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Abstract

In this paper we study the problem of generalisation in information re-

trieval. In particular we study precision-recall curves and the average

precision value. We provide two types of bounds: large-deviation bounds

of the average precision and maximum deviation bounds with respect

to a given point of the precision recall curve. The �rst type of bounds

are useful to answer the question: how far can true average precision be

from the value observed on a test collection? The second is useful for

obtaining bounds on average precision when tight bounds on a particular

point of the curve can be established, as is the case when training SVMs

or Perceptrons for document categorisation.
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1. INTRODUCTION

Information retrieval (IR) relies heavily on performance evaluation tech-
niques. Numerous papers have been written comparing systems across a wide
range of performance measures and corpora. Formally, however, we know very
little about performance measures: how to they relate to each another and to
characteristics of the corpora. More importantly, we know very little about
the dependences between these measures and the di�erent IR algorithms. The
study of generalisation in statistics o�ers a framework for these problems. In
this paper we are going to present a statistical analysis of the most commonly



used performance measure in IR: the precision-recall curve. We will provide
some answers to the following question: How far can true performance be from
the performance observed on a particular test corpus?

There is a good reason why we did not need to worry about this problem
in the past: Broadly speaking, simple systems generalise well. That is, any
reasonable performance measure will yield consistent results across simple IR
algorithms, because for these algorithms true performance cannot (provably)
be too far from the performance observed in a test corpus [5]. However, as
IR systems increase in complexity (i.e. dimensionality of feature space and
number of parameters) the true performance of a system can �uctuate further
away from its observed value.

This problem is well known in the �elds of applied statistics, probabilis-
tic inference and machine learning. In the past twenty years these �elds have
provided a wide range of concepts and techniques tackling the problem of gen-
eralisation. However, so far these studies have concentrated on the problem of
classi�cation and have rarely dealt with the problem of most interest in IR:
ranking. In this paper we apply some statistical techniques to the problem of
document ranking in order to study the precision-recall curve.

1.1 Precision and Recall

Let us describe the problem more formally. Consider a labelled collection
C := f(xi; yi)g

m
i=1 where xi 2 X is a document, yi 2 f�1;+1g =: Y is a label

(+1 meaning the document is relevant), m is the size of the collection, X is the
set of all possible documents, and m+ is the number of relevant documents in
C.

We will assume that our collection C is a sample of a much larger collection
of labelled documents. In particular, we will consider that there is some prob-
ability distribution �XY de�ned over X�Y where the conditional distribution
�Y jX=x is a deterministic function of the documents x for a given query or
topic.

Let us start by considering an IR system h : X ! Y which, given a docu-
ment x, outputs only one of two relevancy values +1 or �1. We can evaluate
the performance of this system on our collection C by counting the number of
relevant documents correctly labelled (denoted by m++) and the documents
incorrectly labelled as relevant (m+�). Then precision, qC;h, and recall, rC;h,
are de�ned as as follows:

rC;h :=
m++

m+
; (1)

qC;h :=
m++

m++ +m+�
: (2)

Taking into account that our collection C is a sample from �XY on can interpret
these two measures as estimates, namely; rC;h � rh := P (h (x) = +1jy = +1),
and qC;h � qh := P (y = +1jh (x) = +1).

Note that recall is identical to the so called true positive acceptance rate,
or sensitivity. Precision however is quite an unusual measure: it is not the
usual false positive acceptance rate or speci�city, sh := P (h (x) = +1jy = �1),



traditionally used in ROC and OC curves. It can be shown that these two
quantities are not linearly related. Furthermore, the probability of misclassi-

�cation error, P (h (x) 6= y), is non-linearly related to precision and recall as
expressed in the following equation:

qh =

�
1�

P (y = �1)

P (y = +1)

1� rh
sh

��1

1.2 Precision-Recall curves

In general, ranking functions are not binary but implement a real-valued
function f : X ! R to rank documents with respect to their likelihood of
relevancy. Given a collection C and a ranking function f , we introduce the
following shorthand notation:

� (i) 2 f1; : : : ;mg returns the index of the ith ranked document.

� (j)
+
2 f1; : : : ;m+g returns the index of the jth ranked document when

only relevant documents are considered.

