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Learning Preference Relations for Information RetrievalRalf Herbrich?, Thore Graepely, Peter Bollmann-Sdorra?, Klaus ObermayeryDepartment of Computer Science, Technical University of Berlin,? Statistic Research Group, Sekr. FR 6-9,y Neural Information Processing Group, Sekr. FR 2-1,Franklinstr. 28/29, 10587 Berlin, Germanyralfhjgraepel2jbollmannjoby@cs.tu-berlin.deAbstractIn this paper we investigate the problem of learninga preference relation from a given set of ranked doc-uments. We show that the Bayes's optimal decisionfunction, when applied to learning a preference rela-tion, may violate transitivity. This is undesirable forinformation retrieval, because it is in con
ict with adocument ranking based on the user's preferences. Toovercome this problem we present a vector space basedmethod that performs a linear mapping from docu-ments to scalar utility values and thus guarantees tran-sitivity. The learning of the relation between docu-ments is formulated as a classi�cation problem on pairsof documents and is solved using the principle of struc-tural risk minimization for good generalization. Theapproach is extended to polynomial utility functionsby using the potential function method (the so called\kernel trick"), which allows to incorporate higher or-der correlations of features into the utility function atminimal computational costs. The resulting algorithmis tested on an example with arti�cial data. The algo-rithm successfully learns the utility function underly-ing the training examples and shows good classi�cationperformance. IntroductionThe task of supervised learning in information retrieval(IR) is mostly based on the assumption that a givendocument is either relevant or non-relevant. This holdsfor example for Rocchio's feedback algorithm (Salton1968) and for the binary independence model (Robert-son 1977) which is based on a Bayesian approach. Aclassi�cation approach was adopted and as classi�ca-tions were considered to be partitions on a set of objectsthis reduces to learning equivalence relations from ex-amples. But there is also the view that the similarity ofthe documents to the query represents the importanceof the documents (Salton 1989, p. 317), which in turnmeans that a user need implies some preference relationon the documents. In (Bollmann & Wong 1987) and(Wong, Yao, & Bollmann 1988) the idea was developedto learn a preference relation instead of an equivalencerelation. The learning of preference relations reducesto a standard classi�cation problem if pairs of objectsare considered, because a binary relation can be viewed

as a subset of the Cartesian product. (Wong, Yao, &Bollmann 1988) successfully applied linear classi�cationand perceptron learning to this problem.In this paper we consider the situation that thereare more than two relevance levels and that there existseveral documents with di�erent relevance levels whichall have the same description. We �nd that an idealBayesian approach leads to inconsistencies, namely tothe violation of transitivity. To overcome this problem,an algorithm is developed which enforces transitivity bylearning a linear mapping from document descriptionsto scalar utility values based on training examples thatconsist of pairs of document descriptions and their pref-erence relation. The learning procedure is based on theprinciple of structural risk minimization (SRM) (Vap-nik 1995), which is known for its good generalizationproperties (for an application of SRM to document clas-si�cation see (Joachims 1997)). The linear approach isgeneralized to include nonlinear utility functions, whichare able to capture correlations between the features,by applying the so-called \kernel-trick". The paper isstructured as follows: First, the learning of preferencerelations is formulated as a classi�cation problem onpairs of document descriptions and the inconsistencyof the Bayesian approach is demonstrated. In the fol-lowing, the linear vector space model is introduced andstructural risk minimization is applied for learning theweight vector. Then, this approach is generalized to in-clude nonlinear utility functions by applying the \kerneltrick". Finally, we present some numerical experimentsto demonstrate the validity of the approach.The Problem of TransitivityLet us consider a static document space denoted by Dwith documents d 2 D being represented by featurevectors d = (d1; d2; : : : ; dn) 2 D where n denotes thenumber of the features dk. The user determines a pref-erence relation on the documents used for training, andgenerates a training set S consisting of ` pairs (d;d0)of document descriptions together with their relationsd �> d0: S = f((d(i);d0(i)); y(i))gì=1



