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A PAC-Bayesian Margin Bound for Linear
Classifiers

Ralf Herbrich and Thore Graepel

Abstract—We present a bound on the generalisation error
of linear classifiers in terms of a refined margin quantity on
the training sample. The result is obtained in a PAC-Bayesian
framework and is based on geometrical arguments in the space
of linear classifiers. The new bound constitutes an exponential
improvement of the so far tightest margin bound, which was
developed in the luckiness framework, and scales logarithmically
in the inverse margin. Even in the case of less training examples
than input dimensions sufficiently large margins lead to non-
trivial bound values and—for maximum margins—to a vanishing
complexity term. In contrast to previous results, however, the
new bound does depend on the dimensionality of feature space.
The analysis shows that the classical margin is too coarse a
measure for the essential quantity that controls the generalisation
error: the fraction of hypothesis space consistent with the training
sample. The practical relevance of the result lies in the fact that
the well-known support vector machine is optimal with respect to
the new bound only if the feature vectors in the training sample
are all of the same length. As a consequence we recommend to use
SVMs on normalised feature vectors only. Numerical simulations
support this recommendation and demonstrate that the new error
bound can be used for the purpose of model selection.

Index Terms—Bayes Classification Strategy, Computational
Learning Theory, Generalisation Error Bound, Gibbs Classifica-
tion Strategy, Linear Classifiers, Margin, Model Selection, PAC-
Bayesian Framework, Support Vector Machine, Volume Ratios

I. INTRODUCTION

Linear classifiers are popular in the machine learning and
statistics communities due to their straightforward applic-
ability and high flexibility that has been greatly improved
by the so-called kernel method [1]. A natural and popular
framework for the theoretical analysis of classifiers is the
PAC (probably approximately correct) framework [2] which
is closely related to Vapnik’s ([3]) work on the generalisation
error. For binary classifiers it turned out that the growth
function is an appropriate measure of “complexity” and can
tightly be upper bounded by the VC (Vapnik-Chervonenkis)
dimension [4]. Structural risk minimisation [3] was suggested
for directly minimising the VC dimension based on a training
sample and an a priori structuring of the hypothesis space.
In practice, for example in the case of linear classifiers, often
a thresholded real-valued function is used for classification. In
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1993, Kearns and Schapire [5] demonstrated that considerably
tighter bounds can be obtained by considering a scale-sensitive
complexity measure known as the fat shattering dimension.
Further results [6] provided bounds on the growth function
similar to those proved by Vapnik and others [4], [7]. The
popularity of the theory greatly increased by the invention of
the support vector machine (SVM) [1] which aims at directly
minimising the complexity as suggested by theory.
Until recently, however, the success of the SVM remained
somewhat obscure because in PAC/VC theory the structuring
of the hypothesis space must be independent of the training
sample—in contrast to the data-dependence of the canonical
hyper-plane. As a consequence Shawe-Taylor et al. [8] de-
veloped the luckiness framework, where luckiness refers to a
complexity measure that is a function of both hypothesis and
training sample.
First bounds on the generalisation error in a PAC-Bayesian
spirit were obtained by Shawe-Taylor et al. [9] for single
hypotheses. Recently, David McAllester presented some PAC-
Bayesian theorems [10] that bound the generalisation error
of randomised Bayesian classifiers independently of the cor-
rectness of the prior and regardless of the underlying data
distribution—thus fulfilling the basic desiderata of PAC theory.
In this paper we extend McAllester’s error bounds for the
Gibbs classification strategy1 (that draws classifiers randomly
from the posterior distribution) to the Bayes (optimal) clas-
sification strategy (that weights the classification of each
classifier by its posterior weight) and eventually to arbitrary
consistent classifiers. Note, that the PAC-Bayesian framework
provides a posteriori error bounds and is thus closely related
in spirit to the luckiness framework2.
The main contribution of this paper is a tight margin bound
for linear classifiers in the PAC-Bayesian framework (see
also [12]). The central idea is to identify the generalisation
error of the classifier h of interest with that of the Bayes
(optimal) classification strategy on a (point-symmetric) sub-
set Q of hypothesis space that is summarised by h . For
linear classifiers we show that for a uniform prior PW over
normalised weight vectors w the normalised margin Γz (w)
of hw is directly related to the volume of a large subset Q
of hypothesis space summarised by hw . In particular, the
result suggests that a learning algorithm for linear classifiers

1The notion of the Gibbs classification strategy as used here should not be
confused with the notion of Gibbs estimators as defined in [11].

2In fact, even Shawe-Taylor et al. concede that “... a Bayesian might say that
luckiness is just a complicated way of encoding a prior. The sole justification
for our particular way of encoding is that it allows us to get the PAC like
results we sought...” [9, p. 4].
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should aim at maximising the normalised margin instead of
the classical margin. In Sections II and III we review the
basic PAC-Bayesian theorem and show how it can be applied
to single classifiers. In Section IV we give our main result
and outline its proof. The necessary lemmata together with
their proofs have been relegated to the appendix. In Section V
we present an experimental study for 2 -dimensional data
suggesting that the new bound can be successfully used for
model selection in low dimensional feature spaces. Also, we
discuss the consequences of the new result for the application
of SVMs and demonstrate experimentally that, in fact, a
normalisation of the feature vectors—as suggested by the new
error bound—leads to considerably superior generalisation
performance.
We denote m -tuples by italic bold letters (for example
x = (x1, . . . , xm) ), vectors (m -tuples of real numbers) by
roman bold letters (for example x ), random variables by sans
serif font (for example X ), (vector) spaces by calligraphic
capitalised letters (for example X ) and subsets of these
vector spaces by capitalised roman letters (for example W
). The symbols P,E, I and ℓn2 denote a probability measure,
the expectation of a random variable, the indicator function
and the normed space (2 -norm) of sequences of length n ,
respectively. The shorthand notation z ∈ z is formally defined
by z ∈ z ⇔ ∃i ∈ {1, . . . , |z|} : zi = z .