Let f+j := f
�
x(j)+

�
and i(j)+ the rank of x(j)+ . In order to enhance the un-

derstanding consider the collection C = f(x1;+1) ; (x2;+1) ; (x3;�1) ; (x4;�1)g
and a ranking function f such that f (x3) > f (x2) > f (x1) > f (x4). Then�
x(1)x(2)x(3)x(4)

�
= [x3; x2; x1; x4] ,

�
x(1)+ ; x(2)+

�
= [x2; x1] ,

�
f+1 ; f

+
2

�
=

[f (x2) ; f (x1)], and
h
i(1)+ ; i(2)+

i
= [2; 3].

In order to evaluate the quality of the ranking produced by f in C, we are
going to use the previously de�ned measures of precision and recall. For this
we introduce a threshold b 2 R and construct the new classi�cation function:

hb(x) = sign (f(x)� b) : (3)

Precision and recall now depend on the value of b; There arem di�erent (qb; rb)
values1, which can be obtained by the m classi�ers

�
hf(x1); : : : ; hf(xm)

	
.

Consider the subset of these classi�ers obtained by considering only the
relevant documents, sorted with respect to f . Their recall values are:

r (C; f) :=

�
1

m+
;

2

m+
; : : : ;

m+

m+

�

Plotting the corresponding precision values at these points we obtain the pre-
cision recall curve

(q (C; f) ; r (C; f)) :=

" 
j

i(j)+
;

j

m+

!#m+

j=1

;

1With a slight abuse of notation, qb denotes qC;hb . The document collection C should be

clear from the context.



which gives us an indication of the performance of our system over all possible
recall values. Finally, we can state the performance measure of interest, the
average precision, which is the average point in the precision-recall curve:

Af (C) :=
1

m+

m+X
j=1

qj (C; f) =
1

m+

m+X
j=1

j

i(j)+
:

1.3 The problem of generalisation

We can now state the problem we are interested in more formally: We are
trying to characterise the di�erence of the average precision over the random
draw of two test collections C and C 0 (with high probability). Hence, we are
interested in

PC;C0��m
XY

(jAf (C)�Af (C
0)j > �) :

Of special importance will be the quantity Af := EC��m
XY

fAf (C)g, that is,
the expected average precision over the random draw of document collections
C. As we do not wish to characterise the sampling distribution �XY , we will
consider expectation over all subsets of documents of size m and exactly m+

positive points (as it will be seen later, this does not restrict our results in
practice). For this reason, we will be interested in the quantity Af (m; k) :=
EC��m

XY
fAf (C) jm+ = k g. As a consequence, our ultimate interest is in upper

bounding

PC��m
XY

�
Af (C)�Af (m; k) > �

��m+ = k
�
: (4)

In other words: How far can the observed average precision Af (C) be from the
expected average Af (m;m+) for any function f and any collection C?

2. BOUNDING AVERAGE-PRECISION

In order to answer the above question we will use McDiarmid's inequality,
which allows us to bound the deviation of any function of a sample based on
the maximum deviation that can be observed by this function when a single
object of the sample is altered. Obviously, we would like to be able to show
that these two quantities to grow closer as m and m+ grow larger. We will
�nd probabilistic bounds on the di�erence between these two quantities and
prove asymptotic convergence. These constitute the �rst average precision
generalisation bounds that we are aware of.

In our notation, the results of McDiarmid reads as follows (see [2] or [4] for
more details): For any i, let �i be de�ned such that

8 (x; y) : 8C : m+ = k : jAf (C) �Af

�
Ci$(x;y)

��� � �i ; (5)

where Ci$(x;y) is the document collection with the ith example replaced by
(x; y). In other words, �i bounds the maximal change in average precision for
a ranking function f if the ith document-class pair is replaced. Then, for all
" > 0,

PC��m
XY

�
Af (C)�Af (m; k) > �

��m+ = k
�
< exp

�
�

2"2Pm
i=1 �

2
i

�
: (6)
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Figure - 1 : Contour plot of (6) for Af (C). The probability that the expected
average precision lies within � of the found average precision is represented for
a range of �, m and six di�erent cases of m+.

