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Preface

Some good quote

who knows

some clever stuff ...

and some more visionary comments

Alexander J. Smola, Peter Bartlett, Bernhard Schölkopf, Dale Schuurmans
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1 Introduction to Large Margin Classifiers

The aim of this chapter is to provide a brief introduction to the basic concepts of

large margin classifiers for readers unfamiliar with the topic. Moreover it is aimed

at establishing a common basis in terms of notation and equations, upon which

the subsequent chapters will build (and refer to) when dealing with more advanced

issues.

1.1 A Simple Classification Problem

Assume that we are given a set of training datatraining data

X := {x1, . . . ,xm} ⊆ RN where m ∈ N (1.1)

together with corresponding labelslabels

Y := {y1, . . . , ym} ⊆ {−1, 1}. (1.2)

The goal is to find some decision function g : RN → {−1, 1} that accurately

predicts the labels of unseen data points (x, y). That is, we seek a function g that

minimizes the classification error, which is given by the probability that g(x) ̸= y.

A common approach to representing decision functions is to use a real valued

prediction function f : RN → R whose output is passed through a sign threshold to

yield the final classification g(x) = sgn (f(x)). Let us start with a simple example:

linear decision functions. In this case the unthresholded prediction is given by a

simple linear function of the input vector xlinear

decision

function
g(x) := sgn (f(x)) where f(x) = (x ·w) + b for w ∈ RN and b ∈ R. (1.3)

This gives a classification rule whose decision boundary {x|f(x) = 0} is an

N − 1 dimensional hyperplane separating the classes “+1” and “−1” from each

other. Figure 1.1 depicts the situation. The problem of learning from data can be

formulated as finding a set of parameters (w, b) such that sgn ((w · xi) + b) = yi
for all 1 ≤ i ≤ m. However, such a solution may not always exist, in particular if

we are dealing with noisy data. For instance, consider Figure 1.1 with the triangle

replaced by an open circle. This raises the question what to do in such a situation.
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Figure 1.1 A linearly separable classification problem. Note that there may be

several possible solutions as depicted by the two lines. The problem becomes non-

separable if we replace the triangle by an open circle; in which case no solution

(w, b) exists.

1.1.1 Bayes Optimal Solution

Under the assumption that the data X,Y was generated from a probability distri-

bution p(x, y) on RN × {−1, 1} and that p is known, it is straightforward to find a

function that minimizes the probability of misclassification

R(g) :=

∫
RN×{−1,1}

1{g(x)̸=y} p(x, y)dxdy. (1.4)

This function satisfiesBayes optimal

decision function
g(x) = sgn (p(x, 1)− p(x,−1)) . (1.5)

Consider a practical example.

Example 1.1 Two Gaussian Clusters

Assume that the two classes “+1” and “−1” are generated by two Gaussian clusters

with the same covariance matrix Σ centered at µ+ and µ− respectively

p(x, y) =
1

2(2σ)N/2|Σ|1/2

{
e−

1
2 (x−µ+)⊤Σ−1(x−µ+) if y = +1

e−
1
2 (x−µ−)⊤Σ−1(x−µ−) if y = −1.

(1.6)

Since the boundaries completely determine the decision function, we seek the set of

points where p(x,+1) = p(x,−1). In the case of (1.6) this is equivalent to seeking

x such that

(x− µ+)
⊤Σ−1(x− µ+) = (x− µ−)

⊤Σ−1(x− µ−). (1.7)

By rearranging we find that this condition is equivalent to

x⊤Σ−1x− 2µ⊤
+Σ

−1x+ µ⊤
+Σ

−1µ+ − x⊤Σ−1x+ 2µ⊤
−Σ

−1x− µ⊤
−Σ

−1µ− = 0

2(µ⊤
+Σ

−1 − µ⊤
−Σ

−1)x− (µ⊤
+Σ

−1µ+ − µ⊤
−Σ

−1µ−) = 0 (1.8)
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The latter form is equivalent to having a linear decision function determined by

f(x) =
(
(µ+ − µ−)

⊤Σ−1
)
x− 1

2 (µ
⊤
+Σ

−1µ+ − µ⊤
−Σ

−1µ−). (1.9)
linear

discriminant Hence in this simple example the Bayes optimal classification rule is linear.

Problems arise, however, if p(x, y) is not known (as generally happens in practice).

In this case one has to obtain a good estimate of g(x) = sgn (f(x)) from the training

data X,Y . A famous example of an algorithm for linear separation is the perceptron

algorithm.

1.1.2 The Perceptron Algorithm

The perceptron algorithm is “incremental,” in the sense that small changes are

made to the weight vector in response to each labelled example in turn. For any

learning rate η > 0, the algorithm acts sequentially as shown in Table 1.1. Notice

argument: Training sample, X = {x1, . . . ,xm} ⊂ X, Y = {y1, . . . , ym} ⊂ {±1}
Learning rate, η

returns: Weight vector w and threshold b.
function Perceptron(X,Y, η)

initialize w, b = 0
repeat

for all i from i = 1, . . . ,m
Compute g(xi) = sgn ((w · xi) + b)
Update w, b according to

w′ = w + (η/2) (yi − g(xi))xi

b′ = b+ (η/2) (yi − g(xi)) .

endfor
until for all 1 ≤ i ≤ m we have g(xi) = yi
return f : x 7→ (w · x) + b

end

Table 1.1 Basic Perceptron Algorithm.

that (w, b) is only updated on a labelled example if the perceptron in state (w, b)

misclassifies the example. It is convenient to think of the algorithm as maintaining

the hypothesis g : x 7→ sgn ((w · x) + b), which is updated each time it misclassifiesperceptron

algorithm an example. The algorithm operates on a training sample by repeatedly cycling

through the m examples, and when it has completed a cycle through the training

data without updating its hypothesis, it returns that hypothesis.

The following result shows that if the training sample is consistent with some

simple perceptron, then this algorithm converges after a finite number of iterations.

In this theorem, w∗ and b∗ define a decision boundary that correctly classifies all

training points, and every training point is at least distance ρ from the decision

boundary.
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Theorem 1.1 Convergence of the Perceptron Algorithm

Suppose that there exists a ρ > 0, a weight vector w∗ satisfying ∥w∗∥ = 1, and a

threshold b∗ such that

yi ((w
∗ · xi) + b∗) ≥ ρ for all 1 ≤ i ≤ m. (1.10)

Then for all η > 0, the hypothesis maintained by the perceptron algorithm converges

after no more than (b∗2 + 1)(R2 + 1)/ρ2 updates, where R = maxi ∥xi∥2. Clearly,
the limiting hypothesis is consistent with the training data (X,Y ).

Proof Let (wj , bj) be the state maintained immediately before the jth update

occuring at, say, example (xi, yi). To measure the progress of the algorithm, we

consider the evolution of the angle between (wj , bj) and (w∗, b∗) and note that the

inner product ((wj , bj) · (w∗, b∗)) grows steadily with each update. To see this, note

that (wj , bj) is only updated when the corresponding hypothesis gj misclassifies yi,

which implies that yi − gj(xi) = 2yi. Therefore,

((wj+1, bj+1) · (w∗, b∗)) = ([(wj , bj) + (η/2)(yi − gj(xi))(xi, 1)] · (w∗, b∗))

= ((wj , bj) · (w∗, b∗)) + ηyi((xi, 1) · (w∗, b∗))

≥ ((wj , bj) · (w∗, b∗)) + ηρ

≥ jηρ.

On the other hand, the norm of (wj , bj) cannot grow too fast, because on an update

we have yi((wj · xi) + bj) < 0, and therefore

∥(wj+1, bj+1)∥2 = ∥(wj , bj) + ηyi(xi, 1)∥2

= ∥(wj , bj)∥2 + 2ηyi((xi, 1) · (wj , bj)) + η2∥(xi, 1)∥2

≤ ∥(wj , bj)∥2 + η2∥(xi, 1)∥2

≤ jη2(R2 + 1).

Combining these two observations with the Cauchy-Schwarz inequality shows that√
jη2(R2 + 1) ≥ ∥(wj+1, bj+1)∥

≥ ((wj+1, bj+1) · (w∗, b∗))√
1 + b∗2

≥ jηρ,

and thus j ≤ (1 + b∗2)(R2 + 1)/ρ2 as desired.

Since the perceptron algorithm makes an update at least once in every cycle through

the training data, and each iteration involves O(N) computation steps, this theorem

implies that the perceptron algorithm has time complexity O((R2 + 1)mN/ρ2).

1.1.3 Margins

The quantity ρ plays a crucial role in the previous theorem, since it determines how

well the two classes can be separated and consequently how fast the perceptron
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learning algorithm converges. This quantity ρ is what we shall henceforth call a

margin.

Definition 1.1 Margin and Margin Errors

Denote by f : RN → R a real valued hypothesis used for classification. Then

ρf (x, y) := yf(x), (1.11)
margin

i.e. it is the margin by which the pattern x is classified correctly (so that a negative

value of ρf (x, y) corresponds to an incorrect classification). Moreover denote by

ρf := min
1≤i≤m

ρf (xi, yi) (1.12)

minimum margin
the minimum margin over the whole sample. It is determined by the “worst”

classification on the whole training set X,Y .

It appears to be desirable to have classifiers that achieve a large margin ρf since

one might expect that an estimate that is “reliable” on the training set will also

perform well on unseen examples. Moreover such an algorithm is more robust with

respect to both patterns and parameters:

Intuitively, for a pattern x that is far from the decision boundary {x|f(x) = 0}
slight perturbations to x will not change its classification sgn (f(x)). To see this,

note that if f(x) is a continuous function in x then small variations in x will

translate into small variations in f(x). Therefore, if yif(xi) is much larger thanrobustness in

patterns zero, yif(xi±ε) will also be positive for small ε. (See, for example, Duda and Hart

(1973).)