II. A PAC MARGIN BOUND

We consider learning in the PAC framework. Let X be the
input space, and let Y := {−1,+1} . Let a labelled training
sample z = (x,y) ∈ (X × Y)

m
=: Zm be drawn i.i.d. ac-

cording to some unknown probability measure PZ = PY|XPX

. In the following we shall only study linear classifiers

H := {x 7→ sign (⟨w,ϕ (x)⟩) | w ∈ W } , (1)
W := {w ∈ K | ∥w∥ = 1} , (2)

where the mapping ϕ : X → K = ℓn2 maps3 the input
data to some feature space K and ∥w∥ = 1 leads to a
one-to-one correspondence of hypotheses4 hw ∈ H to their
parameters w ∈ W . Note that the unit length constraint does
not restrict the classifiers considered because the classification
sign (⟨w,x⟩) of a point x is independent of the norm ∥w∥
of w . Furthermore we assume the existence of a “true”
hypothesis w∗ ∈ W that labelled the data5, which leads to
what we may refer to as a PAC-likelihood,

PY|X=x (y) := Iy=sign(⟨w∗,x⟩) . (3)

From the existence of w∗ we know that there exists a version
space V (z) ⊆ W ,

V (z) := {w ∈ W | ∀ (x, y) ∈ z : sign (⟨w,x⟩) = y } .

3For notational simplicity we will sometimes abbreviate ϕ (x) by x ∈
K which should not be confused with the sequence x ∈ Xm of training
examples.

4In the following, we synonymously refer to elements of H and W as
hypotheses or classifiers always bearing in mind their relation given in (1)
and (2).

5In fact, for the application of our main result, Theorem 6, the existence
of w∗ is not strictly necessary, but the existence of a version space V (z) is
sufficient.

Our analysis aims at bounding the true risk R [w] of consistent
hypotheses w ∈ V (z) ,

R [w] := EXY

[
Isign(⟨w,ϕ(X)⟩) ̸=Y

]
. (4)

Since all classifiers w ∈ V (z) are indistinguishable in terms
of number of errors committed on the given training sample z
we introduce the concept of the margin γz (w) of a classifier
w ,

γz (w) := min
(xi,yi)∈z

yi ⟨w,xi⟩ . (5)

The following theorem due to Shawe-Taylor et al.6 [8] bounds
the generalisation errors R [w] of all classifiers w ∈ V (z) in
terms of their margins γz (w) .

Theorem 1. For all probability measures PZ such that
PX (∥ϕ (X)∥ ≤ ς) = 1 , for any δ ∈ (0, 1] , with probability
at least 1 − δ over the random draw of the training sample
z ∈ Zm , for any consistent classifier w ∈ V (z) with a
positive margin γz (w) >

√
32ς2/m the generalisation error

R [w] is bounded from above by

2

m

(
κ (w) log2

(
8em

κ (w)

)
log2 (32m) + log2

(
2m

δ

))
, (6)

κ (w) :=

⌈(
8ς

γz (w)

)2
⌉
.

As the bound on R [w] depends on γ−2
z (w) we see that

Theorem 1 provides a theoretical foundation of all algorithms
that aim at maximising γz (w) , for example, SVMs and
Boosting [1], [14]. Nevertheless, its actual value is too large for
any practically relevant training sample size m . For example,
in order for (6) to be less than one (which is still trivially
true) we need the astronomically large training sample size of
mmin = 34 816 even in the luckiest case of γz (w) = ς and
δ = 1 .

III. PAC-BAYESIAN ANALYSIS

The PAC-Bayesian analysis requires the definition of a prior
over hypothesis space. In the case of linear classifiers we
assume a prior measure PW over normalised weight space
W and assume independence of W and Z . We first present
a result [10] that bounds the risk of the Gibbs classification
strategy GibbsW (z) by the measure PW (W (z)) of a con-
sistent subset W (z) ⊆ V (z) . This average risk is then
related via the Bayes-Gibbs lemma to the risk of the Bayes
classification strategy BayesW (z) on W (z) . For a single
consistent hypothesis w ∈ V (z) it is finally necessary to
identify a consistent subset Q (w) ⊆ V (z) such that the Bayes
classification strategy BayesQ(w) on Q (w) always agrees with
w .

Let us define the Gibbs classification strategy GibbsW with
respect to the subset W ⊆ W by

GibbsW (x) := sign (⟨w,x⟩) , w ∼ PW|W∈W , (7)

6The present version of this theorem is taken from [13].
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where for any two measurable subsets W1,W2 ∈ W we define
PW|W∈W2

(W1) := PW (W1 ∩W2) /PW (W2) . Given a new
test point x ∈ X , the Gibbs classification strategy GibbsW
draws a classifier w ∈ W with probability proportional to the
prior and uses w for classification. As a consequence, this
randomised decision strategy has a generalisation error given
by

R [GibbsW ] := EXY

[
PW|W∈W (sign (⟨W,ϕ (X)⟩) ̸= Y)

]
.
(8)

The following theorem [10] provides an upper bound on the
generalisation error of the Gibbs classification strategy.

Theorem 2. For any two independent measures PW and PZ

, for any δ ∈ (0, 1] with probability at least 1 − δ over the
random draw of the training sample z ∈ Zm for all subsets
W (z) ⊆ V (z) such that PW (W (z)) > 0 the generalisation
error R

[
GibbsW (z)

]
of the associated Gibbs classification

strategy GibbsW (z) is bounded from above by

1

m

(
ln

(
1

PW (W (z))

)
+ ln

(
m2

δ

)
+ 1

)
. (9)

Now consider the Bayes classification strategy BayesW
which deterministically assigns a new test point x ∈ X to
the class which achieves the highest vote from classifiers in
W ,

BayesW (x) := argmax
y∈Y

PW|W∈W (sign (⟨W,x⟩) = y) .

