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Abstract

In this paper we propose a new learning algorithm
for classification learning based on the Support
Vector Machine (SVM) approach. Existing ap-
proaches for constructing SVMs [12] are based on
minimization of a regularized margin loss where
the margin is treated equivalently for each train-
ing pattern. We propose a reformulation of the
minimization problem such that adaptive margins
for each training pattern are utilized, which we
call the Adaptive Margin (AM-) SVM. We give
bounds on the generalization error of AM-SVMs
which justify their robustness against outliers, and
show experimentally that the generalization error
of AM—SVMs is comparable to classical SVMs on
benchmark datasets from the UCI repository.

1 Introduction

Recently, the study of classification learning has
shown that algorithms which learn a real-valued
function for classification can control their gener-
alization error by making use of a quantity known
as the margin. Based on these results, Support
Vector Machines which directly control the margin
have been proven to be successful in classification
learning [4, 12, 10]. Moreover, it turned out to be
favourable to formulate the decision functions in
terms of a symmetric, positive definite, and square
integrable function k(-,-) referred to as a kernel.
The class of decision functions — also known as
kernel classifiers [11, 3] — is then given by!

L Although this class of functions is dependent on the
training set, the restrictions put on k(-,-) automatically
ensure that the influence of each new basis function k(x;, -)

£
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Whilst the algorithms proposed so far are re-
stricted to a fixed margin at each training pat-
tern (x;,y;), we show that adaptive margins can
successfully be used. Moreover, it turns out that
adaptive margins effectively control the complex-
ity of the model. The paper is structured as fol-
lows: In Section 2 we present the algorithm for
Adaptive Margin Support Vector Machines (AM-
SVMs) and reveal their relation to classical SVMs.
In the following section we give bounds on the gen-
eralization error of AM-SVMs which justify the
use of adaptive margins as a regularizer. In Sec-
tion 4 results of a comparison of AM-SVMs with
classical SVMs on benchmark datasets from the
UCI repository are presented. Finally, in Section
5 we summarize the paper and discuss further di-
rections.

2 Adaptive Margin SVMs

In a classification task one’s ultimate goal is to
find a function f that minimizes the expected risk
functional

R(f) = EPL(f(X)a y) ) (2)

where we assume a distribution P(x,y). Here,
the loss function L(-,-) is assumed to be given.
It is well known that this problem cannot be

decreases rapidly for increasing training set sizes ¢. Thus
we can assume the existence of a fized feature space (see
also [1]).



solved directly because P(x,y) is generally un-
known. Instead, we are given an i.i.d. training
set S = {(x1,91),..-,(xe,y0)} C X x {-1,+1}
and try to find some suitable fom,p based thereon.
Minimization of the empirical risk

Remp(f) := EsL(f(x:), i) 3)

is an ill-posed problem [12] and thus may lead to
solutions with a high expected risk R(femp). An
approach to overcome this difficulty (also known
as regularization) is to put further restrictions on
the functions f. This can be achieved by adding
a regularizer Q(f) which effectively restricts the
choice of models. Hence for some fixed A > 0
learning aims at minimizing

Rreg(f) = Remp(f) +AQ(f). (4)

It was shown elsewhere [8] that tight bounds on
R(freg) can be obtained making use of the real
value returned by fies. Using the soft margin loss

L(f(x),y) = max(1 — yf(x),0) ()

introduced in [11] we can derive the following al-
gorithms.

Quadratic (QP-) SVMs Using the quadratic
regularization functional

Qqp(f) = [Iwli3 .

we obtain the following class of SVMs
minimize Ele &+ A Zf}jzl aiajyiyjk(xi, Xj)

subject to  y; f(x;) > 1—&;
g, & Z O
Here we used

¢
W = Zajyj¢(x)7 (6)
j=1

where ¢(-) maps into a feature space F such
that (¢(x), d(x'))r = k(x,x’). It is known that
Qqr(f) controls the VC-Dimension of the in-
duced loss—function class {L(f(-),-)} [11, 8]. This
choice of regularizer favours flat functions in fea-
ture space.