Copyright 1998, American Association for Arti�cal Intelligence. All rights reserved. 2no. of documentsrelevance levels d d0 d00R1 0 0 4R2 5 0 0R3 0 9 0R4 0 0 5R5 4 0 0Table 1: Number of relevance assignments to 27 docu-ments described by the feature vectors d, d0,and d00y(i) = � +1 if d(i) �> d0(i)�1 otherwise : (1)Moreover, let us consider a set H of functions hj , whichmap pairs of documents to the set f+1;�1g.We are now in a position to formulate our problem:Given a training set S and a space of hypotheses H,choose one function h� 2 H such that the risk of mis-classifying further pairs (d; d0) of documents is mini-mized. Moreover, the relation represented by h� has tobe transitive,h�(d;d0) = h�(d0;d00) = +1) h�(d;d00) = +1 : (2)Our task now reduces to a classi�cation problem. Theobjects the classi�er has to assign to the classes �> and:�> are pairs (d;d0) of document descriptions. Fromthe theory of optimal decisions in classi�cation tasks(e.g., (Bishop 1995)) it is known, that the function h�with minimal risk is the Bayes's optimal function:h�(d;d0) = � +1 if P ( �> j(d;d0)) > 12�1 otherwise : (3)However, the Bayesian approach for preference learningis inconsistent, because stochastic transitivity may nothold (Suppes et al. 1989). We will demonstrate thisfact by the following example.Let us consider a document space with 27 documents.The documents are described by three distinct featurevectors D = fd;d0;d00g, which separate the documentspace into three sets of nine documents each, one setfor each feature vector. Each document is assigned oneout of �ve relevance levels as listed in Table 1, whered 2 Ri is preferred over d0 2 Rj i� i < j. Hence thechoice probabilities are P ( �> j(d;d0)) = 4581 = 59 > 12 ,P ( �> j(d0;d00)) = 4581 = 59 > 12 , and P ( �> j(d00;d)) =5681 > 12 . This is equivalent (using (3)) toh�(d;d0) = h�(d0;d00) = h�(d00;d) = +1 ; (4)which contradicts transitivity (2).The Utility Function ApproachOne way to enforce transitivity is to map each docu-ment description to a real value: U : D 7! <. Sucha value can be seen as an ordinal utility a document

provides to the user (Roberts 1979). The transitivityof the relation is assured by the ruled �> d0 , U(d) > U(d0) ; (5)which maps the classi�cation problem to the problemof learning the function U(d). Let us start by making alinear model of the function U(d) parameterized by ann{dimensional vector w = (w1; : : : ; wn) (Wong, Yao, &Bollmann 1988):U(d) = nXk=1wkdk + b = w � d+ b (6)Now we can express (5) using (6) to gived �> d0 , w � d+ b > w � d0 + b, w � (d� d0) > 0 : (7)Note that the relation d �> d0 is expressed in termsof the di�erence between feature vectors d� d0, whichcan be thought of as the combined feature vector of thepair of documents. If we assume that the \true" utilityfunction is indeed linear, the weight vector w has tosatisfy inequality (7) for each pair of documents in thetraining set. Assuming a �nite margin between the n-dimensional feature vectors d(i) � d0(i) with y(i) = +1and y(i) = �1, we make the constraint (7) stronger andmultiply each inequality by y(i),y(i)[w � (d(i) � d0(i))] � 1 i = 1; : : : ; ` : (8)The weight vector w� with optimal generalization isnow determined via the principle of structural risk min-imization (Vapnik 1995), which { for the present case{ leads to the problem of minimizing the squared normkwk2 of the weight vector under the constraints (8).According to the Support Vector training algorithm(Cortes & Vapnik 1995), we arrive at the problem ofmaximizingL(�) = X̀i=1 �i � 12 X̀i;j=1�i�jy(i)y(j)� [(d(i) � d0(i)) � (d(j) � d0(j))] ; (9)w.r.t. the �i. This constitutes a standard quadraticprogramming problem. Also note that due to the ex-pansion of the last term in (9), the solution �� to thisproblem can be calculated solely in terms of the innerproducts between document descriptions without refer-ence to the descriptions themselves. This fact will beexploited in the following section for the generalizationof the method to nonlinear utility functions. Moreover,the optimal weight vector w� can be written as a linearcombination of di�erences of document vectors from thetraining set:w� = X̀i=1 �iy(i)(d(i) � d0(i)) : (10)All those pairs of documents with ��i 6= 0 \support" theconstruction of the optimal hyperplane in the space of



Copyright 1998, American Association for Arti�cal Intelligence. All rights reserved. 3document pairs, and are therefore referred to as \sup-port vectors" (Cortes & Vapnik 1995). Usually, thenumber of support vectors `SV � `, and it is this sparse-ness that makes the representation (10) so appealing.After learning, the utility function is represented bythe vector �� together with the training set S. A newpair of documents (d;d0) is then classi�ed { using (7)and (10) { according tod �> d0 , X̀i=1 ��i y(i)[(d(i) �d0(i)) � (d� d0)] > 0 : (11)However, combining (6) and (10) it is also possible toreconstruct the utility function of a document d asU(d) = X̀i=1 ��i y(i)(d(i) � d0(i)) � d : (12)Both these calculations { equations (11) and (12) { ben-e�t from the sparseness of the expansion (10), whichsigni�cantly reduces their computational costs.Extension to the Nonlinear CaseEquation (9) as a direct derivation of (5) assumes a lin-ear model of the utility function U(d). In order to ex-tend the model to include utility functions U(d), whichare nonlinear in the features dk, we de�ne a mapping� : D 7! F from the space D to anm-dimensional spaceF , where the dimensionality of F may be much greaterthan that of D, m � n. If we now adopt our linearmodel in the space F , we obtainU(d) = ~w � �(d) : (13)Note, that ~w 2 F , which means that m nonlinear fea-tures can now be taken into account. Using the short-hand notation (�(d(i)) � �(d0(i))) = ��(i) and (13),equation (9) becomesL(�) = X̀i=1 �i � 12 X̀i;j=1�i�jy(i)y(j)��(i) ���(j) (14)which has to maximized w.r.t. to the �i.Our derivation again results in a functional, whichonly depends on the inner products between documentvectors, this time calculated in F . According to theHilbert{Schmidt theory, for a given space F there existsa function K : D � D 7! < { the \kernel function" {that corresponds to an inner product in F . Conversely,we can �x the kernel function K(d;d0),K(d;d0) = �(d) � �(d0) ; (15)which corresponds to taking the inner product in somespace F under conditions given by Mercer's theorem(Aizerman, Braverman, & Rozonoer 1964).We can apply this \kernel trick" to expression (14)which makes it possible to e�ciently calculate the dotproducts in F for equation (14) by simply evaluating

