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Abstract 

We present an algorithm that samples the hypothesis space of ker­
nel classifiers. Given a uniform prior over normalised weight vectors 
and a likelihood based on a model of label noise leads to a piece­
wise constant posterior that can be sampled by the kernel Gibbs 
sampler (KGS). The KGS is a Markov Chain Monte Carlo method 
that chooses a random direction in parameter space and samples 
from the resulting piecewise constant density along the line chosen. 
The KGS can be used as an analytical tool for the exploration of 
Bayesian transduction, Bayes point machines, active learning, and 
evidence-based model selection on small data sets that are contam­
inated with label noise. For a simple toy example we demonstrate 
experimentally how a Bayes point machine based on the KGS out­
performs an SVM that is incapable of taking into account label 
noise. 

1 Introduction 

Two great ideas have dominated recent developments in machine learning: the ap­
plication of kernel methods and the popularisation of Bayesian inference. Focusing 
on the task of classification, various connections between the two areas exist: ker­
nels have long been a part of Bayesian inference in the disguise of covariance nmc­
tions that characterise priors over functions [9]. Also, attempts have been made 
to re-derive the support vector machine (SVM) [1] - possibly the most prominent 
representative of kernel methods - as a maximum a-posteriori estimator (MAP) 
in a Bayesian framework [8] . While this work suggests good strategies for evidence­
based model selection the MAP estimator is not truly Bayesian in spirit because it is 
not based on the concept of model averaging which is crucial to Bayesian reasoning. 
As a consequence, the MAP estimator is generally not as robust as a real Bayesian 
estimator. While this drawback is inconsequential in a noise-free setting or in a situ­
ation dominated by feature noise, it may have severe consequences when the data is 
contaminated by label noise that may lead to a multi-modal posterior distribution. 
In order to make use of the full Bayesian posterior distribution it is necessary to 
generate samples from this distribution. This contribution is concerned with the 
generation of samples from the Bayesian posterior over the hypothesis space of lin-



ear classifiers in arbitrary kernel spaces in the case of label noise. In contrast to [8] 
we consider normalised weight vectors, IIwll.~: = 1, because the classification given 
by a linear classifier only depends on the spatial direction of the weight vector w 
and not on its length. This point of view leads to a hypothesis space isomorphic to 
the surface of an n-dimensional sphere which - in the absence of prior information 
- is naturally equipped with a uniform prior over directions. Incorporating the 
label noise model into the likelihood then leads to a piecewise constant posterior on 
the surface of the sphere. The kernel Gibbs sampler (KGS) is designed to sample 
from this type of posterior by iteratively choosing a random direction and sam­
pling on the resulting piecewise constant one-dimensional density in the fashion of 
a hit-and-run algorithm [7]. 

The resulting samples can be used in various ways: i) In Bayesian transduction [3] 
the decision about the labels of new test points can be inferred by a majority decision 
of the sampled classifiers. ii) The posterior mean - the Bayes point machine 
(BPM) solution [4] - can be calculated as an approximation to transduction. iii) 
The binary entropy of candidate training points can be calculated to determine 
their information content for active learning [2]. iv) The model evidence [5] can be 
evaluated for the purpose of model selection. We would like to point out, however, 
that the KGS is limited in practice to a sample size of m ~ 100 and should thus be 
thought of as an analytical tool to advance our understanding of the interaction of 
kernel methods and Bayesian reasoning. 

The paper is structured as follows: in Section 2 we introduce the learning scenario 
and explain our Bayesian approach to linear classifiers in kernel spaces. The kernel 
Gibbs sampler is explained in detail in Section 3. Different applications of the KGS 
are discussed in Section 4 followed by an experimental demonstration of the BPM 
solution based on using the KGS under label noise conditions. We denote n-tuples 
by italic bold letters (e.g. x), vectors by roman bold letters (e.g. x), random vari­
ables by sans seriffont (e.g. X), and vector spaces by calligraphic capitalised letters 
(e.g. X). The symbols P, E and I denote a probability measure, the expectation of 
a random variable and the indicator function, respectively. 