Linear (LP—) SVMs Using the linear regular-
ization functional

Que(f) =Y ai (7)
results in the class of linear SVMs, i.e.
minimize Ele &+ A Zle o

subject to ¥ f(x;) >1—&;
Oéiafi 2 0

Recently it was shown that Qrp(f) can also be
used to control the VC-Dimension of {L(f(-),-)}
[10]. In contrast to the quadratic regularizer,
Qrp(f) favours non-smooth functions by strong
penalizing of basis functions ¢;(-) with a small
eigenvalue [10].

Adaptive Margin (AM-) SVMs In both
types of learning algorithm the margin error §; at
point (x;, y;) and the regularization on «; are addi-
tive and therefore independently treated. To make
the size of the margin at each training point a con-

trolling variable we propose the following learning
algorithm (AM-SVM)

minimize Zle &

yif(xi) > 1 =&+ Aak(xq, %)
subject to ¢&; > 0
a; Z 0

This algorithm can be viewed in the following
way (see Figure 1): Suppose the data lives on the
surface of a hypersphere in F. Then k(x;,x;) is
the cosine of the angle between ¢(x;) and ¢(x;).
As soon as a point ¢(xy) is an outlier (the co-
sine of the angles to points in its class are small
and to points in the other class are large) ay in
Equation (1) has to be large in order to classify
¢(xy) correctly. Whilst SVMs use the same mar-
gin for such an outlier, they attempt to classify
@(xx) correctly. In AM—SVMs the margin is au-
tomatically increased to 1+ Aagk(x;, x;) for ¢p(xx)
and thus less attempt is made to change the deci-
sion function. Moreover, it becomes clear that in
AM-SVMs the points ¢(xy) which are representa-
tives of clusters (centers) in feature space F, i.e.
those which have large values of the cosine of the
angles to points from its class, will have nonzero
ag. It is worthwhile to study the influence of A:



#(xp) (representative)

@(xp,) (outlier)

Figure 1: Adaptation of margins at each training
pattern depending on the distance k(x;,x;) in fea-
ture space F. Note that k(x;,x;) is large if the
enclosed angle between data points is small. See
the text for explanation.

e If A = 0 no adaptation of the margins is per-
formed. This is in correspondence to Equa-
tion (4) which implies Remp(f) = Rreg(f)-

e If A — oo the margin at each point tends to
infinity (14 Aa;k(x;,%;)) and thus setting all
a’s to an equal and small value is the solution
of AM-SVMs. This corresponds to paying no
attention to Remp(f) and is equivalent to ker-
nel density estimation on each class (Parzen
windows) [5].

e If A =1 the resulting algorithm is equivalent
to Leave-One-Out SVMs [13] motivated by
the following bound on the leave—one—out er-
ror of QP-SVMs [3].

Theorem 1. For any training set S =
{w,yi}e, with y; € {=1,+1}, using a
kernel-classifier given by Equation (1) and
SVMs with Ly norm for learning, the leave-
one-out error estimate of the classifier is
bounded by

|

4
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J#i
where 0(-) is the step function.

Note that Theorem 1 is not valid for AM-
SVMs with A = 1.

3 Theoretical Analysis

To obtain margin distributions for Adaptive Mar-
gin Machines we apply the following theorem to
be found in [9]:

Theorem 2. Consider a fized but unknown prob-
ability distribution on the input space X with sup-
port in the ball of radius R about the origin. Then
with probability 1 — § over randomly drawn train-
ing sets S of size € for all v > 0 such that
d((x,y),w,y) = 0, for some (x,y) € S, the gen-
eralization of a linear classifier w on X satisfying
lw]lz <1 is bounded by

(o (45

where
65[(R + D)? + 2.25RD]
K= 72 s
D=D(S,w,) =
di = d((Xi,y),W,"}/) = max{0777y<W,Xi>]:}

and provided ¢ > max{2/e,6} and k < el.