2.1 The precision - recall curve

The derivation of �i is quite a laborious process for the case of the precision-
recall curve and involves the study of several di�erent cases; an overview is
presented in Appendix A, section A.1. We show that

�i �
1

m+ + 1

m+X
l=1

1

l
�

ln (m+) +BE + 1
2m+

m+ + 1
(7)

where BE denotes Euler's constant (� 0:5772, for more on this second bound
see [1, p.3]). Hence (6) becomes,

PC��m
XY

�
Af (C)�Af (m; k) > �

��m+ = k
�

< exp

"
�
2�2

m

�
ln (m+) +BE + 1

2m+

m+ + 1

��2#

This demonstrates that the average precision observed on a test collection con-
verges to the expected average precision as m+ increases because �i ! 0. More

importantly, it can be shown that, if m+

m
is constant, the observed average

precision converges to the expected (or true) one as m goes to in�nity. This
conclusion is supported by experiments, as shown in Figure 1 .
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Figure - 2 : Contour plot of (6) for A0
f (C). The probability that the expected

average precision lies within � of the found average precision is represented for
a range of �, m and six di�erent cases of m+.

Figure 1 clearly illustrates convergence of the bound with both m and m+

for m+ � 4. For extremely small m+ it is clear from the expression that
the limiting trends will be less in�uential than initial transients. Outside this
region however the bound can be seen to consistently become tighter. This
is demonstrated by the given example at m = 90 000 and m+ = 9000 which
shows a con�dence of more than 95% that � � 0:4.

2.2 An alternative to average precision

We propose here a modi�ed average precision measure which is closely re-
lated to average precision, yet it is tightly bound by McDiarmid's inequality.
With this we do not wish to replace average precision in practice, but rather to
�nd an alternative measure that we can bound and under which we can study
the e�ect of increasing sample size and varying ratio of relevant documents.
This measure o�ers the advantage of using the usual precision measure (unlike
OC curves), and empirically correlates strongly with average precision.

The alternative curve that we consider plots precision against rank number
(as opposed to recall) for all ranked documents, not only the relevant docu-
ments. The new average precision, A0

f (C), is given by:

A0
f (C) :=

1
m

Pm
i=1

m++
i

i

A�
(8)



wherem++
i is the value ofm++ for h

f(x(i)) (see (3)) andA
�m+

m

�
1 +

Pm
i=m++1

1
i

�
is a normalising factor (the maximum possible value of the numerator). One
key advantage of the revised curve is a decrease in volatility. For example, if
the highest ranked document is irrelevant then it has have a profound e�ect on
Af (C) but not on A0

f (C).
The use of the curve is simply to obtain insight into the quality of the

ranking and, in that sense, its choice is somewhat ad hominem. It may well
be that such volatility is not an accurate representation of the true perception.
This being the case the revised curve is proposed as a more stable alternative
for study.

The same procedure used above to bound Af (C) can be used for A0
f (C).

In this case eight potential maximum average precision changes were found
and these are listed in Appendix A, section A.3. Of these, using an approach
similar to that in section A.2, exceptis excipiendis, the bound is given by

�i �
A�
Pm

l=1
1
l
� 1

mm+

�Pm+

l=2
l

l+m�
+ 2
�

A�m
�
A� � 1

mm+

� (9)

and so, in this case, (6) becomes,

PC��m
XY

�
A0
f (C)�A0

f (m; k) > "
��m+ = k

�

< exp

2
64�2"2

m

0
@ A�m

�
A� � 1

mm+

�
A�
Pm

l=1
1
l
� 1

mm+

�Pm+

l=2
l

l+m�
+ 2
�
1
A
2
3
75 : (10)

In Figure 2 we have numerically evaluated the bounds for di�erent values of m
and m+. We see that this new measure also converges but o�ers much tighter
bounds. For example, form = 90 000 and 10% of relevant documents (m+=m =
0:1), with probability at least 95%, we have that the observed average precision
can be at most 20% larger than the true average precision.

It is clear that a very large number of positive documents is required before
anything approaching a tight statistical bound can be obtained. This is to be
expected, given that we have not used any information on the nature of the
ranking function f . Nevertheless these bounds o�er a �rst insight into the
nature of average precision.