(10)
There exists a simple relationship between the generalisation
error of the Bayes classification strategy and the Gibbs clas-
sification strategy.

Lemma 3. For any two independent measures PW and PXY

and any set W ⊆ W

R [BayesW ] ≤ 2 ·R [GibbsW ] . (11)

Proof: It suffices to show that for all (x, y) ∈ Z

BayesW (x) ̸= y ⇒ PW|W∈W (sign (⟨W,x⟩) ̸= y) ≥ 1

2
,

because combining (4) and (8) proves the lemma. However,
since |Y| = 2 , by definition (11) the above statement always
holds. Thus the lemma is proven.

The combination of Lemma 3 with Theorem 2 yields a
bound on the risk of the deterministic classification strategy
BayesW (z) . In order to apply this bound to single classi-
fiers in version space, we introduce the concept of Bayes-
admissibility, i.e. for a single hypothesis w ∈ V (z) let us find
a subset Q (w) of version space V (z) such that BayesQ(w)

on Q (w) agrees with w on every point in X .

Definition 4. Given the hypothesis space in (1) and a prior
measure PW over W we call a subset Q (w) ⊆ W Bayes-
admissible with respect to w and PW if and only if

∀x ∈ X : sign (⟨w,x⟩) = BayesQ(w) (x) .

Although it may be difficult in general to find Bayes-
admissible sets for a given classifier w under arbitrary priors

Figure 1. Illustration of the volume ratio for the classifier at the north
pole. Four training points shown as grand circles make up version space—the
polyhedron on top of the sphere. The radius of the “cap” of the sphere is
proportional to the margin Γz , which only for ∥xi∥ = const. is maximised
by the SVM.

PW , the following geometrically plausible lemma establishes
Bayes-admissibility for the case of interest.

Lemma 5. For the uniform measure PW over W each ball
Q (w) = {v ∈ W | ∥w − v∥ ≤ γ } is Bayes-admissible with
respect to its centre w ∈ W .

Proof: For any data point x ∈ X any subset W ∈ W can
be written as the union W = W+1∪W−1 of two disjunct sets
W+1 and W−1 such that for y ∈ Y we have sign (⟨w,x⟩) = y
for all w ∈ Wy . Then the Bayes classification strategy (10)
can be written as

BayesW (x) = argmax
y∈Y

vol (Wy) .

If W is chosen to be the ball Q (w) , then we have by point-
symmetry of Q (w) that the weight vector w always lies in
the half of greater volume and hence agrees with BayesQ(w)

. Note that the frontier between W+1 and W−1 is a geodesic
of W .

Please note that by considering a ball Q (w) rather than
just w we make use of the fact that w summarises all its
neighbouring classifiers v ∈ Q (w) . In order to minimise the
bound given in Theorem 2 for any classifier w ∈ V (z) we
would like to use the largest ball Q∗ (w) such that Q∗ (w) ⊂
V (z) . It turns out that for a uniform prior PW the volume of
Q∗ (w) can be expressed in terms of the normalised margin

Γz (w) := min
(xi,yi)∈z

yi ⟨w,xi⟩
∥xi∥

. (12)

Note that in contrast to the classical margin γz (w) (see (5))
this normalised margin Γz (w) is a dimensionless quantity and
constitutes a measure for the relative size of the version space
invariant under rescaling of both weight vectors w and feature
vectors xi .
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IV. A PAC-BAYESIAN MARGIN BOUND

Combining the ideas outlined in the previous section allows
us to derive a generalisation error bound for linear classifiers
w ∈ V (z) in terms of their normalised margin Γz (w) .

Theorem 6. Suppose K ⊆ ℓn2 is a given feature space of
dimensionality n . For all probability measures PZ , for all
δ ∈ (0, 1] with probability at least 1 − δ over the random
draw of the training sample z ∈ Zm , for any consistent
linear classifier w ∈ V (z) with positive margin Γz (w) > 0
the generalisation error R [w] of w is bounded from above by

2

m

(
d ln

(
1

1−
√
1− Γ2

z (w)

)
+ ln

(
(me)

2

δ

))
. (13)

where d := min (m,n) + 1 .

Proof: Geometrically the weight space W is the unit
sphere in ℓn2 (see Figure 1). Let us assume that PW is uniform
on the unit sphere as suggested by symmetry. Given the
training sample z and a classifier w , all classifiers v ∈ Q (w)
,

Q (w) :=
{
v ∈ W

∣∣∣ ⟨w,v⟩ >
√

1− Γ2
z (w)

}
, (14)

are within V (z) (see Theorem 8). Such a set Q (w) is Bayes-
admissible by Lemma 5 and hence we can use PW (Q (w)) to
bound the generalisation error of w . Since PW is uniform, the
value − ln (PW (Q (w))) is simply the logarithm of the volume
ratio between the surface of the unit sphere and Q (w) (14).
In Theorem 9 it is shown that the logarithm of this ratio is
exactly given by

ln

 ∫ π

0
sinn−2 (θ) dθ∫ arccos

(√
1−Γ2

z(w)
)

0 sinn−2 (θ) dθ

 .

For n odd, it can be shown that the logarithm of this ratio is
bounded from above by (see Theorem 10)

n · ln

(
1

1−
√
1− Γ2

z (w)

)
+ ln (2) .

With ln (2) < 1 we obtain the desired result. Note that m
points maximally span an m -dimensional space and thus
we can marginalise over the remaining n−m dimensions of
feature space7. This gives d = min (m,n) + 1 .