Similarly, a slight perturbation to the function f will not affect any of the resulting

classifications on the training data (x1, y1), ..., (xm, ym). Assume that fw(x) is

continuous in its parameters w. Then, again, if yifw(xi) is much larger than zero,robustness in

parameters yifw±ε(xi) will also be positive for small ε.

1.1.4 Maximum Margin Hyperplanes

As pointed out in the previous section, it is desirable to have an estimator with

a large margin. This raises the question whether there exists an estimator with

maximum margin, i.e. whether there exists some f∗ with

f∗ := argmax
f

ρf = argmax
f

min
i
yif(xi). (1.13)

Without some constraint on the size of w, this maximum does not exist. In

Theorem 1.1, we constrained w∗ to have unit length. If we define f : RN → R
by

f(x) =
(w · x) + b

∥w∥
, (1.14)

then the maximum margin f is defined by the weight vector and threshold that

satisfyoptimal

hyperplane
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.
w

{x | (w  x) + b = 0}.

{x | (w  x) + b = −1}.
{x | (w  x) + b = +1}.

x2
x1

Note:

(w  x1) + b = +1
(w  x2) + b = −1

=>       (w  (x1−x2)) =   2

=> (x1−x2)   =
w

||w||( )

.

.

.

. 2
||w||

yi = −1

yi = +1❍
❍

❍

❍
❍

◆

◆

◆

◆

Figure 1.2 A binary classification toy problem: separate balls from diamonds. The

optimal hyperplane is orthogonal to the shortest line connecting the convex hulls of

the two classes (dotted), and intersects it half-way between the two classes. The

problem being separable, there exists a weight vector w and a threshold b such that

yi((w · xi) + b) > 0 (i = 1, . . . ,m). Rescaling w and b such that the point(s) closest

to the hyperplane satisfy |(w · xi) + b| = 1, we obtain a canonical form (w, b) of the

hyperplane, satisfying yi((w · xi) + b) ≥ 1. Note that in this case, the minimum

Euclidean distance between the two classes (i.e. twice the margin), measured

perpendicularly to the hyperplane, equals 2/∥w∥. This can be seen by considering

two points x1,x2 on opposite sides of the margin, i.e. (w ·x1)+b = 1, (w ·x2)+b = −1,

and projecting them onto the hyperplane normal vector w/∥w∥.

w∗, b∗ = argmax
w,b

m
min
i=1

yi((w · xi) + b)

∥w∥
(1.15)

= argmax
w,b

m
min
i=1

yi sgn ((w · xi) + b)

∥∥∥∥ (w · xi)

∥w∥2
w +

b

∥w∥2
w

∥∥∥∥ (1.16)

The formulation (1.16) has a simple geometric interpretation: −bw/∥w∥2 isEuclidean

Margin the vector in direction w that ends right on the decision hyperplane (since(
w · (−bw/∥w∥2)

)
= −b), and for a vector xi, (w · xi)w/∥w∥2 is the projec-

tion of xi onto w. Therefore, we are interested in maximizing the length of the

vector differences (w ·xi)w/∥w∥2− (−bw/∥w∥2) appropriatedly signed by yig(xi).

The maxi-min problem (1.15) can be easily transformed into an equivalent

constrained optimization task by conjecturing a lower bound on the margin, ρ,

and maximizing ρ subject to the constraint that it really is a lower bound:optimization

problems
w∗, b∗, ρ∗
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= argmax
w,b,ρ

ρ subject to
yi((w · xi) + b)

∥w∥
≥ ρ for 1 ≤ i ≤ m (1.17)

= argmax
w,b,ρ

ρ subject to ∥w∥ = 1 and yi((w · xi) + b) ≥ ρ for 1 ≤ i ≤ m (1.18)

= argmin
w,b

∥w∥2 subject to yi((w · xi) + b) ≥ 1 for 1 ≤ i ≤ m (1.19)

This last formulation is in the form of a quadratic programming problem, which canquadratic

program be easily handled using standard numerical routines (Luenberger, 1973; Bertsekas,

1995).

Notice that (1.18) is in a particularly intuitive form. This formulation states that

we are seeking a weight vector w that obtains large dot products yi(w · xi), but

constrain the weight vector to lie on the unit sphere to prevent obtaining such large

dot products “for free” by scaling up w. Interesting variants of problem (1.18) are

obtained by choosing different norms to constrain the length of the weight vector.

For example, constraining w to lie on the unit ℓ1 sphere instead of the unit ℓ2
sphere gives the problem of determining

w∗, b∗, ρ∗

= argmax
w,b,ρ

ρ subject to ∥w∥1 = 1 and yi((w · xi) + b) ≥ ρ for 1 ≤ i ≤ m (1.20)

which can easily be shown to be in the form of a linear programming problem.ℓ∞ margin

Mangasarian (1997) shows that this is equivalent to finding the weight vector

and threshold that maximize the minimum ℓ∞ distance between the training

patterns and the decision hyperplane, in a direct analogue to the original Euclidean

formulation (1.15).

Similarly, the constraint that w lie on the unit ℓ∞ sphere yields the problem

w∗, b∗, ρ∗

= argmax
w,b,ρ

ρ subject to ∥w∥∞ = 1 and yi((w · xi) + b) ≥ ρ for 1 ≤ i ≤ m (1.21)

which is also a linear programming problem, but now equivalent to finding theℓ1 margin

weight vector and threshold that maximize the minimum ℓ1 distance between the

training patterns and the decision hyperplane. In general, constraining w to lie on

the unit ℓp sphere yields a convex programming problem

w∗, b∗, ρ∗

= argmax
w,b,ρ

ρ subject to ∥w∥p = 1 and yi((w · xi) + b) ≥ ρ for 1 ≤ i ≤ m (1.22)

which is equivalent to finding the weight vector and threshold that maximize theℓq margin

minimum ℓq distance between the training patterns and the decision hyperplane,

where ℓp and ℓq are conjugate norms, i.e. such that 1
p +

1
q = 1 (Mangasarian, 1997).

In solving any of these constrained optimization problems, there is a notion of

critical constraints; i.e. those inequality constraints that are satisfied as equalities

by the optimal solution. In our setting, constraints correspond to training examples

(xi, yi), 1 ≤ i ≤ m, and the critical constraints are given by those training
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examples that lie right on the margin a distance ρ from the optimal hyperplane

(cf. Figure 1.2). These critical training patterns are called Support Vectors.Support Vectors

Notice that all the remaining examples of the training set are irrelevant: for non-

critical examples the corresponding constraint yi((w ·xi)+b) ≥ 1 in (1.19) does not

play a role in the optimization, and therefore these points could be removed from

the training set without affecting the results. This nicely captures our intuition

of the problem: the hyperplane (cf. Figure 1.2) is completely determined by the

patterns closest to it, the solution should not depend on the other examples.

In practice, a separating hyperplane may not exist, e.g. if a high noise level

causes a large overlap of the classes. The previous maximum margin algorithmssoft margin

hyperplane perform poorly in this case because the maximum achievable minimum margin

is negative, and this means the critical constraints are the mislabelled patterns

that are furthest from the decision hyperplane. That is, the solution hyperplane is

determined entirely by misclassified examples! To overcome the sensitivity to noisy

training patterns, a standard approach is to allow for the possibility of examples

violating the constraint in (1.19) by introducing slack variables (Cortes and Vapnik,

1995; Vapnik, 1995)

ξi ≥ 0, for all i = 1, . . . ,m, (1.23)
slack variables

along with relaxed constraints

yi((w · xi) + b) ≥ 1− ξi, for all i = 1, . . . ,m. (1.24)

A classifier which generalizes well is then found by controlling both the size of w

and the number of training errors, minimizing the objective function

τ(w, ξ) =
1

2
∥w∥2 + C

m∑
i=1

ξi (1.25)

subject to the constraints (1.23) and (1.24), for some value of the constant C > 0.

In the following section, we shall see why the size of w is a good measure of the

complexity of the classifier.

1.2 Theory

In order to provide a theoretical analysis of the learning problem we have to

introduce a few definitions and assumptions about the process generating the data.

1.2.1 Basic Assumptions

We assume that the training data X,Y is drawn independently and identically

distributed (iid) according to some probability measure p(x, y). This means thatindependently

identically

distributed

all examples (xi, yi) are drawn from p(x, y) regardless of the other examples or the

index i.
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This assumption is stronger than it may appear at first glance. For instance,

time series data fails to satisfy the condition, since the observations are typically

dependent, and their statistics might depend on the index i.

In (1.4), we defined the functional R(g) of a decision function g as the proba-

bility of misclassification. We can generalize this definition to apply to prediction

functions f as well as thresholded decision functions g. This yields what we call the

risk functional.

Definition 1.2 Risk Functional

Denote by c(x, y, f(x)) : RN × R × R → [0,∞) a cost function and by p(x, y) a

probability measure as described above. Then the risk functional for a function

f : RN → R is defined asExpected Risk

R(f) :=

∫
RN×R

c(x, y, f(x)) p(x, y) dxdy. (1.26)

Moreover the empirical risk functional for an m–sample X,Y is given by

Remp(f) :=
1
m

m∑
i=1

c(xi, yi, f(xi)). (1.27)

Empirical Risk

For thresholded decision functions g : RN → {−1, 1} we often use 0–1 classification

error as the cost function c(x, y, g(x)) = 1{g(x)̸=y}. In this case we obtain the risk

functional defined in (1.4) (the probability of misclassification),

R(g) := Pr{g(x) ̸= y}. (1.28)

In this case, the empirical risk functional is

Remp(g) :=
1
m

m∑
i=1

1{g(xi) ̸=yi}, (1.29)

which is just the training error.

