � 1
models with two features are tested).

4 Automatic model selection in supervised segmen-

tation

In this section, we show how the introduced methods can be used to automati-

cally perform the model selection step in supervised segmentation. A supervised

segmentation problem is constituted by a distribution of images and correspond-

ing segmentations, and a set ofa priori known features corresponding to the pix-

els. This distribution of images induces a distribution on pairs of pixel descrip-

tions and classes (corresponding to the segments). The incorporation of automatic

model selection in this task is outlined in the next three steps.

Feature extraction At the first stage, for each pixel of the sample images a fixed

set of features has to be extracted (e.g.,by convolving the image with – task

specific – filters). This yields ann-dimensional feature vectorx(i) associ-

ated with each pixeli.
Feature subset selectionEach pixeli in the sample images is associated with

a class labely(i) corresponding to the region it lies on. Thus, a training

sampleS = h(x(i); y(i))i is formed. A model selection algorithm (e.g.,a

wrapper for feature subset selection, see Section 3) needs to select a subset

of features that forms a model that minimizes the expected true errorED.
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Induction Within the selected model, a hypothesishmin has to be induced. This

hypothesis is the resulting segmentation procedure mapping pixel features

to a class label which corresponds to the region the pixel is associated with.

5 Experiments and Results

In this section we will present some results of our algorithm. In each experiment

we fixed the size of the images to 256x256 and the size of the training set to 1000

randomly drawn pixels,i.e., 1.5% of all pixels. When performing feature subset

selection we use 10-fold cross validation. In our implementation, we use a learn-

ing algorithm that induces ripple down rules (Scheffer, 1996) which are rules with

hierarchically nested exceptions. Ripple down rules incur a language bias similar

to decision trees, the only difference being that every node in a ripple down rules

contains a conjunction of interval constraints rather than a single test.

Texture segmentation In these experiments, the task is to learn the segmenta-

tion of a patchwork image consisting of Brodatz textures taken from (Brodatz,

1966). We use the two images in Figure 1 (above tables (a) and (b)).

In the feature extraction phase, we convolved the image with a bank of Gabor

filters to compute the amplitudes. Gabor filters are well suited if the regionshave

distinct peaks in their frequency spectrum (Boviket al., 1990; Weldon & Higgins,

1997). The resulting segmentations are shown in Figure 1. In simple models (first

columns of Figure 1) the algorithm finds the best segmentation procedures with

and without feature subset selections. As one can see in the leftmost column,

feature subset selection yields barely any gain if the available set of features is

so small that almost any subset misses relevany information. As the numberof

filters is increased to 32, the results improve and feature subset selection gains

significant enhancement of the segmentation, compared to pure learning in the

complete hypothesis language. Feature subset selection reduces the number of

features taken into account from 32 to 8, and from 64 to 14, respectively. As
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number of Gabor filters
12 32

number of Gabor filters
32 64

(a) (b)

Figure 1: Segmentation results on(a) 4 and(b) 9 textures. First row: results w/o
feature subset selection; second row: forward feature subset selection.

the number of available training examples is increased further, the set of features

selected by forward feature subset selection remains stable.

Segmentation of x-ray images Here, the task is to learn the segmentation of x-

ray images of the chest. The sample is drawn from nine images. The classes that

need to be distinguished are “spine”, “colon”, “tissue”’ and “collimator”. The

data set contains the images with their optimal segmentations and filter images

of six highly non-linear filters, which were hand-crafted and strongly adapted to
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the domain. Additional features are grey values and a bank of 32 Gabor filter

convolutions. Thus, we obtained a 39-dimensional feature vectorx(i) for each

pixel i.
Exemplary, Figure 2 shows the results on one image, without feature subset selec-

tion (b), with forward feature subset selection (c) and, additionally, the enhance-

ment obtained by combining the learning algorithm with a majority voting tech-

nique (d).

(a) (b) (c) (d)

Figure 2:(a) optimal segmentation;(b) without feature subset selection(c); with
forward feature subset selection;(d) with committee of 10 hypotheses

If we induce a segmentation procedure without model selection, the results are

unacceptably poor. (Figure 2 (b)). eature subset selection drops all the Gabor fea-

tures and finds a good hypothesis consisting only of a combination of the domain-

specific features and the grey value (Figure 2 (c)). Increasing the sample size S
further does not increase the number of actually selected features and keeps the

quality of the output stable.

6 Discussion

We discussed the problem of supervised segmentation in the presence of a large

number of features (such as filter outputs, gery values, and outputs of task-specific

operators). We argued that, when the number of available features is reasonably

large, it is impossible to use a learning algorithm without prior selection of a good
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model. We further argued that the selection of a model can in fact be performed

by a model selection algorithm, such as wrappers for feature subset selection.Us-

ing model selection algorithms is unlikely to improve the results if the available

feature set is very small and already a good approximation of the optimal model.

But it will yield a high gain if the available feature set consists of a largelibrary

of filters, as is often the case in pattern recognition tasks. Unfortunately, model

selection incurs a higher-level over-fitting of the data, similar to the over-fitting

caused by too large hypothesis spaces (Ng, 1997). If the number of models that

are compared by cross validation is large, chances are that one model matches the

hold-out sets particularly well without actually being a good model. Therefore,

an engineer who guesses the best model in the first place will gain a lower ex-

pected error than an algorithm that assesses a large number of models – even if

the optimal model is in the set of assessed models (because the variance in model

assessment incurs the risk of selecting a sub-optimal one). One way to overcome

this problem is tolearn an appropriate model selection bias for a class of similar

problems (Baxter, 1997).

While the Gabor filters which we use as attributes are fixed and the task isto select

a subset of them to form a well discriminating hypothesis, Weldon and Higgins

(1997) propose a method for optimizing Gabor filters for a specific classification

task. Their algorithm selects filters that maximize the ratio of amplitudes of dif-

ferent segments. Greenspan (1996) uses a Naive Bayes classifier in order to learn

a hypothesis in terms of the output of a fixed set of Gabor filters. This paper ex-

tends Greenspan’s work by introducing a model selection step that makes learning

from a large set of features possible.
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