3. FROM POINT-BOUNDS TO CURVE-BOUNDS

Learning theory allows us to bound the misclassi�cation error much more
tightly (at least in principle) using quantities speci�c to our trained classi�er
h, such as its margin, its leave-one-out error or the fraction of documents used
for training (see, e.g. [2]). In [3] leave-one-out type bounds are established on
precision, recall and on the F1 measure. Unfortunately, these bounds apply to a
single classi�er hb and do not tell us how classi�er hb0 , b

0 6= b, will behave. This
is of great importance because, in order to bound Af (C) we need to compute
precision and recall bounds for all the m+ classi�ers

�
hf(x1); : : : ; hf(xm)

	
. We

know that one and only one of these classi�ers will correspond to our particular



classi�er hb, and therefore we can only bound a particular point of the precision
recall curve.

In order to be able to use [3]'s result we study the best and worst precision-
recall curves going through a particular point given by m++, m+� (see (1) and
(2)). Here, best and worst refer to maximum and minimum average precision,
for a constant number m of documents and m+ = k relevant documents.

It can be proven by contradiction that the best (worst) precision-recall
curve is obtained by ranking all relevant documents �rst (last). Following this
argument, the maximum and minimum possible average precision are therefore
given by:

AMAX
f (C) :=

1

k

0
@m++ +

kX
j=m+++1

j

m+� + j

1
A ;

AMIN
f (C) :=

1

k

0
@m++X

j=1

j

m+� + j
+

kX
j=m+++1

j

(m� k) + j

1
A :

Similarly, for the alternative average precision measure, A0
f (C),

A0;MAX
f (C) :=

1

m � A�

2
4m++

0
@1 +

m+++m+�X
i=m+++1

1

i

1
A

+

kX
i=m+++1

i

i+m+�
+

m�kX
i=m��+1

k

i+ k

3
5 ;

A0;MIN
f (C) :=

1

m � A�

2
4m++X
i=1

i

i+m+�
+

m�kX
i=m+�+1

m++

i+m++

+

kX
i=m+++1

i

i+m� k

3
5 :

As a direct consequence we see that if a ranking function f performs well
at a single precision-recall point (given by m++ and m+�), then the average

precision must be within some region
h
AMIN
f (C) ; AMAX

f (C)
i
.

Simple examples of these curves are shown in Figure 3 . On the left, we
show the case of an an accurate ranking function; for this system the possible
choice of curves is very limited, and they all result in high average precision.
On the contrary, on the right we have shown the same curves for a system
at lower recall; in this case the range of attainable average precisions is much
larger.

Note that although it may seem that we do not use any properties of the
ranking function to establish these bounds, we do, in fact, use a crucial one
namely its performance on a single point of the precision-recall curve. This
method allows us to extend to the entire precision-recall curve whatever bounds
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Figure - 3 : Maximum and minimum possible average precision curves (see text
for details).

we may have on a single point of this curve, and hence to the average precision

of the classi�er. For example, in Figure 4 we show a precision-recall curve on
which we have established bounds on a single point, and we have shown how
the maximum and minimum curves can be used to extend such a bound.

4. CONCLUSION

We have attempted to formalise the problem of generalisation in informa-
tion retrieval. As IR systems gain in complexity, it becomes crucial to address
this problem. Otherwise, little to no advancement can be made in the develop-
ment of inference algorithms that directly optimise the performance measures
of interest. We have considered McDiarmid-type bounds, and we proved the
convergence of average precision. Thus we provided the building blocks of a
learning theoretical treatment of information retrieval.

Furthermore, we have presented bounds on the maximum and minimum
curves realisable given a particular precision-recall point of the curve. These
bounds allow us to generalise existing bounds on single precision-recall points
to the entire curve and hence to average-precision.
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A. THEMAXIMUMAVERAGEPRECISIONCHANGE

When considering how changing a single point can change the average pre-
cision of a precision-recall plot eight possible changes must be considered,

1. Ranking a positive document higher than previously.

2. Ranking a positive document lower than previously.

3. Ranking a positive document higher than previously and now denoting
it as a negative one.
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Figure - 4 : Maximum and minimum possible average precision curves for a
bounded precision-recall point.

4. Ranking a positive document lower than previously and now denoting it
as a negative one.

5. Ranking a negative document higher than previously.

6. Ranking a negative document lower than previously.

7. Ranking a negative document higher than previously and now denoting
it as a positive one.

8. Ranking a negative document lower than previously and now denoting it
as a positive one.

A.1 Derivation of the Eight Possible Changes

The approach to �nd each of the eight average precision changes is much
the same. For brevity only the derivation relating to the �rst change is given
here, all the others follow mutatis mutandis.