Finally we need a quantity called the margin error which is given by themargin error

proportion of training points that have margin less than ρ, i.e.

Rρ(f) :=
1
m

m∑
i=1

1{yif(xi)<ρ}. (1.30)

This empirical estimate of risk counts a point as an error if it is either incorrectly

classified or correctly classified by with margin less than ρ.

While one wants to minimize the risk R(g) this is hardly ever possible since p(x, y)

is unknown. Hence one may only resort to minimizing Remp(g) which is based on the

training data. This, however, is not an effective method by itself—just consider an

estimator that memorizes all the training data X,Y and generates random outputs

for any other data. This clearly would have an empirical risk Remp(g) = 0 but would

obtain a true risk R(g) = 0.5 (assuming the finite training sample has measure 0).

The solution is to take the complexity of the estimate g into account as well, which

will be discussed in the following sections.
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1.2.2 Error Bounds for Thresholded Decision Functions

The central result of this analysis is to relate the number of training examples, the

training set error, and the complexity of the hypothesis space to the generalization

error. For thresholded decision functions, an appropriate measure for the complexity

of the hypothesis space is the Vapnik-Chervonenkis (VC) dimension.VC dimension

Definition 1.3 VC dimension

The VC dimension h of a space of {−1, 1}-valued functions, G, is the size of the

largest subset of domain points that can be labelled arbitrarily by choosing functions

only from G (Vapnik and Chervonenkis, 1971).

The VC dimension can be used to prove high probability bounds on the error of a

hypothesis chosen from a class of decision functions G—this is the famous result

of Vapnik and Chervonenkis (1971). The bounds have since been improved slightly

by Talagrand (1994)—see also (Alexander, 1984).

Theorem 1.2 VC Upper Bound

LetG be a class of decision functions mapping RN to {−1, 1} that has VC dimension

h. For any probability distribution p(x, y) on RN×{−1, 1}, with probability at least

1−δ over m random examples x, for any hypothesis g in G the risk functional with

0–1 loss is bounded by

R(g) ≤ Remp(g) +

√
c

m

(
h+ ln

(
1

δ

))
(1.31)

where c is a universal constant. Furthermore, if g∗ ∈ G minimizes Remp(·), then
with probability 1− δ

R(g∗) ≤ inf
g∈G

R(g) +

√
c

m

(
h+ ln

(
1

δ

))
(1.32)

(A short proof of this result is given by Long (1998), but with worse constants than

Talagrand’s.)

These upper bounds are asymptotically close to the best possible, since there is

also a lower bound with the same form:

Theorem 1.3 VC Lower Bound

Let G be a hypothesis space with finite VC dimension h ≥ 1. Then for any learning

algorithm there exist distributions such that with probability at least δ over m

random examples, the error of its hypothesis g satisfies

R(g) ≥ inf
g′∈G

R(g′) +

√
c

m

(
h+ ln

(
1

δ

))
(1.33)

where c is a universal constant.

(Results of this form have been given by Devroye and Lugosi (1995); Simon (1996);

Anthony and Bartlett (1999), using ideas from Ehrenfeucht et al. (1989).)
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Theorems 1.2 and 1.3 give a fairly complete characterization of the generalization

error that can be achieved by choosing decision functions from a class G. However,

this characterization suffers from two drawbacks.

The first drawback is that the VC dimension must actually be determined (or at

least bounded) for the class of interest—and this is often not easy to do. (However,

bounds on the VC dimension h have been computed for many natural decision

function classes, including parametric classes involving standard arithmetic and

boolean operations. See Anthony and Bartlett (1999) for a review of these results.)

The second (more serious) drawback is that the analysis ignores the structure of

the mapping from training samples to hypotheses, and concentrates solely on the

range of the learner’s possible outputs. Ignoring the details of the learning map

can omit many of the factors that are crucial for determining the success of the

learning algorithm in real situations.

For example, consider learning algorithms that operate by first computing a real

valued prediction function f from some class F and then thresholding this hypoth-

esis to obtain the final decision function g(x) = sgn (f(x)). Here, the VC dimension

is a particularly weak method for measuring the representational capacity of the

resulting function class G = sgn (F ).

One reason is that the VC dimension of G is not sensitive to the scale of F at

the accuracy level of interest. That is, it does not pay attention to whether the

complexity of the hypothesis class is at a scale that is relevant for the outcome of

the predictions.

The first step towards a more refined analysis that takes scale into account is given

by Vapnik (1979). Consider a set X0 ⊂ RN of input points with norm bounded by

R > 0 (that is, ∥xi∥ ≤ R for x ∈ X0), and the set F of bounded linear functions

defined on X0,

F = {x 7→ (w · x) | ∥w∥ ≤ 1, x ∈ X0 } (1.34)

satisfying |f(x)| ≥ ρ for all patterns x in X0. Then if we consider the set G of linear

decision functions obtained by thresholding functions in F , Vapnik (1979) shows

VCdim(G) ≤ min{R2/ρ2, N}+ 1. (1.35)

Note that this can be much smaller than the VC dimension of sgn (F ) obtained

without taking ρ into account, which is N + 1 in this case. Therefore, one could

hope to obtain significant benefits by using scale sensitive bounds which give much

tighter results for large margin classifiers. Unfortunately, the bound (1.35) does not

yet suffice for our purposes, because note that it requires that all points (including

the test points) satisfy the margin condition, and therefore theorem 1.2 does not

apply in this case. Rigorously obtaining these scale sensitive improvements is the

topic we now address. In the following section, we consider scale-sensitive versions

of the VC dimension, and obtain upper and lower bounds on risk in terms of these

dimensions.
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1.2.3 Margin Dependent Error Bounds for Real Valued Predictors

Definition 1.4 Fat Shattering Dimension

Let F be a set of real valued functions. We say that a set of points S ⊂ X , which

we will index as a vector x ∈ X |S|, is ρ-shattered by F if there is a vector of real

numbers b ∈ R|S| such that for any choice of signs y ∈ {−1, 1}|S| there is a function

f in F that satisfies

yi(f(xi)− bi) ≥ ρ for 1 ≤ i ≤ |S|. (1.36)

(That is, f(xi) ≥ bi + ρ if yi = 1, and f(xi) ≤ bi − ρ if yi = −1, for all xi in S.

Notice how similar this is to the notion of a minimum margin defined by (1.12).)

The fat shattering dimension fatF (ρ) of the set F is a function from the positive real

numbers to the integers which maps a value ρ to the size of the largest ρ-shatteredfat shattering

set, if this is finite, or infinity otherwise.

We may think of the fat-shattering dimension of a set of real-valued functions as

the VC dimension obtained by thresholding but requiring that outputs are ρ above

the threshold for positive classification and ρ below for negative.

The fat-shattering dimension is closely related to a more basic quantity, the

covering number of a class of functions.

Definition 1.5 Covering Numbers of a Set

Denote by (S, d) a pseudometric space, Br(x) the closed ball in S centred at x with

radius r, T a subset of S, and ε some positive constant. Then the covering number

N (ε, T ) is defined as the minimum cardinality (that is, number of elements) of acovering

number set of points T ′ ⊂ S such that

T ⊆
∪

xi∈T ′

Bε(xi), (1.37)

i.e. such that the maximum difference of any element in T and the closest element

in T ′ is less than or equal to ε.

Covering a class of functions F with an ε-cover means that one is able to ap-

proximately represent F (which may be of infinite cardinality) by a finite set. For

learning, it turns out that it suffices to approximate the restrictions of functions in a

class F to finite samples. For a subset X of some domain X , define the pseudometric

ℓ∞,X by

ℓ∞,X(f, f ′) = max
x∈X

|f(x)− f ′(x)| (1.38)

where f and f ′ are real-valued functions defined on X . Let N (ε, F,m) denote the

maximum, over all X ⊂ X of size |X| = m, of the covering number N (ε, F ) with

respect to ℓ∞,X . The following theorem shows that the fat-shattering dimension

is intimately related to these covering numbers. (The upper bound is due to Alon

et al. (1997), and the lower bound to Bartlett et al. (1997).)
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Theorem 1.4 Bounds on N in terms of fatF
Let F be a set of real functions from a domain X to the bounded interval [0, B].

Let ε > 0 and let m ≥ fatF (ε/4). Then

log2 e

8
fatF (16ε) ≤ log2 N (ε, F,m) ≤ 3 fatF (

ε
4 ) log

2
2

(
4eBm

ε

)
. (1.39)

Unfortunately, directly bounding N can be quite difficult in general. Useful tools

from functional analysis (which deal with the functional inverse of N wrt. ϵ, the so

called entropy number) for obtaining these bounds have been developed for classes

of functions F defined by linear mappings from Hilbert spaces (Carl and Stephani,

1990), and linear functions over kernel expansions (Williamson et al., 1998b).

The following result shows that we can use covering numbers to obtain upper

bounds on risk in terms of margin error (Shawe-Taylor et al., 1998; Bartlett, 1998).

Theorem 1.5 Bounds on R(f) in terms of N and ρ

Suppose that F is a set of real-valued functions defined on X , ε ∈ (0, 1) and

ρ > 0. Fix a probability distribution on X ×{−1, 1} and a sample size m. Then the

probability that some f in F has Rρ(f) = 0 but R(f) ≥ ε is no more than

2 N
(
ρ
2 , F, 2m

)
2−εm/2. (1.40)

Furthermore,

Pr (“some f in F has R(f) ≥ Rρ(f) + ε”) ≤ 2 N
(
ρ
2 , F, 2m

)
e−ε2m/8. (1.41)

In fact, it is possible to obtain a similar result that depends only on the behaviour

of functions in F near the threshold (see (Anthony and Bartlett, 1999) for details).