An appealing feature of (13) is that for Γz (w) = 1 the
bound reduces to 2

m (2 ln (m)− ln (δ) + 2) with a rapid decay
to zero as m increases. In the practice of kernel classification,
one often encounters the case that the dimensionality n of
the feature space exceeds the number m of training examples.
This happens, for example, when the classification is carried
out in feature spaces that are induced by mercer kernels with

7More formally, the uniform distribution PW over the unit sphere in
ℓn2 can be considered as a marginalised isotropic Gaussian in ℓn2 . Let
L (x1, . . . ,xm) ⊆ K be the m -dimensional subspace spanned by
x1, . . . ,xm and let Px be the corresponding projection operator. Then, for
any xi in the training sample z and any w ∈ W , ⟨w,xi⟩ = ⟨Pxw,xi⟩ .
Hence, we can further marginalise over K∩L (x1, . . . ,xm) resulting likewise
in an isotropic Gaussian (see, e.g. [13]). As a consequence, it suffices to
consider the uniform distribution over an m -dimensional unit sphere.

an infinite expansion in terms of eigenfunctions, as is, for
example, the case for the so-called Gaussian RBF kernel that
is frequently used in kernel methods such as the support
vector machine [1]. Even in this case the bound may give
non-trivial values for margins Γz (w) > 0.91 . Furthermore,
upper bounding 1/(1 −

√
1− Γ2

z (w)) by 2/Γ2
z (w) we see

that Theorem 6 is an exponential improvement of Theorem 1
in terms of the attained margins. It should be noted, however,
that in contrast to Theorem 1 the new bound depends on the
dimensionality of the input space via d = min (m,n) and thus
cannot serve as a direct motivation for margin maximisation
in the case of d = m .

V. EXPERIMENTAL STUDY

A. Model Selection

In order to investigate the tightness of the PAC-Bayesian
margin bound we performed a controlled experiment where we
considered varying distributions in feature space K = ℓ22 . Note
that for a fixed input distribution PX every feature mapping
(model) ϕ : X → K = ℓ22 into a two-dimensional feature
space incurs a different distribution in K . The points x ∈ K
were generated according to

x = (λ1 cos (πβ) , λ2 sin (πβ))
′
. (15)

The incorporation of λ1 and λ2 allowed us to consider circles
as well as ellipses. The hypothesis w∗ labelling the data was
given by w∗ = (1, 0)

′ . By specifying a Beta(α ,α )
distribution8 over β we were able to vary from very good
models far apart from the teacher (small α values) to very
bad models concentrated at the teachers decision boundary
(large α values). Note that the generalisation error R [w] of
w is given by the probability of training points that fall into
the “cone” {x | ⟨x,w∗⟩ · ⟨x,w⟩ < 0} .

In a set of experiments we checked the potential of the
PAC-Bayesian margin bound for model selection. Using the
shape parameter α we varied across different models. Over a
random draw of 1000 training samples z for each α value we
calculated the generalisation error of the solution as well as the
bound valued based on the observed margin using (13) with
δ = 0.05 . These two curves were linked via their common
α -axis, that is, for the x -values we took the mean upper
bound value and as the y -values the mean generalisation error.
Horizontal bars (very short) are error bars for the upper bound,
vertical bars are error bars for the generalisation error. In order
to check the influence of ellipsoidal shapes we varied λ1 and
λ2 . The curves named SVM were obtained by a modified SVM
(maximising Γz instead of γz as in the the classical SVM);
the curves named MAP (maximum a-posteriori estimator) were
obtained by choosing w ∈ V (z) randomly from version space
sampling from a uniform distribution, and using their margin
Γz (w) for the calculation of the bound value. Note, that
due to the uniform prior PW and the PAC-likelihood (3) the
MAP estimator is not uniquely defined and any w ∈ V (z)
maximises the posterior. The black dot indicates α = 1 . The

8We use the following parameterisation of the Beta density:
fBeta(µ,ν) (x) :=

Γ(µ+ν)
Γ(µ)Γ(ν)

xµ−1 (1− x)ν−1 with µ, ν ∈ N and
0 < x < 1 .
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Figure 2. Plots of Upper bound versus generalisation error for a fixed training
sample size of m = 1000 . The black dot indicates α = 1 , that is, a uniform
distribution over angles β (see (15)). See text for further explanation.

training sample size was fixed to m = 1000 . The results are
given in Figure 2. There are some interesting conclusions to
be drawn:

• A straight line in the plot corresponds to equivalent
shapes of the generalisation error and upper bound curve.
We observe that independently of the shape of the feature
space the bound resembles the shape of the generalisation
error curve for all fortunate distributions up to the uni-
form distribution over angles πβ . From this point on the
bound increases while the generalisation error remains
approximately constant.

• Independently of the shape of the feature space the bound
values remain constant, that is, the x -axes in our plots
always range from 0.04 to 0.12 . This is a real advantage
over classical results which are sensitive to the length of
training inputs x due to the unnormalised margin γz (w)

(which is by construction always less than λ1 ).
• For more ellipsoidal shapes of the feature space, margin

maximisation techniques (SVM curves) are much more
advantageous than “random guessing” in version space
(MAP curves). This can be seen by observing the differ-
ence in the solid and dashed curves.

• There are implicit assumptions in bound-based model
selection: It is assumed that a change of the model
(feature space) leads to distributions which have large
margins with high probability (α < 1 ). Otherwise the
bound value need not be related to the generalisation
error. Nevertheless, minimisation of the bound would lead
to such models.

• Although there is still a gap of approximately a factor
of 100 between the estimated generalisation error (y -
axis) and the upper bound value (x -axis) we would
like to recall that the classical PAC margin bound given
in Theorem 1, even in the best case of γz (w) = 1
, needs the astronomically large training sample size
m = 1555 878 to achieve a value of 0.04 .