Applying the bound to AM-SVMs we obtain
the following theorem.

Theorem 3. Consider a fized but unknown prob-
ability distribution on the input space X with sup-
port in the ball of radius R about the origin.
Then with probability 1 — § over randomly drawn
training set S of size { for a« > 0 and £ > 0
which are feasible solutions of AM-SVMs such
that d((x,y),w,1) = 0, for some (x,y) € S, the
generalization error R(f) is bounded by

(oo (2)))

where
k< [65[(WR+3D)%],
L
D = Z[max {0,& — Xk (x4, %;)}]?,
i=1
’
w2 = Z aiajyiyjk(xivxj) )

ij=1



provided £ > max{2/R(f),6} and xk < el.

Proof. Firstlyy, AM—SVMs learn linear classifiers
f(z) = (w,¢(x)) 7 where w is defined by Equa-
tion (6). We wish to redefine the measure of mar-
gin error d((x,y),w,v) = v — y; f(x;) in Theorem
2 in terms of & and Ao;k(x;,%;) to capture the
adaptive margin of a training point x;. Then we
know from the assumption of a feasible solution
a, € that

max {0,y — y; f(x:))} <
max{0,y — 1+ & — A k(x;,%x;)}

In order to apply Theorem 2 for any vector w we
have to divide v, D, and a by W = ||w||z. This
gives

65[(R + D) + 2.25:- RD
ﬁ:{ (F+ 3 )2+ W ]W2J
Y
This allows us to fix v = 1 without loss of gener-
ality. Making use of

1 1
R+ —D)*>+225—RDIW? < [(WR + 3D)?
(R+ 5 D)* + 2250 RDJW? < (WR +3D)%),
the theorem is proven. O

From the theorem, one can gain the following
insights. Our goal to minimize generalization er-
ror is achieved by minimizing x, the minimum of
which is a trade off between minimizing W (the
margin) and D (the loss with adaptive margin).
We require a small value of both but small val-
ues of one term typically §ive large values of the
other. By minimizing ), ;& AM-SVMs effec-
tively control the trade-off between the two terms
through the parameter A. For small values of A,
D is small and W can take any value as it is not
minimized (it can be forced to very large values).
For large A the boosted margin in D acts a regu-
larizer, penalizing large values of «. This results
in small values of W (a smooth function) but large
values of D (large training error). This bound mo-
tivates the objective function of AM—-SVMs which
at first appear to only minimize error and have no
regularization. In fact, as we have seen, the regu-
larization comes from the adaptive margin in the
constraints controlled by A.

4 Experiments

Artificial Data We first describe some two di-
mensional examples to illustrate how the new reg-
ularization technique works. We generated a two
class problem in R? (represented by crosses and
dots). We trained an AM-SVM using RBF-
kernels (o = 0.5) with A = 1,2,5,10 (see Fig-
ure 2). As can be seen increasing A allows AM-
SVM to widen the margin for points far away from
the decision surface. Consequently, the algorithm
is more robust to outliers which results in very
smooth decision functions. In Figure 3 we used
the same dataset and trained v LP-SVMs [1]. v
LP-SVMs are obtained by reparameterizing Equa-
tion (2) where v upper—bounds the number of mar-
gin errors (see [1]). Varying A = 0.0,0.1,0.2,0.5
shows that margin errors are sacrificed in order
to lower the complexity of the decision function
f measured in the one-norm (see Equation (7)).
As we have already mentioned this leads to non—
smooth functions. Furthermore it should be noted
that the outlier (dot) on the far left side leads to
very rugged decision functions. Similar conclu-
sions can be drawn for v QP-SVMs [7] (see Fig-
ure 4) though the decision functions are smoother.
Thus, AM—SVMs turn out to be more robust than
classical SVM.