Let us have a close look at the bound (1.41) on the probability of excessive

error. The factor e−ε2m/8 in (1.41) stems from a bound of Hoeffding (1963) on theanatomy of a

uniform conver-

gence bound

probability of a large deviation of a sum of random variables from its mean. The

factor N
(
ρ
2 , F, 2m

)
stems from the fact that the continuous class of functions F

was approximated (to accuracy ρ/2) by a finite number of functions. The 2m is

due to the use of a symmetrization argument which is needed to make the overall

argument work. Theorem 1.4 shows that this term is bounded by an exponential

function of the fat-shattering dimension at scale ρ/8.

Interestingly, a similar result holds in regression. (For a review of these uniform

convergence results, see (Anthony and Bartlett, 1999).

Theorem 1.6 Bounds on R(f) for Regression

Suppose that F is a set of functions defined on a domain X and mapping into

the real interval [0, 1]. Let p be any probability distribution on X × [0, 1], ε any

real number between 0 and 1, and m ∈ N. Then for the quadratic cost function

c(x, y, f(x)) = (y − f(x))2 we have

Pr

(
sup
f∈F

|R(f)−Remp(f)| ≥ ε

)
≤ 4 N

(
ε
16 , F, 2m

)
e−ε2m/32. (1.42)
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Comparing with (1.41), notice that the scale of the covering number depends on

the desired accuracy ε, whereas in (1.41) it depends on the scale ρ at which the

margins are examined.

1.2.4 Error Bounds for Linear Decision Functions

The following result, due to Bartlett and Shawe-Taylor (1999), gives a bound on

the fat-shattering dimension of large margin linear classifiers. It has a similar form

to the bound (1.35) on the VC dimension of linear functions restricted to certain

sets. It improves on a straightforward corollary of that result, and on a result of

Gurvits (1997).

Theorem 1.7 Fat Shattering Dimension for Linear Classifiers

Suppose that BR is the ℓ2 ball of radius R in Rn, centered at the origin, and consider

the set

F := {fw | fw(x) = (w · x) with ∥w∥ ≤ 1,x ∈ BR } . (1.43)

Then

fatF (ρ) ≤
(

R
ρ

)2
. (1.44)

Using this result together with Theorems 1.4 and 1.5 gives the following theorem.

Theorem 1.8 Error Bounds for Linear Classifiers

Define the class F of real-valued functions on the ball of radius R as in (1.43). There

is a constant c such that, for all probability distributions, with probability at least

1 − δ over m independently generated training examples, every ρ > 0 and every

function f ∈ F with margin at least ρ on all training examples (i.e. Rρ(f) = 0)

satisfies

R(f) ≤ c

m

(
R2

ρ2
log2

(
m

ρ

)
+ log

(
1

δ

))
. (1.45)

Furthermore, with probability at least 1 − δ, for all ρ > 0, every function f in F

has error

R(f) ≤ Rρ(f) +

√
c

m

(
R2

ρ2
log2

(
m

ρ

)
+ log

(
1

δ

))
. (1.46)

For estimators using a linear programming approach as in (Mangasarian, 1968) one

may state the following result, which then, via Theorem 1.4 can be transformed

into a generalization bound as well.

Theorem 1.9 Capacity Bounds for Linear Classifiers

There is a constant c such that for the class

FR =
{
x 7→ wTx | ∥x∥∞ ≤ 1, ∥w∥1 ≤ R

}
(1.47)
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we have

fatFR
(ε) ≤ c

(
R

ε

)2

ln(2N + 2). (1.48)

Finally, we can obtain bounds for convex combinations of arbitrary hypotheses from

a class G of {−1, 1}-valued functions,

co (G) =

{∑
i

αigi

∣∣∣∣∣ αi > 0,
∑
i

αi = 1, gi ∈ G

}
. (1.49)

See (Schapire et al., 1998). These bounds are useful in analysing boosting algo-

rithms; see Section 1.4.

Theorem 1.10 Bounds for Convex Combinations of Hypotheses

Let p(x, y) be a distribution over X ×{−1, 1}, and let X be a sample of m examples

chosen iid according to p. Suppose the base-hypothesis space G has VC dimension

h, and let δ > 0. Then with probability at least 1− δ over the random choice of the

training set X, Y , every convex combination of functions f ∈ co (G) satisfies the

following bound for all ρ > 0.

R(f) ≤ Rρ(f) +

√
c

m

(
h log2(m/h)

ρ2
+ log

(
1

δ

))
(1.50)

1.3 Support Vector Machines

1.3.1 Optimization Problem

To construct the Optimal Hyperplane (cf. Figure 1.2), one solves the following

optimization problem:

minimize τ(w) =
1

2
∥w∥2 (1.51)

subject to yi((w · xi) + b) ≥ 1, for all i = 1, . . . ,m. (1.52)

This constrained optimization problem is dealt with by introducing Lagrange

multipliers αi ≥ 0 and a LagrangianLagrangian

L(w, b,α) =
1

2
∥w∥2 −

m∑
i=1

αi (yi((xi ·w) + b)− 1) . (1.53)

The Lagrangian L has to be minimized with respect to the primal variables w and

b and maximized with respect to the dual variables αi (i.e. a saddle point has to be

found). Let us try to get some intuition for this. If a constraint (1.52) is violated,

then yi((w · xi) + b) − 1 < 0, in which case L can be increased by increasing

the corresponding αi. At the same time, w and b will have to change such that

L decreases. To prevent −αi (yi((w · xi) + b)− 1) from becoming arbitrarily large,

the change in w and b will ensure that, provided the problem is separable, the
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constraint will eventually be satisfied.

Similarly, one can understand that for all constraints which are not precisely met

as equalities, i.e. for which yi((w · xi) + b) − 1 > 0, the corresponding αi mustKKT

conditions be 0: this is the value of αi that maximizes L. The latter is the statement of the

Karush-Kuhn-Tucker complementarity conditions of optimization theory (Karush,

1939; Kuhn and Tucker, 1951; Bertsekas, 1995).

The condition that at the saddle point, the derivatives of L with respect to the

primal variables must vanish,

∂

∂b
L(w, b,α) = 0 and

∂

∂w
L(w, b,α) = 0, (1.54)

leads to
m∑
i=1

αiyi = 0 (1.55)

and

w =
m∑
i=1

αiyixi. (1.56)

The solution vector thus has an expansion in terms of a subset of the training

patterns, namely those patterns whose Lagrange multiplier αi is non-zero. By thesupport vector

expansion Karush-Kuhn-Tucker complementarity conditions these training patterns are the

ones for which

αi(yi((xi ·w) + b)− 1) = 0, i = 1, . . . ,m, (1.57)

and therefore they correspond precisely to the Support Vectors (i.e. critical con-

straints) discussed in Section 1.1.4. Thus we have the satisfying result that the

Support Vectors are the only training patterns that determine the optimal deci-

sion hyperplane; all other training patterns are irrelevant and do not appear in the

expansion (1.56).

By substituting (1.55) and (1.56) into L, one eliminates the primal variables and

arrives at the Wolfe dual of the optimization problem (e.g. Bertsekas, 1995): find

multipliers αi whichdual

optimization

problem maximize W (α) =
m∑
i=1

αi −
1

2

m∑
i,j=1

αiαjyiyj (xi · xj) (1.58)

subject to αi ≥ 0 for all i = 1, . . . ,m, and
m∑
i=1

αiyi = 0. (1.59)

The hyperplane decision function can thus be written as

f(x) = sgn

(
m∑
i=1

yiαi (x · xi) + b

)
(1.60)

where b is computed using (1.57).
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The structure of the optimization problem closely resembles those that typically

arise in Lagrange’s formulation of mechanics (e.g. Goldstein, 1986). In that case

also, it is often only a subset of the constraints that are active. For instance, if we

keep a ball in a box, then it will typically roll into one of the corners. The constraints

corresponding to the walls which are not touched by the ball are irrelevant, the walls

could just as well be removed.

Seen in this light, it is not too surprising that it is possible to give a mechanical

interpretation of optimal margin hyperplanes (Burges and Schölkopf, 1997): If we

assume that each support vector xi exerts a perpendicular force of size αi and sign

yi on a solid plane sheet lying along the hyperplane, then the solution satisfies the

requirements of mechanical stability. The constraint (1.55) states that the forces

on the sheet sum to zero; and (1.56) implies that the torques also sum to zero, via∑
i xi × yiαiw/∥w∥ = w ×w/∥w∥ = 0.

1.3.2 Feature Spaces and Kernels

To construct Support Vector Machines, the optimal hyperplane algorithm is aug-

mented by a method for computing dot products in feature spaces that are nonlin-

early related to input space (Aizerman et al., 1964; Boser et al., 1992). The basic

idea is to map the data into some other dot product space (called the feature space)

F via a nonlinear mapfeature space

Φ : RN → F , (1.61)

and then in the space F perform the linear algorithm described above.

For instance, suppose we are given patterns x ∈ RN where most informa-

tion is contained in the d-th order products (monomials) of entries xj of x, i.e.

xj1xj2 · · ·xjd , where j1, . . . , jd ∈ {1, . . . , N}. In that case, we might prefer to ex-

tract these monomial features first, and work in the feature space F of all products

of d entries.