B. Normalising Data in Feature Space

Theorem 6 suggest the following learning algorithm: given
a version space V (z) (through a given training sample z )
find the classifier w that maximises Γz (w) . This algorithm,
however, is given by the SVM only if the training data in
feature space K are normalised. We investigate the influence of
such a normalisation on the generalisation error in the feature
space K of all monomials up to the p th degree (well-known
from handwritten digit recognition, see [1]). Since the SVM
learning algorithm as well as the resulting classifier only refer
to inner products in K , it suffices to use an easy-to-calculate
kernel function k : X × X → R such that for all x, x̃ ∈ X ,
k (x, x̃) = ⟨ϕ (x) ,ϕ (x̃)⟩ , given in our case by the polynomial
kernel

∀p ∈ N k (x, x̃) := (⟨x, x̃⟩+ 1)
p
.

Earlier experiments have shown [1] that without normalisation
too large values of the exponent p may lead to “over-fitting”.
We used the UCI [15] data sets thyroid (d = 5 , m = 140 ,
mtest = 75 ) and sonar (d = 60 , m = 124 , mtest = 60 )
and plotted the generalisation error of SVM solutions (estim-
ated over 100 different splits of the data set) as a function of
p (see Figures 3 and 4). As suggested by Theorem 6 in almost
all cases the normalisation improved the performance of the
support vector machine solution at a statistically significant
level. As a consequence, we recommend to always normalise
data in feature space when training an SVM. Intuitively, it is
only the spatial direction of both weight vector and feature
vectors that determines the classification. Hence the different
lengths of feature vectors in the training sample should not
enter the SVM optimisation problem.

Note, that an alternative algorithm, the so-called Bayes
point machine (BPM), also assumes a uniform prior PW

over weight space, but returns the centre of mass weight
vector wcm := EW|W∈V (z) [W] obtained from averaging over
samples from PW|W∈V (z) (for example using the kernel Gibbs
sampler [16]). The BPM has empirically been demonstrated
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Figure 3. Estimated generalisation errors of classifiers learned by an SVM
with (dashed line) and without (solid line) normalisation of the feature vectors
xi . The error bars indicate one standard deviation over 100 random splits of
the data sets. The plot is obtained on the thyroid dataset.

to have generalisation properties superior to the support vector
machine in the case of elongated version spaces [17]. However,
it has not been justified in the sense that it minimises a PAC-
style error bound as is the case for support vector machines.

VI. DISCUSSION AND CONCLUSION

The PAC-Bayesian framework together with simple geomet-
rical arguments yields the so far tightest margin bound for
linear classifiers. The novelty of the current approach to prove
a PAC generalisation error bound in terms of a margin lies
in the fundamentally different reasoning applied: classical
PAC techniques use a ghost sample argument to consider
equivalence classes of classifiers on a double sample and then
aim at bounding the worst case number of equivalence classes
in terms (or at the scale) of the margin observed (see, for
example, [18], [19], [20], [3]). Interestingly, the pure covering
number bound (see [21, Lemma 4] and [22, Theorem 6.8])
seems to be of the same order as our current result. The
weakness of PAC margin bounds such as Theorem 1 mainly
comes from the application of Alon’s lemma (see [6]) when
bounding the covering number at the observed margin scale
by the fat shattering dimension.

In the current proof we avoided the usage of double samples
and covering numbers at all. Instead we used pure volume ratio
arguments and demonstrated that the margin Γz has a natural
interpretation of characterising a subset of classifiers in version
space summarised by the classifier under consideration. By
instantiating a general result in the PAC-Bayesian framework
with a special prior over classifiers we only needed to bound
volume ratios in weight space. It is worthwhile mentioning that
the quantity P−1

W (Q (w)) can be considered as an upper bound
on the packing number of classifiers with a margin at least Γz

because if a classifier wi has a consistent region Q (wi) of
classifiers around it then

∑
wi

PW (Q (wi)) ≤ 1 by definition
of probability and the disjointness of the Q (wi) which implies
that there are no more than maxi

(
P−1

W (Q (wi))
)

different
weight vectors wi .
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Figure 4. Estimated generalisation error on the sonar data set. For details
see Figure 3.

An interesting question is the role of the number d in
Theorem 6, that is, the minimum of the number of dimensions
of feature space and the training sample size. Although it
appears that this number limits the applicability of the current
results to low dimensional feature spaces it seems possible to
reduce this number by considering different low dimensional
projections of the training data before having seen the data and
minimising the bound with respect to the increase in the mar-
gin Γz when projecting the training data to a low dimensional
manifold. Our future work is focused on combining ideas from
approximation theory and the theory of reproducing kernel
Hilbert spaces to adopt our main theorem to take advantage of
the eigenvalue spectrum of the observed inner product matrix
G , Gij := ⟨xi,xj⟩ = k (xi, xj) (see [23] for first results of
this type).

The proof of the margin bound presented revealed an
important point already stressed by Shawe-Taylor et al. in their
seminal work on luckiness [8]: The margin as a character-
isation of consistent classifiers is one possible prior belief in
the data distribution underlying the training sample. Whenever
this prior belief is not met by the observed training sample the
margin bound will be trivial although still valid in the PAC
sense. The arbitrariness of the prior PW chosen in our proof
should best be compared with the arbitrariness of a luckiness
function when applying the main result of [8].
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APPENDIX

The appendix contains the lemmata and theorems necessary
to prove our main theorem, Theorem 6. Due to the length of
the single proofs we have split them into separate sections.
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BALLS IN VERSION SPACE

In this section we prove that the ball

Q (w) :=
{
v ∈ W

∣∣∣ ⟨w,v⟩ >
√
1− Γ2

z (w)
}

around a linear classifier with normal w of unit length only
contains classifiers within version space V (z) . Here, Γz (w)
is the margin of the hyper-plane w on a set of points
normalised by the length ∥xi∥ of the xi (see (12) for a formal
definition). In order to prove this result we need the following
lemma.