2 Bayesian Learning in Kernel spaces 

We consider learning given a sequence x = (Xl, ... ,Xm ) E xm and y = 
(Yl, ... Ym) E {-I, + I} m drawn iid from a fixed distribution PXY = Pz over the 
space X x { -1, + I} = Z of input-output pairs. The hypotheses are linear classifiers 
X I-t (w,ifJ(x))/C =: (w,x)/C in some fixed feature space K ~ £~ where we assume 
that a mapping ¢ : X -+ K is chosen a priori 1 . Since all we need for learning is the 
real-valued output (w, Xi) /C of the classifier w at the m training points in Xl, ... , Xm 

we can assume that w can be expressed as (see [9]) 

m 

W = LOiX;. 

i=l 

(1) 

Thus, it suffices to learn the m expansion coefficients a E IRm rather than the n 
components of w E K. This is particularly useful if the dimensionality dim (K) = n 
of the feature space K is much greater (or possibly infinite) than the number m 
of training points. From (1) we see that all that is needed is the inner product 
function k (x, x') = (¢ (x) ,¢ (x'))/C also known as the kernel (see [9] for a detailed 
introduction to the theory of kernels). 

lFor the sake of convenience, we sometimes abbreviate cfJ {x} by x. This, however, 
should not be confused with n-tuple x denoting the training objects. 



(a) (b) 

Figure 1: Illustration of the (log) posterior distribution on the surface of a 3-
dimensional sphere {w E Il~a IlIwllK = I} resulting from a label noise model with 
a label flip rate of q = 0.20 (a) m = 10, (b) m = 1000. The log posterior is plotted 
over the longitude and latitude, and for small sample size it is multi-modal due 
to the label noise. The classifier w* labelling the data (before label noise) was at 
(~, 11"). 

In a Bayesian spirit we consider a prior Pw over possible weight vectors w E W 
of unit length, i.e. W = {v E J( IIIvllK = I}. Given an iid training set z = (x,y) 
and a likelihood model PYlx=x,w=w we obtain the posterior PWlz==z using Bayes' 
formula 

() PY=lx==."w=w (y) Pw (w) 
PWlz=-z w = [ ] ' 

- Ew PY=lx==."w=w (y) 
(2) 

By the iid assumption and the independence of the denominator from w we obtain 
m 

i=l . .. 
.c[w,z] 

In the absence of specific prior knowledge symmetry suggests to take Pw uniform 
on W. Furthermore, we choose the likelihood model 

PY1X=x,w=w (Y) = { i _ q 
if y (w,x)K ::; a 
otherwise 

where q specifies the assumed level of label noise. Please note the difference to the 
commonly assumed model of feature noise which essentially assumes noise in the 
(mapped) input vectors x instead of the labels y and constitutes the basis of the 
soft-margin SVM [1]. Thus the likelihood C[w,z] of the weight vector w is given 
by 

C [w, z] = qm.Re=p [w,z] (1 _ q)m(l-Re=p [W,Z]) , 

w here the training error Remp [w, z] is defined as 

Remp [w,z] = 
1 m 

m L IYi(W,Xi } K:~O. 
i=l 

(3) 



Two data points YIXI and Y2X2 divide 
the space of normalised weight vec­
tors W into four equivalence classes 
with different posterior density indi­
cated by the gray shading. In each 
iteration, starting from Wj_l a ran­
dom direction v with v..LWj_l is gen­
erated. We sample from the piecewise 
constant density on the great circle 
determined by the plane defined by 
Wj-l and v. In order to obtain (*, 
we calculate the 2m angles (i where 
the training samples intersect with 
the circle and keep track of the num­
ber m . ei of training errors for each 
region i. 

Figure 2: Schematic view of the kernel Gibbs sampling procedure. 

Clearly, the posterior Pw1z==z is piecewise constant for all W with equal training 
error Remp [w,z] (see Figure 1). 