This approach, however, fails for realistically sized problems: for N -dimensional

input patterns, there exist (N + d− 1)!/(d!(N − 1)!) different monomials. Already

16 × 16 pixel input images (e.g. in character recognition) and a monomial degree

d = 5 yield a dimensionality of 1010.

This problem can be overcome by noticing that both the construction of the

optimal hyperplane in F (cf. (1.58)) and the evaluation of the corresponding

decision function (1.60) only require the evaluation of dot products (Φ(x) · Φ(x′)),

and never require the mapped patterns Φ(x) in explicit form. This is crucial, since

in some cases, the dot products can be evaluated by a simple kernel (Aizerman

et al., 1964; Boser et al., 1992).Mercer kernel

k(x,x′) = (Φ(x) · Φ(x′)). (1.62)
polynomial

kernel For instance, the polynomial kernel

k(x,x′) = (x · x′)d (1.63)
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can be shown to correspond to a map Φ into the space spanned by all products of

exactly d dimensions of RN (Poggio (1975); Boser et al. (1992)). For a proof, see

Schölkopf (1997). For d = 2 and x,x′ ∈ R2, for example, we have (Vapnik, 1995)

(x · x′)2 = (x21, x
2
2,
√
2 x1x2)(y

2
1 , y

2
2 ,
√
2 y1y2)

⊤ = (Φ(x) · Φ(x′)), (1.64)

defining Φ(x) = (x21, x
2
2,
√
2 x1x2).

By using k(x,x′) = ((x ·x′)+c)d with c > 0, we can take into account all product

of order up to d (i.e. including those of order smaller than d).

More generally, the following theorem of functional analysis shows that kernels

k of positive integral operators give rise to maps Φ such that (1.62) holds (Mercer,

1909; Aizerman et al., 1964; Boser et al., 1992; Dunford and Schwartz, 1963):

Theorem 1.11 Mercer

If k is a continuous symmetric kernel of a positive integral operator T , i.e.positive

integral

operator (Tf)(x′) =

∫
X
k(x,x′)f(x) dx (1.65)

with∫
X×X

k(x,x′)f(x)f(x′) dx dx′ ≥ 0 (1.66)

for all f ∈ L2(X ) (X being a compact subset of RN ), it can be expanded in a

uniformly convergent series (on X × X ) in terms of T ’s eigenfunctions ψj and

positive eigenvalues λj ,

k(x,x′) =

NF∑
j=1

λjψj(x)ψj(x
′), (1.67)

where NF ≤ ∞ is the number of positive eigenvalues.

An equivalent way to characterize Mercer kernels is that they give rise to positive

matrices Kij := k(xi,xj) for all {x1, . . . ,xm} (Saitoh, 1988).

From (1.67), it is straightforward to construct a map Φ into a potentially infinite-

dimensional l2 space which satisfies (1.62). For instance, we may use

Φ(x) = (
√
λ1ψ1(x),

√
λ2ψ2(x), . . .). (1.68)

Rather than thinking of the feature space as an l2 space, we can alternatively

represent it as the Hilbert space Hk containing all linear combinations of the

functions f(.) = k(xi, .) (xi ∈ X ). To ensure that the map Φ : X → Hk, which in

this case is defined as

Φ(x) = k(x, .), (1.69)

satisfies (1.62), we need to endow Hk with a suitable dot product ⟨., .⟩. In view of

the definition of Φ, this dot product needs to satisfy

⟨k(x, .), k(x′, .)⟩ = k(x,x′), (1.70)
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Φ
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Figure 1.3 The idea of SV machines: map the training data nonlinearly into a

higher-dimensional feature space via Φ, and construct a separating hyperplane with

maximum margin there. This yields a nonlinear decision boundary in input space.

By the use of a kernel function (1.62), it is possible to compute the separating

hyperplane without explicitly carrying out the map into the feature space.

which amounts to saying that k is a reproducing kernel for Hk. For a Mercer kernelreproducing

kernel (1.67), such a dot product does exist. Since k is symmetric, the ψi (i = 1, . . . , NF )

can be chosen to be orthogonal with respect to the dot product in L2(C), i.e.

(ψj , ψn)L2(C) = δjn, using the Kronecker δjn. From this, we can construct ⟨., .⟩
such that

⟨
√
λjψj ,

√
λnψn⟩ = δjn. (1.71)

Substituting (1.67) into (1.70) then proves the desired equality (for further details,

see Aronszajn (1950); Wahba (1973); Girosi (1998); Schölkopf (1997)).

Besides (1.63), SV practictioners use sigmoid kernelssigmoid

kernel
k(x,x′) = tanh(κ(x · x′) + Θ) (1.72)

for suitable values of gain κ and threshold Θ, and radial basis function kernels, as

for instance (Aizerman et al., 1964; Boser et al., 1992; Schölkopf et al., 1997)Gaussian RBF

kernel
k(x,x′) = exp

(
−∥x− x′∥2/(2 σ2)

)
, (1.73)

with σ > 0. Note that when using Gaussian kernels, for instance, the feature space

Hk thus contains all superpositions of Gaussians on X (plus limit points), whereas

by definition of Φ (1.69), only single bumps k(x, .) do have pre-images under Φ.

The main lesson from the study of kernel functions, is that the use of kernels can

turn any algorithm that only depends on dot products into a nonlinear algorithm

which is linear in feature space. In the time since this was explicitly pointed out

(Schölkopf et al., 1998c) a number of such algorithms have been proposed: until then

the applications of the kernel trick were a proof of the convergence of rbf network

training by (Aizerman et al., 1964) and the nonlinear variant of the SV algorithm

by Boser et al. (1992) (see Figure 1.3). To construct SV machines, one computes

an optimal hyperplane in feature space. To this end, we substitute Φ(xi) for each

training example xi. The weight vector (cf. (1.56)) then becomes an expansion in
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feature space. Note that w will typically no more correspond to the image of just a

single vector from input space (cf. Schölkopf et al. (1998a) for a formula to compute

the pre-image if it exists), in other words,wmay not be directly accessible any more.

However, since all patterns only occur in dot products, one can substitute Mercer

kernels k for the dot products (Boser et al., 1992; Guyon et al., 1993), leading to

decision functions of the more general form (cf. (1.60))decision

function

g(x) = sgn

(
m∑
i=1

yiαi (Φ(x) · Φ(xi)) + b

)
= sgn

(
m∑
i=1

yiαi k(x,xi) + b

)
(1.74)

and the following quadratic program (cf. (1.58)):

maximize W (α) =
m∑
i=1

αi −
1

2

m∑
i,j=1

αiαjyiyjk(xi,xj) (1.75)

subject to αi ≥ 0, i = 1, . . . ,m, and
m∑
i=1

αiyi = 0. (1.76)

Recall that, as discussed in Section 1.1.4 a separating hyperplane may not always

exist, even in the expanded feature space F . To cope with this difficulty, slacksoft margin

and kernels variables were introduced to yield the soft margin optimal hyperplane problem

(1.25). Incorporating kernels, and rewriting (1.25) in terms of Lagrange multipliers,

this again leads to the problem of maximizing (1.75), but now subject to the

constraints

0 ≤ αi ≤ C, i = 1, . . . ,m, and

m∑
i=1

αiyi = 0. (1.77)

The only difference from the separable case (1.76) is the upper bound C on the

Lagrange multipliers αi. This way, the influence of the individual patterns (which

could always be outliers) gets limited. As above, the solution takes the form (1.74).

The threshold b can be computed by exploiting the fact that for all SVs xi with

αi < C, the slack variable ξi is zero (this again follows from the Karush-Kuhn-

Tucker complementarity conditions), and hence

m∑
j=1

yjαj k(xi,xj) + b = yi. (1.78)

If one uses an optimizer that works with the double dual (e.g. Vanderbei, 1997), one

can also recover the value of the primal variable b directly from the corresponding

double dual variable.

Finally, the algorithm can be modified such that it does not require the regu-

larization constant C. Instead, one specifies an upper bound 0 ≤ ν ≤ 1 on the

fraction of points allowed to lie in the margin (asymptotically, the number of SVs)

(Schölkopf et al., 1998d). This leaves us with a homogeneous target function made

up by the quadratic part of (1.75), and an additional lower bound constraint on

the sum over all Lagrange multipliers.
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Σ

. . .

output    σ (Σ υi k (x,xi))

weightsυ1 υ2  υm

. . .

. . .

test vector x

support vectors x1 ... xn

mapped vectors Φ(xi), Φ(x)Φ(x) Φ(xn)

dot product (Φ(x).Φ(xi)) =  k (x,xi)( . ) ( . ) ( . )

Φ(x1) Φ(x2)

        σ ( )

Figure 1.4 Architecture of SV machines. The input x and the Support Vectors

xi are nonlinearly mapped (by Φ) into a feature space F , where dot products are

computed. By the use of the kernel k, these two layers are in practice computed in

one single step. The results are linearly combined by weights υi, found by solving

a quadratic program (in pattern recognition, υi = yiαi; in regression estimation,

υi = α∗
i − αi). The linear combination is fed into the function σ (in pattern

recognition, σ(x) = sgn (x+ b); in regression estimation, σ(x) = x+ b).