In moving a positive document, originally ranked k to a new ranking q � k,
the new average precision of a precision-recall curve is,

ANEW
f (C) =

1

m+

2
4q�1X
j=1

j

i(j)+
+

q

i0(q)+
+

k�1X
j=q

j + 1

i(j)+ + 1
+

m+X
j=k+1

j

i(j)+

3
5 (11)

where i(q�1)+ < i0(q)+ � i(q)+ . This increases with decreasing q, to see this

consider two cases, q1 and q2 where q2 = q1 +1 and i0(q2)+ > i0(q1)+ . This being



so then it can be seen that i0(q1)+ � i(q1)+ and i(q1)+ + 1 � i0(q2)+ , and hence,

q1
i0(q1)+

+
q1 + 1

i(q1)+ + 1
�

q1
i(q1)+

+
q1 + 1

i0(q2)+

q1�1X
j=1

j

i(j)+
+

q1
i0(q1)+

+

k�1X
j=q1

j + 1

i(j)+ + 1
�

q2�1X
j=1

j

i(j)+
+

q2
i0(q2)+

+

k�1X
j=q2

j + 1

i(j)+ + 1
:

With this result then,

ANEW;MAX
f (C) =

1

m+

2
41 + k�1X

j=1

j + 1

i(j)+ + 1
+

m+X
j=k+1

j

i(j)+

3
5 (12)

ANEW;MIN
f (C) = Af (C): (13)

Note that as i(k+1)+ � i(k)+ + 1 then,

k + 1

i(k)+ + 1
�

k + 1

i(k+1)+

kX
j=1

j + 1

i(j)+ + 1
+

m+X
j=k+2

j

i(j)+
�

k�1X
j=1

j + 1

i(j)+ + 1
+

m+X
j=k+1

j

i(j)+

and so ANEW;MAX
f (C) increases with k, giving,

ANEW;MAX
f (C) =

1

m+

2
41 + m+�1X

j=1

j + 1

i(j)+ + 1

3
5 (14)

i.e. the maximum change occurs when the last positive document is moved to
be the �rst positive document. This change in average precision is,

�Af (C) = ANEW;MAX
f (C)�Af (C)

=
1

m+

2
41� m+

i(m+)+
+

m+�1X
j=1

�
j + 1

i(j)+ + 1
�

j

i(j)+

�35

=
1

m+

2
41� m+

i(m+)+
+

m+�1X
i=1

i(j)+ � j

i(j)+(i(j)+ + 1)

3
5 :

It now remains to determine what the maximum of this is, that is, which values
of i(j)+ maximise the expression? Clearly i(m+)+ = m does. For the documents
in the summation what is required is that,

i(j)+ � j

i(j)+(i(j)+ + 1)
�

i(j)+ + 1� j

(i(j)+ + 1)(i(j)+ + 2)

and

i(j)+ � j

i(j)+(i(j)+ + 1)
�

i(j)+ � 1� j

i(j)+(i(j)+ � 1)
:



Considering initially the �rst expression,

(i(j)+ � j)(i+ 2) � i(j)+(i(j)+ + 1� j)

i2(j)+ � 2j � i(j)+j + 2i(j)+ � i2(j)+ + i(j)+ � i(j)+j

i(j)+ � 2j

and now the second,

(i(j)+ � j)(i(j)+ � 1) � (i(j)+ + 1)(i(j)+ � 1� j)

i2(j)+ � i(j)+j + j � i(j)+ � i2(j)+ � i(j)+ � i(j)+j + i(j)+ � 1� j

i(j)+ � 2j + 1:

So i(j)+ equals either 2j or 2j+1. To �nd which gives the greater outcome try
both. First, with i(j)+ = 2j,

i(j)+ � j

i(j)+(i(j)+ + 1)
=

2j � j

2j(2j + 1)

=
1

2(2j + 1)
;

second, with i(j)+ = 2j + 1,

i(j)+ � j

i(j)+(i(j)+ + 1)
=

2j + 1� j

(2j + 1)(2j + 2)

=
1

2(2j + 1)

and so the result is the same in both cases. With this outcome then,

�AMAX
f (C) =

1

m+

2
41� m+

m
+

1

2

m+�1X
j=1

1

2j + 1

3
5 (15)

provided that m � 2(m+ � 1) + 1, that is, m � 2m+ � 1. This is not a
particularly onerous condition in information retrieval, where generally positive
documents are far fewer in number than negative ones.