3 The Kernel Gibbs Sampler 

In order to sample from PWlz==z on W we suggest a Markov Chain sampling 
method. For a given value of q, the sampling scheme can be decomposed into the 
following steps (see Figure 2): 

1. Choose an arbitrary starting point Wo E W and set j = O. 

2. Choose a direction v E W in the tangent space {v E W I (v, Wj)K = O}. 

3. Calculate all m hit points b i E W from W in direction v with the hyperplane 
having normal YiXi' Before normalisation, this is achieved by [4] 

(Wj,Xi)K 
b i = Wj - ( ) V. 

V,Xi K 

4. Calculate the 2m angular distances (i from the current position W j 

Vi E {l, ... ,m}: 
Vi E {l, ... ,m}: 

(2i-l = -sign ((v,bi)d arccos ((wj,bi)K) , 

(2i = ((2i-l + 7r) mod (27r) . 

5. Sort the (i in ascending order, i.e. II: {I, ... , 2m} -+ {I, ... , 2m} such 
that 

Vi E {2, ... ,2m}: (nCi-l):::; (nCi) . 

6. Calculate the training errors ei of the 2m intervals [(nCi-l),(nCi)] byeval­
uating 

He [ ((nCHl) - (nCi)) . ((nCHl) - (nCi)) ] ei = mp cos 2 Wj - sm 2 v, z 

Here, we used the shorthand notation (nC2m+1) = (nCl)' 



7. Sample an angle (* using the piecewise uniform distribution and (3). 

8. Calculate a new sample Wj+! by Wj+l = cos ((*) Wj - sin ((*) v. 

9. Set j f- j + 1 and go back to step 2. 

Since the algorithm is carried out in feature space K we can use 
m 

W = LCtiXi, 

i=l 

m 

v= LViXi, 
i=l 

m 

b = L.BiXi. 
i=l 

For the inner products and norms it follows that, e.g. 

(w, v)K = a'Gv, IIwll~ = a'Ga, 

where the m x m matrix G is known as the Gram matrix and is given by 

G ij = (Xi,Xj)K = k(Xi,Xj) . 

As a consequence the above algorithm can be implemented in arbitrary kernel spaces 
only making use of k. 

4 Applications of the Kernel Gibbs Sampler 

The kernel Gibbs sampler provides samples from the full posterior distribution over 
the hypothesis space of linear classifiers in kernel space for the case of label noise. 
These samples can be used for various tasks related to learning. In the following 
we will present a selection of these tasks. 

Bayesian Transduction Given a sample from the posterior distribution over 
hypotheses, a good strategy for prediction is to let the sampled classifiers vote 
on each new test data point. This mode of prediction is closest to the Bayesian 
spirit and has been shown for the zero-noise case to yield excellent generalisation 
performance [3]. Also the fraction of votes for the majority decision is an excellent 
indicator for the reliability of the final estimate: Rejection of those test points with 
the closest decision results in a great reduction of the generalisation error on the 
remaining test points x. Given the posterior PWlz~=% the transductive decision is 

BT% (x) = sign (Ewlz~=% [sign ((W,x)x;)J) . (4) 

In practice, this estimator is approximated by replacing the expectation EWlz~=% 
by a sum over the sampled weight vectors W j. 

Bayes Point Machines For classification, Bayesian Transduction requires the 
whole collection of sampled weight vectors W in memory. Since this may be imprac­
tical for large data sets we would like to derive a single classifier W from the Bayesian 
posterior. An excellent approximation of the transductive decision BT% (x) by a sin­
gle classifier is obtained by exchanging the expectation with the inner sign-function 
in (4). Then the classifier hbp is given by 

(5) 

where the classifier Wbp is referred to as the Bayes point and has been shown to 
yield generalisation performance superior to the well-known support vector solution 
WSVM, which - in turn - can be looked upon as an approximation to Wbp in the 
noise-free case [4]. Again, wbp is estimated by replacing the expectation by the 
mean over samples W j. Note that there exists no SVM equivalence WSVM to the 
Bayes point Wbp in the case of label noise - a fact to be elaborated on in the 
experimental part in Section 5. 
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Figure 3: A set of 50 samples Wj of the posterior PWlz~=z for various noise levels 
q. Shown are the resulting decision boundaries in data space X. 