Lemma 7. Suppose K ⊆ ℓn2 is a fixed feature space. Assume
we are given two points w ∈ W and x ∈ K such that
⟨w,x⟩ =: γ > 0 . Then for all v ∈ W with

⟨w,v⟩ >

√
1− γ2

∥x∥2
(16)

it follows that ⟨v,x⟩ > 0 .

Proof: Given w ∈ W and x ∈ K let L (x,w) ⊂ K
be the linear subspace of K spanned by x and w . Then we
can express any v ∈ K as v = v∥ + v⊥ where v∥ is the
projection of v onto L (x,w) and v⊥ is its projection on the
complement of L (x,w) . Since we have ⟨v,w⟩ =

⟨
v∥,w

⟩
and ⟨v,x⟩ =

⟨
v∥,x

⟩
we can make the following ansatz for v

without loss of generality,

v = λ
x

∥x∥
+ τ

(
w − γ

x

∥x∥2

)
.

Note, that the vectors x
∥x∥ and w − γ x

∥x∥2 are orthogonal by
construction. Furthermore, the squared length of w − γ x

∥x∥2

is given by 1−γ2/ ∥x∥2 . Therefore, the unit norm constraint
on v implies that

τ2 =
1− λ2

1− γ2

∥x∥2

.

Furthermore, assumption (16) becomes⟨
λ

x

∥x∥
+ τ

(
w − γ

x

∥x∥2

)
,w

⟩
>

√
1− γ2

∥x∥2

λ
γ

∥x∥
±

√√√√ 1− λ2

1− γ2

∥x∥2

(
1− γ2

∥x∥2

)
>

√
1− γ2

∥x∥2

λ
γ

∥x∥
−

√
1− γ2

∥x∥2
(
1±

√
1− λ2

)
︸ ︷︷ ︸

f(λ)

> 0 .

In order to solve for λ we consider the left-hand-side as a
function of λ and determine the range of values where f (λ)
is positive. A straightforward calculation reveals that [0, λmax]
with

λmax =
2γ

∥x∥

√
1− γ2

∥x∥2
,

��

x2

x1 �
ikxik
xikxik w

H = f ~w : k ~wk = 1g
fx : hx;wi = 0gfv : hxi;vi = 0g

Figure 5. Suppose the point x1 (or x2 ) is given. We have to show that all

classifiers with normal w̃ of unit length and ⟨w, w̃⟩ >
√

1− γ2
i / ∥xi∥2 are

on the same side of the hyper-plane {v | ⟨xi,v⟩ = 0} , that is ⟨w̃,xi⟩ >
0 , where γi = ⟨xi,w⟩ . From the picture it is clear that regardless of
∥xi∥ , sin (α) = (γi/ ∥xi∥) or equivalently cos (α) =

√
1− sin2 (α) =√

1− γ2
i / ∥xi∥2 . Obviously, all vector w̃ of unit length which enclose an

angle less than α with w are on the same side (the dark cone). As cos (α)
is monotonically decreasing for α ∈

(
0, π

2

)
, these classifiers have to fulfil

⟨w, w̃⟩ = cos (^ (w, w̃)) >
√

1− γ2
i / ∥xi∥2 .

is the only range where f (λ) is positive. Thus, the assumption

⟨w,v⟩ >
√

1− γ2/ ∥x∥2 implies

0 < λ ∥x∥ < 2γ

√
1− γ2

∥x∥2
.

Finally, the inner product of any v with x is given by

⟨v,x⟩ =

⟨
λ

x

∥x∥
+ τ

(
w − γ

x

∥x∥

)
,x

⟩
= λ ∥x∥+ τ (γ − γ) > 0 ,

where the last inequality follows from the previous consider-
ation. The lemma is proven. For a geometrical reasoning see
Figure 5.

Theorem 8. Suppose K ⊆ ℓn2 is a fixed feature space. Given a
training sample z = (x,y) ∈ (X × {−1,+1})m and w ∈ W
such that Γz (w) > 0 , for all v ∈ W such that ⟨w,v⟩ >√

1− Γ2
z (w) we have

∀i ∈ {1, . . . ,m} : yi ⟨v,xi⟩ > 0 .

Proof: According to Lemma 7 we know that all v ∈ Bi

with

Bi :=

{
v ∈ W

∣∣∣∣∣ ⟨w,v⟩ >

√
1− (yi ⟨xi,w⟩)2

∥xi∥2

}
,
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parameterise classifiers consistent with the i th point xi .
Clearly, the intersection of all Bi gives the classifiers w which
jointly fulfil the constraints yi ⟨w,xi⟩ > 0 . Noticing that the
size of Bi depends inversely on yi ⟨xi,w⟩ we see that all
v such that ⟨w,v⟩ > Γz (w) jointly classify all points xi

correctly. The theorem is proven.

VOLUME RATIO THEOREM

In this section we explicitly derive the volume ratio between
the largest inscribable ball in version space and the whole
parameter space for the special case of linear classifiers in Rn

. Given a point w ∈ W and a positive number γ > 0 we can
characterise the ball of radius γ in the parameter space by

Qγ (w) :=
{
v ∈ W

∣∣∣ ∥w − v∥2 < γ2
}

=
{
v ∈ W

∣∣ ⟨w,v⟩ > 1− γ2/2
}
.

In the following we will calculate the exact value of the volume
ratio vol (W) /vol (Qγ (w)) where w can be chosen arbitrarily
(due to the symmetry of the sphere).