the corresponding kernel function in D. Similiar ar-guments apply to the evaluation of the equations forclassi�cation (11) and the computation of the utilityfunction (12) in the nonlinear case.As an example for an admissible kernel function con-sider K(d;d0) = (d � d0 + 1)p ; (16)which corresponds to the space F of all monomials ofthe n input features up to degree p (Vapnik 1995). Fordocument descriptions this corresponds to taking intoaccount higher order correlations of word occurrances.In particular for binary document descriptions indicat-ing the occurrance of particular keywords, a polynomialutility function can be interpreted as a weighted logicalexpression in the sense of a query. The most impor-tant advantage of the kernel technique is the enormousreduction in computational costs as opposed to explic-itly performing the mapping � and then taking the dotproduct in F . For p = 2 and n � 10 000 (not uncom-mon in IR) in (16) the dimensionality m of the corre-sponding feature space F is m � 50 015 000 (Burges1997). If we did not use the \kernel trick", we wouldhave to transform the documents to a � 50 million di-mensional space in order to compute the inner products.Experimental Results100 data points d were generated from a uniform distri-bution over the unit square [0; 1]� [0; 1]. 10 points wereused to generate the training set, 90 were set aside forthe test set. A utility value U(d) was assigned to eachdata point with (a) a linear function U(d) = d1 + 2d2and (b) a quadratic function U(d) = d1 + 2d2 � 4d1d2.All document pairs of the training set were labeled ac-cording to (1) and (5). We used the kernel given in (16),which should be capable of modeling polynomial utilityfunctions. The algorithm was trained using a modi�-cation of Steve Gunn's Support Vector implementationin MATLAB. Training was done for values p = 1 : : : 5,and we determined the degree p of the optimal kernelby minimizing an upper bound on the generalizationerror given by (Cortes 1995)24 maxj=1;:::;` 




��(j) � X̀i=1��(i)




235 k ~w�k2 ; (17)which can be evaluated conveniently using the \kerneltrick". The results are depicted in Figure 1, (a) and(b), for the linear and quadratic utility function, respec-tively. From the iso-utility lines it can be seen that inboth cases the utility function found by the algorithm isvery similar to the one used to generate the data. Indi-cated by diamonds are document vectors that were partof \support vector pairs", whose numbers are given inthe plot. Note how \support vector pairs" are close inthe sense that their utilities are similar. Since only forthese pairs ��i 6= 0, they uniquely determine the utilityfunction. To obtain a test error we calculated the per-centage of misclassi�ed document pairs from the test



Copyright 1998, American Association for Arti�cal Intelligence. All rights reserved. 4set. This error was 0.30% for the linear case and 2.2%for the quadratic utility function.
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3,5(b)Figure 1: Contour plot representation of the originaland the reconstructed utility functions. Solid lines in-dicate iso-utility for the true utility function, dashedlines show the iso-utility for the utility function recov-ered by the algorithm for (a) a linear utility functionU(d) = d1 + 2d2 and (b) a quadratic utility functionU(d) = d1 + 2d2 � 4d1d2. The degree automaticallychosen by the algorithm was p = 1 in the linear andp = 3 in the quadratic case.DiscussionIn this paper, we investigate the problem of learning apreference relation from a given set of document pairs(d;d0), an approach which is based on ordinal utili-ties, by learning a mapping from documents to utilities.This approach is also related to Robertson's \probabil-ity ranking principle" (Robertson 1977):d �> d0 , P (Rjd) > P (Rjd0) (18)where P (Rjd) is interpreted as probability of useful-ness of d. If we assign utility values U(d) to documentsvia the strictly monotonically increasing transformationU(d) = ln P (Rjd)1�P (Rjd) , a linear utility function is obtainedif the individual features are independent w.r.t. R and
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