Following this procedure results in eight possible average precision changes,

�AMAX
f;1 (C) =

1

m+

2
41� m+

m
+

1

2

m+�1X
i=1

1

2i+ 1

3
5

�AMAX
f;2 (C) =

1

m+

2
41� m+

m
+

1

2

m+�1X
i=1

1

2i+ 1

3
5

�AMAX
f;3 (C) =

1

m+

2
41 + 1

m+ � 1

m+X
i=2

m+ � i

i

3
5



�AMAX
f;4 (C) =

1

m+
�

1

m

�AMAX
f;5 (C) =

1

m+

m+X
i=1

1

i+ 1

�AMAX
f;6 (C) =

1

m+

m+X
i=1

1

i+ 1

�AMAX
f;7 (C) =

1

m+ + 1

2
41 + 1

m+

m+X
i=1

m+ � i

i

3
5

�AMAX
f;8 (C) =

1

m+ + 1
�

1

m
:

The maximum of these is found in section A.2.

A.2 Determination of the Maximum Possible Change

To �nd the maximum average precision change of those given in the previous
section �rst note that,

�AMAX
f;1 (C) = �AMAX

f;2 (C): (16)

Similarly,

�AMAX
f;5 (C) = �AMAX

f;6 (C): (17)

Now, consider the next most straightforward comparisons. �AMAX
f;4 (C) =

1
m+ � 1

m
is trivially greater than �AMAX

f;8 (C) = 1
m++1 �

1
m
, as

1

m+
>

1

m+ + 1
:

Now note that,

�AMAX
f;3 (C) =

1

m+ � 1

m+X
j=2

1

j
(18)

�AMAX
f;7 (C) =

1

m+ + 1

m+X
j=1

1

j
: (19)

From these then

�AMAX
f;7 (C) ��AMAX

f;5 (C) =

m+X
j=1

�
1

m+ + 1

1

j
�

1

m+

1

j + 1

�

=

m+X
j=1

m+ � j

m+(m+ + 1)j(j + 1)

> 0



and so �AMAX
f;7 (C) > �AMAX

f;5 (C). Additionally,

�AMAX
f;7 (C) � �AMAX

f;3 (C)

=
1

m+ + 1
+

�
1

m+ + 1
�

1

m+ � 1

� m+X
j=2

1

j

=
1

m+ + 1

2
41� 2

m+ � 1

m+X
j=2

1

j

3
5

� 0; for m+ � 2;

and so �AMAX
f;7 (C) � �AMAX

f;3 (C) for m+ � 2. Consider now AMAX
f;1 (C),

�AMAX
f;7 (C) � �AMAX

f;1 (C)

=
1

m+ + 1

m+X
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1

j
�

1

m+

2
41� m+

m
+

m+�1X
j=1

1

4j + 2

3
5

=
1
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+

1

m
�

1
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+
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�
1
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1

j
�
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1
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=
1
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1
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4 1

2m+

m+�1X
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(3m+ � 1)j + 2m+

j(2j + 1)
� 1

3
5

> 0; for m+ � 2:

Hence �AMAX
f;7 (C) > �AMAX

f;1 (C) for m+ � 2. Finally, then, it remains

to compare �AMAX
f;7 (C) and �AMAX

f;4 (C). In doing this assume that m �

m+, with this assumption it will be shown that, although an upper bound is
e�ectively considered on �AMAX

f;4 (C), �AMAX
f;7 (C) is still generally greater. To

see this consider,

(m+ + 1)(�AMAX
f;7 (C)��AMAX

f;4 (C)) =

m+X
j=1

1

j
�

m+ + 1

m+

> 0; for m+ � 2;

so, from all possibilities, �AMAX
f;7 (C) has been shown to be greatest.



A.3 Maximum Normalised Average Precision Changes

of the Revised Curve

For the normalised average precision of the revised curve, the same eight
changes apply. The working follows the general approach outlined in section
A.1, exceptis excipiendis. Consideration must also now be made of the normal-
ising area; A�. With this then possible maximum area changes are,
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