Theorem 9. Suppose we are given a fixed feature space K ⊆
ℓn2 . Then the fraction of the whole surface vol (W) of the unit
sphere to the surface vol (Qγ (w)) with Euclidean distance
less than γ from any point v ∈ W is given by

vol (W)

vol (Qγ (w))
=

∫ π

0
sinn−2 (θ) dθ∫ arccos

(
1− γ2

2

)
0 sinn−2 (θ) dθ

. (17)

Proof: Consider spherical coordinates such that every
w ∈ W is expressed via n − 2 angles θ1, . . . , θn−2 ranging
from 0 to π , and one angle 0 ≤ φ ≤ 2π . Choose w =
(1, 0, . . . , 0)

′ and the coordinate θ such that w1 = cos (θ) .
Then the intersection Wn−1

θ0
:= W∩{w |θ = θ0 } is an (n− 1)

-dimensional unit hyper-sphere of radius rn−1 = sin (θ) . The
surface area vol

(
Wn−1

θ0

)
of Wn−1

θ0
is given by

vol
(
Wn−1

θ0

)
= cn−1 sin

n−2 (θ) . (18)

The ratio can be expressed in terms of integrals over θ0 as

vol (W)

vol (Qγ (w))
=

∫ π

0
vol
(
Wn−1

θ0

)
dθ0∫ arccos

(
1− γ2

2

)
0 vol

(
Wn−1

θ0

)
dθ0

,

which together with (18) proves the theorem.

A VOLUME RATIO BOUND

In this section we present a practically useful upper bound for
the logarithm of the expression given in (17). In order to check
the usefulness of this expression we have compared the exact
value with the upper bound and found that in the interesting
regime of large margins the bound seems to be within a factor
of 2 from the exact value (see Figure 6).

Theorem 10. For all j ∈ N and all 0 < x ≤ 1
2

ln

( ∫ π

0
sin2j+1 (θ) dθ∫ Ψ(x)

0
sin2j+1 (θ) dθ

)
≤ ln

(
1

2x

)2j+1

+ ln (2) , (19)

where Ψ(x) := arccos (1− 2x) .
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Figure 6. Comparison of the bound (r.h.s. of (19)) (dashed line) with the
exact value (l.h.s. of (19)) (solid line) over the whole range of possible values
of x for (top) n = 10 and (bottom) n = 100 . Interestingly, in the relevant
regime of large values of x the bound seems to be very tight regardless of
the number n of dimensions.

Proof: From [24] we know that for all j ∈ N∫
sin2j+1 (θ) dθ = −cos (θ)

2j + 1

j∑
i=0

sin2i (θ)Bj,i, (20)

where

Bj,i :=
2 (i+ 1) · 2 (i+ 2) · · · · · 2j

(2i+ 1) · (2i+ 3) · · · · · (2j − 1)

=
2 · 4 · · · 2j

1 · 3 · · · (2j − 1)
· 1 · 3 · · · (2i− 1)

2 · 4 · · · (2i)

=
4j (j!)

2
(2i)!

(2j)! (i!)
2
4i

=
4j

4i

(
2i
i

)(
2j
j

) . (21)

Let us introduce the abbreviation

S (j, x) :=

∫ arccos(1−2x)

0

sin2j+1 (θ) dθ .

Then the numerator of (19) is given by S (j, 1) whereas the
denominator of (19) is simply S (j, x) . From (20) we see

S (j, x) = −cos (θ)

2j + 1

j∑
i=0

sin2i (θ)Bj,i

∣∣∣∣∣
arccos(1−2x)

0

=
4j

(2j + 1)
(
2j
j

) (1 + (2x− 1)

j∑
i=0

(
2i

i

)
xi (1− x)

i

)
.
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where we have used (21) and

sin2i (θ) =
(
sin2 (θ)

)i
=
(
1− cos2 (θ)

)i
=

(
1− (1− 2x)

2
)i

=
(
4x− 4x2

)i
.

For the fraction we obtain

ln

(
S (j, 1)

S (j, x)

)
= − ln

(
1

2

(
2x+ (2x− 1)

j∑
i=1

(
2i

i

)
xi (1− x)

i

))
.

In Lemma 15 we show that for any j ∈ N+ and 0 ≤ x < 1
2

j∑
i=1

(
2i

i

)
xi (1− x)

i ≤
2x
(
(2x)

2j − 1
)

2x− 1
.

Inserted into the last expression we obtain

ln

(
S (j, 1)

S (j, x)

)
≤ − ln

1

2

2x+ (2x− 1)
2x
(
(2x)

2j − 1
)

(2x− 1)


= − ln

(
(2x)

2j+1

2

)
= − (2j + 1) ln (2x) + ln (2) .

In the case of x = 1
2 the problem reduces to showing that

ln

(
S (j, 1)

S
(
j, 1

2

)) = − (2j + 1) ln (2x)︸ ︷︷ ︸
0

+ ln (2) .

This is equal to the exact value of the volume ratio (19) with
x = 1

2 because we have for all j ∈ N∫ π

0

sin2j+1 (θ) dθ = 2 ·
∫ π

2

0

sin2j+1 (θ) dθ .

BOLLMANN’S LEMMA

In the course of the proof of Theorem 10 we need a tight
upper bound on

∑j
i=1

(
2i
i

)
xi (1− x)

i as a function of x . In
the following we present a series of lemmata resulting in a
reasonably accurate upper bound that we called Bollmann’s
lemma9 (Lemma 15).

Lemma 11. For all i ∈ N+(
2 (i+ 1)

i+ 1

)
=

(
2i

i

)(
4− 2

i+ 1

)
.

Proof: A straightforward calculation shows that(
2 (i+ 1)

i+ 1

)
=

2 (i+ 1) (2i+ 1)

(i+ 1) (i+ 1)

(
2i

i

)
=

(
2i

i

)
4i+ 2

i+ 1

=

(
2i

i

)(
4− 2

i+ 1

)
.