1.3.3 Smoothness and Regularization

For kernel-based function expansions, one can show (Smola and Schölkopf, 1998b)

that given a regularization operator P mapping the functions of the learning

machine into some dot product space, the problem of minimizing the regularized

risk

Rreg(f) := Remp(f) +
λ

2
∥Pf∥2 (1.79)

regularized risk
(with a regularization parameter λ ≥ 0) can be written as a constrained optimiza-

tion problem. For particular choices of the loss function, it further reduces to a

SV type quadratic programming problem. The latter thus is not specific to SV

machines, but is common to a much wider class of approaches. What gets lost in

the general case, however, is the fact that the solution can usually be expressed in

terms of a small number of SVs (cf. also Girosi (1998), who establishes a connection

between SV machines and basis pursuit denoising (Chen et al., 1995)). This specific

feature of SV machines is due to the fact that the type of regularization and the
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class of functions that the estimate is chosen from are intimately related (Girosi

et al., 1993; Smola and Schölkopf, 1998a; Smola et al., 1998): the SV algorithm is

equivalent to minimizing the regularized risk Rreg(f) on the set of functions

f(x) =
∑
i

αik(xi,x) + b, (1.80)

provided that k and P are interrelated by

k(xi,xj) = ((Pk)(xi, .) · (Pk)(xj , .)) . (1.81)

To this end, k is chosen as a Green’s function of P ∗P , for in that case, the right hand

side of (1.81) equals (k(xi, .) · (P ∗Pk)(xj , .)) = (k(xi, .) · δxj (.)) = k(xi,xj). For

instance, an RBF kernel corresponds to regularization with a functional containing

a specific differential operator.

In SV machines, the kernel thus plays a dual role: firstly, it determines the class

of functions (1.80) that the solution is taken from; secondly, via (1.81), the kernel

determines the type of regularization that is used. The next question, naturally,

is what type of regularization (i.e. kernel) we should use in order to get the best

generalization performance. Using bounds on covering numbers of Hilbert spaces

(Carl and Stephani, 1990), one can show (Williamson et al., 1998b,a; Schölkopf

et al., 1999) that the eigenspectrum of the matrix k(xi, xj) is closely connected to

the latter and also to the eigenspectrum of the kernel k.

For arbitrary expansions of f into basis functions, say fi, the considerations about

smoothness of the estimate still hold, provided ∥Pf∥ is a norm in the space spanned

by the basis functions fi (otherwise one could find functions f ∈ span {fi} withregularization

networks ∥Pf∥ = 0, however f ̸= 0). In this case the existing bounds for kernel expansions

can be readily applied to regularization networks as well (cf. e.g. (Williamson et al.,

1998b; Smola, 1998) for details). However, one can show (Kimeldorf and Wahba,

1971; Cox and O’Sullivan, 1990), that such an expansion may not fully minimize

the regularized risk functional (1.79). This is one of the reasons why often only

kernel expansions are considered.

Finally it is worth while pointing out the connection between Gaussian Processes

and Support Vector machines. The similarity is most obvious in regression, where

the Support Vector solution is the maximum a posteriori estimate of the corre-

sponding Bayesian inference scheme (Williams, 1998). In particular, the kernel k ofGaussian

processes Support Vector machines plays the role of a covariance function such that the prior

probability of a function f =
∑

i αik(xi,x) is given by

P (f) ∝ exp
(
−1

2∥Pf∥
2
)
= exp

−1
2

∑
i,j

αiαjk(xi,xj)

 . (1.82)

Bayesian methods, however, require averaging over the posterior distribution

P (f |X,Y ) in order to obtain the final estimate and to derive error bounds. In

classification the situation is even more complicated, since we have Bernoulli dis-

tributed random variables for the labels of the classifier. See (Williams, 1998) for
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more details on this subject.

1.3.4 A Bound on the Leave-One-Out Estimate

Besides the bounds directly involving large margins, which are useful for stating

uniform convergence results, one may also try to estimate R(f) by using leave-

one-out estimates. Denote by fi the estimate obtained from X\{xi}, Y \{yi}. Then

Rout(f) :=
1

m

m∑
i=1

c(xi, yi, fi(xi)) (1.83)

One can show (cf. e.g. (Vapnik, 1979)) that the latter is an unbiased estimator of

R(f). Unfortunately, Rout(f) is hard to compute and thus rarely used. In the case

of Support Vector classification, however, an upper bound on Rout(f) is not too

difficult to obtain. Vapnik (1995) showed that the fraction of Support Vectors is an

upper bound on Rout(f). Jaakkola and Haussler (1999) have generalized this result

as follows

Rout(f) ≤
1

m

m∑
i=1

1{yi

∑
j ̸=i αjyjk(xj ,xi)+yib>0}

=
1

m

m∑
i=1

1{yif(xi)−αik(xi,xi))>0}. (1.84)

The latter can be obtained easily without explicitly solving the optimization

problem again for the reduced samples. In particular, for kernels with k(x,x) = 1

like many RBF kernels the condition reduces to testing whether yif(xi)− αi > 0.

The remaining problem is that Rout(f) itself is a random variable and thus it does

not immediately give a bound on R(f). See also chapters 2 and ?? for futher details

on how to exploit these bounds in practical cases.

1.4 Boosting

Freund and Schapire (1995) proposed the AdaBoost algorithm for combining clas-

sifiers produced by other learning algorithms. AdaBoost has been very successful

in practical applications (see Section 1.5). It turns out that it is also a large margin

technique.

Table 1.2 gives the pseudocode for the algorithm. It returns a convex combination

of classifiers from a class G, by using a learning algorithm L that takes as input a

training sample X, Y and a distribution D on X (not to be confused with the true

distribution p), and returns a classifier from G. The algorithm L aims to minimize

training error on X, Y , weighted according to D. That is, it aims to minimize

m∑
i=1

Di1{h(xi )̸=yi}. (1.85)
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argument: Training sample, X = {x1, . . . ,xm} ⊂ X, Y = {y1, . . . , ym} ⊂ {±1}
Number of iterations, T

returns: Convex combination of functions from G, f =
∑T

t=1 αtgt.
function AdaBoost(X,Y, T)

for all i from i = 1, . . . ,m
D1(i) := 1/m

endfor
for all t from {1, . . . , T}

gt := L(X,Y,Dt)

εt :=

m∑
i=1

Dt(i)1gt(xi) ̸=yi

αt :=
1

2
ln

(
1− εt
εt

)
Zt := 2

√
εt(1− εt)

for all i from i = 1, . . . ,m

Dt+1(i) :=

{
Dt(i)e

−αt/Zt if yi = gt(xi)

Dt(i)e
αt/Zt otherwise,

endfor
endfor

return f =

∑T
t=1 αtgt∑T
i=1 αt

.

end

Table 1.2 Pseudocode for the Adaboost algorithm. (L is a learning algorithm that

chooses a classifier from G to minimize weighted training error.)

AdaBoost iteratively combines the classifiers returned by L. The idea behind Ad-

aBoost is to start with a uniform weighting over the training sample, and pro-

gressively adjust the weights to emphasize the examples that have been frequently

misclassified by the classifiers returned by L. These classifiers are combined with

convex coefficients that depend on their respective weighted errors. The following

theorem shows that Adaboost produces a large margin classifier, provided L is suc-

cessful at finding classifiers with small weighted training error. See (Schapire et al.,

1998). Recall (1.30) that the margin error of a function f with respect to ρ on a

sample X,Y is Rρ(f) =
1
m

∑m
i=1 1{yif(xi)<ρ}.

Theorem 1.12 Margin Error of AdaBoost

If, at iteration t, L returns a function with weighted training error εt < 1/2, then

AdaBoost returns a function f that satisfies

Rρ(f) ≤ 2T
T∏

t=1

√
ε1−ρ
t (1− εt)1+ρ. (1.86)
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In particular, if εt ≤ 1/2− 2ρ, then

Rρ(f) < (1− ρ2)T/2, (1.87)

and this is less than ε for T ≥ (2/ρ2) ln(1/ε).

1.5 Empirical Results, Implementations, and Further Developments

Large margin classifiers are not only promising from the theoretical point of view.

They also have proven to be competitive or superior to other learning algorithms

in practical applications. In the following we will give references to such situations.

1.5.1 Boosting

Experimental results show that boosting is able to improve the performance of

classifiers significantly. Extensive studies on the UC Irvine dataset, carried out

by Freund and Schapire (1996) and Quinlan (1996) with tree classifiers show the

performance of such methods. However, also other learning algorithms can benefit

from boosting. Schwenk and Bengio (1998) achieve record performance on an OCR

task on the UC Irvine database, using neural networks as the base classifiers. See

Rätsch (1998) and chapter ?? for further results on the performance of improved

versions of boosted classifiers.

1.5.2 Support Vector Machines

SV Machines perform particularly well in feature rich highdimensional problems.

Schölkopf et al. (1995); Schölkopf et al. (1996, 1998b); Burges and Schölkopf

(1997); Schölkopf (1997) achieve state of the art, or even record performance in

several Optical Character Recognition (OCR) tasks such as the digit databases

of the United Postal Service (USPS) and the National Institute of Standards and

Technology (NIST). The latter can be obtained at

http://www.research.att.com/∼yann/ocr/mnist/

Similar results have been obtained for face recognition by Oren et al. (1997); Osuna

et al. (1997b) and object recognition (Blanz et al., 1996; Schölkopf, 1997). Finally,

also on large noisy problems SV Machines are very competitive as shown in (Smola,

1998).

1.5.3 Implementation and Available Code

Whilst Boosting can be easily implemented by combining a base learner and

following the pseudocode of table 1.2. Hence one only has to provide a base learning

algorithm satisfying the properties of a weak learner, which defers all problems to
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the underlying algorithm.

http://www.research.att.com/∼yoav/adaboost/

provides a Java applet demonstrating the basic properties of AdaBoost.