Active Learning The Bayesian posterior can also be employed to determine the 
usefulness of candidate training points - a task that can be considered as a dual 
counterpart to Bayesian Transduction. This is particularly useful when the label y 
of a training point x is more expensive to obtain than the training point x itself. It 
was shown in the context of "Query by Committee" [2) that the binary entropy 

S (x,z) = p+ log2P+ + p-Iog2P-

with p± = PWlz~=z (± (W, x) K > 0) is an indicator of the information content of 
a data point x with regard to the learning task. Samples W j from the Bayesian 
posterior PWlz~=z make it possible to estimate S for a given candidate training 
points x and the current training set z to decide on the basis of S if it is worthwhile 
to query the corresponding label y . 

Evidence Estimation for Model Selection Bayesian model selection is often 
based on a quantity called the evidence [5) of the model (given by the denominator 
of (2)) 

In the PAC-Bayesian framework this quantity has been demonstrated to be respon­
sible for the generalisation performance of a model [6). It turns out that in the 
zero-noise case the margin (the quantity maximised by the SVM) is a measure of 
the evidence of the model used [4) . In the case of label noise the KGS serves to 
estimate this quantity. 

5 Experiments 

In a first experiment we used a surrogate dataset of m = 76 data points x in 
X = IR2 and the kernel k (x,x') = exp(-t Ilx - x'II~). Using the KGS we sampled 
50 different classifiers with weight vectors W j for various noise levels q and plotted 
the resulting decision boundaries {x E IR2 I (w j, x) K = O} in Figure 3 (circles and 
crosses depict different classes). As can be seen form these plots, increasing the 
noise level q leads to more diverse classifiers on the training set z. 

In a second experiment we investigated the generalisation performance of the Bayes 
point machine (see (5)) in the case of label noise. In IR3 we generated 100 random 
training and test sets of size mtrain = 100 and mtest = 1000, respectively. For each 
normalised point x E IR3 the longitude and latitude were sampled from a Beta(5, 5) 
and Beta(O.l, 0.1) distribution, respectively. The classes y were obtained by ran­
domly flipping the classes assigned by the classifier w* at (~, 7r) (see also Figure 
1) with a true label flip rate of q* = 5%. In Figure 4 we plotted the estimated 
generalisation error for a BPM (trained using 100 samples Wj from the KGS) and 



Generalisation errors of BPMs (circled 
error-bars) and soft-margin SVMs (tri­
angled error-bars) vs. assumed noise 
level q and margin slack penalisation 
A, respectively. The dataset consisted 
of m = 100 observations with a label 
noise of 5% (dotted line) and we used 
k(x,x') = (x,x')x+A·I"=,,,. Note that 
the abscissa is jointly used for q and A. 

Figure 4: Comparison of BPMs and SVMs on data contaminated by label noise. 

quadratic soft-margin SVM at different label noise levels q and margin slack penali­
sation A, respectively. Clearly, the BPM with the correct noise model outperformed 
the SVM irrespective of the chosen level of regularisation. Interestingly, the BPM 
appears to be quite "robust" w.r.t. the choice of the label noise parameter q. 

6 Conclusion and Future Research 

The kernel Gibbs sampler provides an analytical tool for the exploration of various 
Bayesian aspects of learning in kernel spaces. It provides a well-founded way for 
dealing with label noise but suffers from its computational complexity which - so 
far - makes it inapplicable for large scale applications. Therefore it will be an 
interesting topic for future research to invent new sampling schemes that may be 
able to trade accuracy for speed and would thus be applicable to large data sets. 
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