9We do not know of any prior appearance of this inequality in the literature.
The name “Bollmann’s lemma” was chosen in honour of our colleague Peter
Bollmann-Sdorra, who proved this result based on what he calls “high school
algebra”. He thought it too minor to justify an authorship.

The lemma is proven.

Lemma 12. For all i ∈ N+ and j ∈ N+(
2 (j + 1)

j + 1

)(
2i

i

)
≤ 2

(
2 (i+ j)

i+ j

)
.

Proof: We prove the lemma by induction over i . For
i = 1 it follows that(

2 (j + 1)

j + 1

)(
2

1

)
= 2

(
2 (j + 1)

j + 1

)
.

Assume the assertion is true for i ∈ N+ . Then(
2 (j + 1)

j + 1

)(
2 (i+ 1)

i+ 1

)
=

(
2 (j + 1)

j + 1

)(
2i

i

)(
4− 2

i+ 1

)
≤ 2

(
2 (i+ j)

i+ j

)(
4− 2

i+ 1

)
≤ 2

(
2 (i+ j)

i+ j

)(
4− 2

i+ j + 1

)
= 2

(
2 (i+ j + 1)

i+ j + 1

)
,

where we used Lemma 11 in the first and last line.

Lemma 13. For all 0 ≤ x < 1
2

∞∑
i=1

(
2i

i

)
xi(1− x)i =

2x

1− 2x
.

Proof: This can be seen by considering

arcsin (u) = u+
∞∑
i=1

(
2i

i

)
1

4i
u2i+1

2i+ 1
,

d arcsin (u)

du
= 1 +

∞∑
i=1

(
2i

i

)
1

4i
u2i

=
1√

1− u2
.

Using u = 2
√
x (1− x) we obtain the result, i.e.

∞∑
i=1

(
2i

i

)
1

4i

(
2
√
x (1− x)

)2i
=

1√
1− 4x (1− x)

− 1

∞∑
i=1

(
2i

i

)
xi (1− x)

i
=

1−
√

1− 4x (1− x)√
1− 4x (1− x)

=
1−

√
(1− 2x)

2√
(1− 2x)

2
.

The lemma is proven.

Lemma 14. For all 0 ≤ x < 1
2 and j ∈ N+

4x2
∞∑
i=1

(
2 (i+ j)

i+ j

)
xi+j (1− x)

i+j ≤

∞∑
i=1

(
2 (i+ j + 1)

i+ j + 1

)
xi+j+1 (1− x)

i+j+1
.
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Proof: By Lemma 12 we have
∞∑
i=1

(
2i

i

)(
2 (j + 1)

j + 1

)
xi+j (1− x)

i+j ≤

∞∑
i=1

2

(
2 (i+ j)

i+ j

)
xi+j (1− x)

i+j
.

As 0 < 1− x ≤ 1 + 2x we have that

(1− x)

(
2 (j + 1)

j + 1

)
xj (1− x)

j
∞∑
i=1

(
2i

i

)
xi (1− x)

i ≤

2 (1 + 2x)

∞∑
i=1

(
2 (i+ j)

i+ j

)
xi+j (1− x)

i+j

implies

(1− x)

(
2 (j + 1)

j + 1

)
xj (1− x)

j 2x

1− 2x
≤

2 (1 + 2x)

∞∑
i=1

(
2 (i+ j)

i+ j

)
xi+j (1− x)

i+j
.

Multiplying both sides by1−2x
2 (which is by assumption

positive) yields(
2 (j + 1)

j + 1

)
xj+1 (1− x)

j+1 ≤

(
1− 4x2

) ∞∑
i=1

(
2 (i+ j)

i+ j

)
xi+j (1− x)

i+j
.

Rearranging terms gives

4x2
∞∑
i=1

(
2 (i+ j)

i+ j

)
xi+j (1− x)

i+j

≤
∞∑
i=1

(
2 (i+ j)

i+ j

)
xi+j (1− x)

i+j

−
(
2 (j + 1)

j + 1

)
xj+1 (1− x)

j+1

=

∞∑
i=1

(
2 (i+ j + 1)

i+ j + 1

)
xi+j+1 (1− x)

i+j+1
.

The lemma is proven.

Lemma 15. For any j ∈ N+ and 0 < x < 1
2

j∑
i=1

(
2i

i

)
xi (1− x)

i ≤
2x
(
(2x)

2j − 1
)

2x− 1
.

Proof: The assertion can be transformed into

j∑
i=1

(
2i

i

)
xi (1− x)

i ≤
2x
(
(2x)

2j − 1
)

2x− 1

=
2x
(
1− (2x)

2j
)

1− 2x

≤ 2x

1− 2x
− (2x)

2j+1

1− 2x

≤
∞∑
i=1

(
2i

i

)
xi (1− x)

i − (2x)
2j+1

1− 2x
,

which is equivalent to

(2x)
2j+1 ≤ (1− 2x)

∞∑
i=1

(
2 (i+ j)

i+ j

)
xi+j (1− x)

i+j
.

We prove this by induction over j . For j = 1 we have(
2

1

)
x (1− x) = 2x− 2x2 ≤ 2x+ 4x2 =

8x3 − 2x

2x− 1

=
2x
(
(2x)

2 − 1
)

2x− 1
.

Assume the assertion is true for j . Then

(2x)
2(j+1)+1

= 4x2 (2x)
2j+1

≤ 4x2

(
(1− 2x)

∞∑
i=1

(
2 (i+ j)

i+ j

)
xi+j (1− x)

i+j

)

≤ (1− 2x)
∞∑
i=1

(
2 (i+ j + 1)

i+ j + 1

)
xi+j+1 (1− x)

i+j+1
,

where the second line was assumed to be true and the third
line follows from Lemma 14. The lemma is proven.
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