The central problem in Support Vector Machines is a quadratic programming

problem. Unfortunately, off-the-shelf packages developed in the context of mathe-

matical programming like MINOS (Murtagh and Saunders, 1993), LOQO (Vander-

bei, 1994), OSL (IBM Corporation, 1992), or CPLEX (CPL, 1994) are often pro-

hibitively expensive or unsuitable for optimization problems in more than several

thousand variables (whilst the number of variables may be in the tens of thousands

in practical applications). Furthermore these programs are often optimized to deal

with sparse matrix entries, causing unneeded overhead when solving generic SV

optimization problems (which are sparse in the solution, not in the matrix entries).

This situation led to the development of several quadratic optimization algo-

rithms specifically designed to suit the needs of SV machines. Starting from simple

subset selection algorithms as initially described by Vapnik (1979) and subsequently

implemented in e.g. (Schölkopf et al., 1995), more advanced chunking methods were

proposed (Osuna et al., 1997a) (see also (Joachims, 1999) for a detailed description

of the algorithm) for splitting up the optimization problem into smaller subproblems

that could be easily solved by standard optimization code. Other methods exploit

constrained gradient descent techniques (Kaufmann, 1999), or minimize very small

subproblems, such as the Sequential Minimal Optimization algorithm (SMO) by

Platt (1999). See also chapter ?? for further methods for training a SV classifier.

Implementations include SvmLight by Joachims (1999),

http://www-ai.cs.uni-dortmund.de/thorsten/svm light.html

the Royal Holloway / ATT / GMD Support Vector Machine by Saunders et al.

(1998), available at

http://svm.dcs.rhbnc.ac.uk/

and the implementation by Steve Gunn which can be downloaded from

http://www.isis.ecs.soton.ac.uk/resources/svminfo/.

The first two of these optimizers use the GMD (Smola) implementation of an interior

point code along the lines of Vanderbei (1994) as the core optimization engine. It

is available as a standalone package at

http://www.svm.first.gmd.de/software.html.

This site will also contain pointers to further toolboxes as they become available.

Java applets for demonstration purposes can be found at

http://http://svm.dcs.rhbnc.ac.uk/pagesnew/GPat.shtml

http://http://svm.research.bell-labs.com/SVT/SVMsvt.html.
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1.6 Notation

We conclude the introduction with a list of symbols which are used throughout the

book, unless stated otherwise.

N the set of natural numbers

R the set of reals

X a sample of input patterns

Y a sample of output labels

X an abstract domain

ln logarithm to base e

log2 logarithm to base 2

(x · x′) inner product between vectors x and x′

∥.∥ 2-norm (Euclidean distance), ∥x∥ :=
√

(x · x)

∥.∥p p-norm , ∥x∥p :=
(∑N

i=1 |xi|p
)1/p

∥.∥∞ ∞-norm , ∥x∥∞ := maxNi=1 |xi|
ℓp ℓp metric

L2(X) space of functions on X square integrable wrt. Borel–Lebesgue measure

E(ξ) expectation of random variable ξ

Pr(·) probability of an event

N dimensionality of input space

m number of training examples

xi input patterns

yi target values, or (in pattern recognition) classes

w weight vector

b constant offset (or threshold)

h VC dimension

f a real valued function f : RN → R (unthresholded)

F a family of real valued functions f

g a decision function g : RN → {−1, 1}
F a family of decision functions g

ρf (x, y) margin of function f on the example (x, y), i.e. y f(x)

ρf minimum margin, i.e. min1≤i≤m ρf (xi, yi)
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c(x, y, f(x)) cost function

R(g) risk of g, i.e. expected fraction of errors

Remp(g) empirical risk of g, i.e. fraction of training errors

R(f) risk of f

Remp(f) empirical risk of f

k Mercer kernel

F Feature space induced by a kernel

Φ map into feature space (induced by k)

αi Lagrange multiplier

α vector of all Lagrange multipliers

ξi slack variables

ξ vector of all slack variables

C regularization constant for SV Machines

λ regularization constant (C = 1
λ )
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In this chapter we present a new learning algorithm, Leave–One–Out (LOO–) SVMs

and its generalization Adaptive Margin (AM–) SVMs, inspired by a recent upper

bound on the leave–one–out error proved for kernel classifiers by Jaakkola and

Haussler. The new approach minimizes the expression given by the bound in an

attempt to minimize the leave–one–out error. This gives a convex optimization

problem which constructs a sparse linear classifier in feature space using the kernel

technique. As such the algorithm possesses many of the same properties as SVMs

and Linear Programming (LP–) SVMs. These former techniques are based on the

minimization of a regularized margin loss, where the margin is treated equivalently

for each training pattern. We propose a minimization problem such that adaptive

margins for each training pattern are utilized. Furthermore, we give bounds on the

generalization error of the approach which justifies its robustness against outliers.

We show experimentally that the generalization error of AM–SVMs is comparable

to SVMs and LP–SVMs on benchmark datasets from the UCI repository.
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2.1 Introduction

The study of classification learning has shown that algorithms which learn a real–

valued function for classification can control their generalization error by making

use of a quantity known as the margin (see Section 1.1.3). Based on these results,

learning machines which directly control the margin (e.g. SVMs, LP–SVMs) have

been proven to be successful in classification learning (Mason and Bartlett, 1998;

Vapnik, 1998; Smola, 1998). Moreover, it turned out to be favourable to formulate

the decision functions in terms of a symmetric, positive semidefinite, and square

integrable function k(·, ·) referred to as a kernel (see Section 1.3.2). The class of

decision functions — also known as kernel classifiers (Smola, 1998; Jaakkola and

Haussler, 1999) — is then given by1decision function

f(x) =
m∑
i=1

αiyik(xi,x) α ≥ 0 . (2.1)

For simplicity we ignore classifiers which use an extra threshold term (cf. Equation

(1.74)).

Whilst the algorithms proposed so far are restricted to a fixed margin (the same

constant value) at each training pattern (xi, yi), we show that adaptive margins can

successfully be used. Moreover, it turns out that adaptive margins effectively control

the complexity of the model. The chapter is structured as follows: In Section 2.2 we

describe the LOO-SVM algorithm. The generalization of LOO-SVMs to control the

margin adaptively, which gives AM-SVMs, is then presented in Section 2.3 and their

relation to SVMs and LP–SVMs is revealed in Section 2.4. In Section 2.5 we give

bounds on the generalization error of AM–SVMs which justify the use of adaptive

margins as a regularizer. In Section 2.6 results of a comparison of AM–SVMs with

SVMs on artificial and benchmark datasets from the UCI repository2 are presented.

Finally, in Section 2.7 we summarize the chapter and discuss further directions.

2.2 Leave–One–Out Support Vector Machines

Support Vector Machines obtain sparse solutions that yield a direct assessment

of generalization: the leave-one-out error is bounded by the expected ratio of the

number of non–zero coefficients αi to the number m of training examples (Vapnik,

1995). In Jaakkola and Haussler (1999) a bound on this error is derived for a class

of classifiers which includes SVMs but can be applied to non–sparse solutions. In

1. Although this class of functions is dependent on the training set, the restrictions put on
k(·, ·) automatically ensure that the influence of each new basis function k(xi, ·) decreases
rapidly for increasing training set sizes m. Thus we can assume the existence of a fixed
feature space (see e.g. Graepel et al. (1999)).
2. http://www.ics.uci.edu/mlearn/MLRepository.html.
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order to motivate our reasoning we restate their result which is given by (1.84) in

a more concise form.leave–one–out

bound
Theorem 1

For any training set of examples xi ∈ RN and labels yi ∈ {±1}, for an SVM the

leave–one–out error estimate of the classifier is bounded by

1

m

m∑
i=1

θ

−yi
∑
j ̸=i

yjαjk(xi,xj)

 . (2.2)

where θ(·) is the step function.

This bound is slightly tighter than the classical SVM leave–one–out bound. This

is easy to see when one considers that all training points that have αi = 0 cannot be

leave–one–out errors in either bound. Vapnik’s bound assumes all support vectors

(all training points with αi > 0) are errors, whereas they only contribute as errors

in Equation (2.2) if

yi
∑
j ̸=i

αjyjk(xi,xj) ≤ 0. (2.3)

In practice this means the bound is tighter for less sparse solutions.

Theorem 1 motivates the following algorithm (Weston, 1999): directly minimize

the expression in the bound. In order to achive this, one introduces slack variables

following the standard approach in Cortes and Vapnik (1995) to give the following

optimization problem:

minimize
m∑
i=1

ξδi (2.4)

subject to yi
∑
j ̸=i

αjyjk(xi,xj) ≥ 1− ξi, for all i = 1, . . . ,m (2.5)

α ≥ 0, ξ ≥ 0. (2.6)

where one chooses a fixed constant for the margin to ensure non–zero solutions.

To make the optimization problem tractable, the smallest value for δ for which we

obtain a convex objective function is δ = 1. Noting also that yi
∑

j ̸=i αjyjk(xi,xj) =

yif(xi)− αik(xi,xi) we obtain the equivalent linear program:Leave–one–out

SVM

minimize

m∑
i=1

ξi (2.7)

subject to yif(xi) ≥ 1− ξi + αik(xi,xi), for all i = 1, . . . ,m (2.8)

α ≥ 0, ξ ≥ 0. (2.9)

As in other kernel classifiers, one uses the decision rule given in Equation (2.1).

Note that Theorem 1 is no longer valid for this learning algorithm. Nevertheless,

let us study the resulting method which we call a Leave–One–Out Support Vector

Machine (LOO–SVM).