AB | ABr | SVM | AM-SVM
Banana 12.3 | 10.9 11.5 10.6
B. Cancer || 30.4 | 26.5 | 26.0 26.3
Diabetes 26.5 | 23.9 | 23.5 23.4
Heart 20.3 | 16.6 | 16.0 16.1
Thyroid 4.4 4.4 4.8 5.0
Titanic 22.6 | 22.6 | 224 22.7

Table 1: Comparison of percentage test error of
AdaBoost (AB), Regularized AdaBoost (ABp),
classical (QP-) Support Vector Machines (SVM)
and Adaptive Margin Support Vector Machines
with fixed A =1 (AM-SVM) on 6 datasets.

Benchmark Datasets We conducted com-
puter simulations using datasets from the UCI,
DELVE and STATLOG benchmark repositories,
following the same experimental setup as in [6].
Briefly, the setup is as follows: the performance of
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Figure 2: Decision functions (solid lines) obtained
by AM-SVMs with different choices of the regular-
ization parameter A\. The dashed line represents
the minimal margin over all training points. (a)
A = 1 is equivalent to setting the diagonal ele-
ments of the kernel matrix to zero. (b) A\ = 2,
(c) A =5, and (d) A = 10 widens the amount
to which margin errors at each point are accepted
and thus results in very flat functions. Note, that
less attention is paid to the outlier (dot) at the
left hand side.

a classifier is measured by its average error over
one hundred partitions of the datasets into train-
ing and testing sets. Free parameter(s) in the
learning algorithm are chosen as the median value
of the best model chosen by cross validation of the
first five training datasets. For our comparison we
fixed the parameter A = 1 for AM—SVMs.

Table 1 compares percentage test error of AM—
SVMs to AdaBoost (AB), Regularized AdaBoost
(ABRr) and SVMs which are all known to be ex-
cellent classifiers>. AM-SVMs (even with fixed
A = 1) were very competitive with SVMs and
ABg (for which the best parameters were found by
cross-validation). This indicates tuning of A could
give even better performance for AM-SVMs. Ad-
aBoost, which has no regularisation parameter, is
outperformed by the other three algorithms.

2The results for AB, ABr and SVMs were taken from
[6].
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Figure 3: Decision functions (solid lines) obtained
by v LP-SVMs with different choices of the as-
sumed noise level v. The dashed line represents
the margin. (a) v = 0.0 leads to very non—smooth
and overfitted decision functions. (b) v = 0.1,
(c) v =10.2, and (d) v = 0.5 smooth the decision
function.

5 Discussion

In this paper we presented a new learning algo-
rithm for kernel classifiers. This approach pushed
the idea of capacity control via margin maximiza-
tion to its limit by allowing adapting margins at
each training pattern. We have shown experimen-
tally that this reformulation results in an algo-
rithm which is very robust against outliers. Nev-
ertheless, our algorithm has a parameter A which
needs to be optimized for a given learning prob-
lem. Further investigations will be made in the
derivation of bounds on the leave-one—out error
of this algorithm which allows for efficient model
order selection. To gain more insight into the role
of the parameter \ it seems worthwhile to cast the
algorithm in a regularization framework (see Sec-
tion 2). Finally, we want to note that penalization
of the diagonal of the kernel matrix is a well known
technique in regression known as ridge regression
[2]. Hence, penalizing the diagonal of the kernel
matrix results in orthogonal data vectors in fea-
ture space which is a commonly used technique of



Figure 4: Decision functions (solid lines) obtained
by v QP-SVMs with different choices of the as-
sumed noise level v. The dashed line represents
the margin. (a) v = 0.0 leads to an overfitted
decision functions (note the captured outlier in
the lower left region). (b) v = 0.1, (¢) v = 0.2,
and (d) v = 0.5 allow for much flatter functions
though regularizing differently to AM—SVMs.

regularization.
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