Firstly, the technique appears to have no free regularization parameter 3. Thisregularization
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should be compared with Support Vector Machines which control the amount of

regularization with the free parameter C (see Section 1.3). For SVMs, in the case

of C = ∞ one obtains a hard margin classifier with no training errors. In the case

of noisy or linear inseparable datasets4 (through noise, outliers, or class overlap)

one must admit some training errors (by constructing a so called soft margin – see

Section 1.1.4 ). To find the best choice of training error/margin tradeoff one has to

choose the appropriate value of C. In LOO–SVMs a soft margin is automatically

constructed. This happens because the algorithm does not attempt to minimize

the number of training errors – it minimizes the number of training points that

are classified incorrectly even when they are removed from the linear combination

that forms the decision rule. However, if one can classify a training point correctly

when it is removed from the linear combination then it will always be classified

correctly when it is placed back into the rule. This can be seen as αiyik(xi,xi) has

always the same sign as yi, any training point is pushed further from the decision

boundary by its own component of the linear combination. Note also that summing

for all j ̸= i in the constraint 2.5 is equivalent to setting the diagonal of the kernel

matrix to zero and instead summing for all j. Thus the regularization employed by

LOO–SVMs disregards the values k(xi,xi) = 0 for all i.sparsity

Secondly, like Support Vector machines, the solutions can be sparse; that is,

only some of the coefficients αi, i = 1, . . . ,m are non–zero (see Section 2.6.2 for

computer simulations confirming this). As the coefficient of a training point does

not contribute to its leave-one-out error in constraint (2.5) the algorithm does not

assign a non–zero value to the coefficient of a training point in order to correctly

classify it. A training point has to be classified correctly by the training points of

the same label that are close to it (in feature space), but the training point itself

makes no contribution to its own classification.

In the next Section we show how this method does in fact have an implicit

regularization parameter and generalize the method to control the regularization

on the set of decision functions.

2.3 Adaptive Margin SVMs

In the setting of the optimization problem (2.7)–(2.9) it is easy to see that a

training point xi is linearly penalized for failing to obtain a margin of ρf (xi, yi) ≥
1 + αik(xi,xi). That is, the larger the contribution the training point has to the

decision rule (the larger the value of αi), the larger its margin must be. Thus,

the algorithm controls the margin for each training point adaptively. From this

3. As we shall see later there is an implicit regularization parameter, but it is fixed. The
generalization of this problem which allows one to control this parameter gives Adaptive
Margin SVMs.
4. Here we refer to linearly inseparability in feature space. Both SVMs and LOO–SVM
Machines are essentially linear classifiers.
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formulation one can generalize the algorithm to control regularization through the

margin loss. To make the margin at each training point a controlling variable we

propose the following learning algorithm:Adaptive Margin

SVM
minimize

m∑
i=1

ξi (2.10)

subject to yif(xi) ≥ 1− ξi + λαik(xi,xi), for all i = 1, . . . ,m. (2.11)

α ≥ 0, ξ ≥ 0. (2.12)

This algorithm can then be viewed in the following way (see Figure 2.1): Suppose

the data lives on the surface of a hypersphere in F , i.e. k(·, ·) is an RBF kernel given

by Equation (1.73). Then k(xi,xj) is the cosine of the angle between Φ(xi) and

Φ(xj). As soon as a point Φ(xk) is an outlier (the cosine of the angles to points in

its class are small and to points in the other class are large) αk in Equation (2.11)

has to be large in order to classify Φ(xk) correctly. Whilst SVMs and LP–SVMs

use the same margin for such an outlier, they attempt to classify Φ(xk) correctly.

In AM–SVMs the margin is automatically increased to 1 + λαkk(xk,xk) for Φ(xk)

and thus less attempt is made to change the decision function.

ϕ(xk) (outlier)

F

ϕ(xk) (representative)

Figure 2.1 Adaptation of margins at each training pattern depending on the

distance k(xi,xj) in feature space F . Note that k(xi,xj) is large if the enclosed

angle between data points is small. See the text for explanation.

Cluster centres
Moreover, in AM–SVMs the points Φ(xk) which are representatives of clusters

(centres) in feature space F , i.e. those which have large values of the cosine of

the angles to points from its class, will have non–zero αk. In order to see this we

consider two points k and k′ of the same class. Let us assume that k having ξk > 0

is the centre of a cluster (in the metric induced by Φ) and k′ (having ξk′ > 0) lies
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at the boundary of the cluster. Hence we subdivide the set of all points into

i ∈ C+ ξi = 0, yi = yk, i ̸= k, i ̸= k′

i ∈ C− ξi = 0, yi ̸= yk

i ∈ I+ ξi > 0, yi = yk, i ̸= k, i ̸= k′

i ∈ I− ξi > 0, yi ̸= yk

.

We consider the change in ξ if we increase αk by ∆ > 0 (giving ξ′) and simul-

taneously decrease αk′ by ∆ (giving ξ′′). From Equation (2.10)-(2.12) we know

that

i ∈ C+ ξ′i = ξi ξ′′i ≤ ∆k(xi,xk′)

i ∈ C− ξ′i ≤ ∆k(xi,xk) ξ′′i = ξi

i ∈ I+ ξ′i ≥ ξi −∆k(xi,xk) ξ′′i = ξi +∆k(xi,xk′)

i ∈ I− ξ′i = ξi +∆k(xi,xk) ξ′′i ≥ ξi −∆k(xi,xk′)

i = k ξ′k ≥ ξk −∆(1− λ)k(xk,xk) ξ′′k = ξk +∆k(xk,xk′)

i = k′ ξ′k′ ≥ ξk′ −∆k(xk′ ,xk) ξ′′k′ ≥ ξk′ + (1− λ)∆k(xk′ ,xk′)

.

Now we choose the biggest ∆ such that all inequalities for i ∈ {I+, I−, k, k′} become

equalities and the r.h.s for i ∈ {C+, C−} equals zero5. Hence, the relative change

in the objective function is given by

1

∆

ℓ∑
i=1

(ξ′i − ξ′′i ) =
∑
i∈I+

(k(xi,xk′)− k(xi,xk))︸ ︷︷ ︸
change of intra–class distance

−
∑
i∈I−

(k(xi,xk′)− k(xi,xk))︸ ︷︷ ︸
change of inter–class distance

,

where we assumed that k(xk,xk) = k(xk′ ,xk′) and k(xk,xk′) = k(xk′ ,xk). Since

the cluster centres in feature space F minimize the intra–class distance whilst

maximizing the inter–class distances it becomes apparent that their αk will be

higher. Taking into account that the maximal ∆ to be considerable for this analysis

is decreasing as λ increases we see that for suitable small λ AM–SVMs tends to

give non–zero α’s only to cluster centres in feature space F (see also Section 2.6

and Figure 2.4).

It is worthwhile to study the influence of λ:

If λ = 0 no adaptation of the margins is performed. This is equivalent to

minimizing training error with no regularization, i.e. approximating the expected

risk R(f) (1.26) with the empirical risk (1.27) (see Section 1.2).

If λ → ∞ the margin at each point tends to infinity (1 + λαik(xi,xi)) and the

solution is thus to set all α’s to an equal and small value. This corresponds to

paying no attention to Remp(f) and is equivalent to density estimation on each

5. As for all kernels k(xi,xi) ≥ k(xi,xj) the inequalities ξ′k ≥ ξk −∆(1−λ)k(xk,xk) and
ξ′′k′ ≥ ξk′ + (1− λ)∆k(xk′ ,xk′) basically determine the maximal ∆ to be considered.
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class (Parzen windows) (Parzen, 1962).

If λ = 1 the resulting algorithm is equivalent to LOO–SVMs.

2.4 Relationship of AM–SVMs to other SVMs

Using the soft margin loss

c(x, y, f(x)) = max(1− yf(x), 0) (2.13)

one can derive SVMs and LP-SVMs by choosing different regularizers. If we use the

quadratic regularization functional

QQP(f) = ∥w∥22 , (2.14)

we directly obtain the well known class of SVMs (see Section 1.3), i.e.SVMs

minimize
∑m

i=1 ξi + λ
∑m

i,j=1 αiαjyiyjk(xi,xj)

subject to yif(xi) ≥ 1− ξi, for all i = 1, . . . ,m

α ≥ 0, ξ ≥ 0.

(2.15)

Here we used

w =

m∑
j=1

αjyjΦ(x) , (2.16)

where Φ(·) maps into a feature space F such that (Φ(x) · Φ(x′)) = k(x,x′). It

is known that QQP(f) controls the covering number N (·, F ) of the induced loss–

function class (Theorem 1.2) (Shawe-Taylor et al., 1998; Smola, 1998). This choice

of regularizer favours flat functions in feature space.LP–SVMs

Similarly using a linear regularization functional

QLP(f) =
∑

αi (2.17)

we obtain LP–SVMs. The corresponding minimization problem is given by6

minimize
∑m

i=1 ξi + λ
∑m

i=1 αi

subject to yif(xi) ≥ 1− ξi, for all i = 1, . . . ,m

α ≥ 0, ξ ≥ 0.

(2.18)

Recently it was shown that also QLP(f) can also be used to control the covering

number of c(·, ·, f(·)) (Smola, 1998). In contrast to the quadratic regularizer,QLP(f)

favours non–smooth functions by strongly penalizing basis functions Φj(·) with a

6. Note, that we require α ≥ 0 which allows us to omit the absolute values on the αi’s.
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small eigenvalue (Smola, 1998).

Comparing these algorithms to AV-SVMs, one can see all three algorithms

produce a sparse kernel classifier. It is easy to see that for λ = 0 and λ → ∞
all three algorithms revert to the same learnt function. It is only how λ stratifies

the set of decision functions to form the type regularization that differentiates the

three algorithms.

2.5 Theoretical Analysis

To obtain margin distribution bounds for Adaptive Margin Machines we apply the

following theorem to be found in Shawe-Taylor and Cristianini (1998):

Theorem 2.1

Consider a fixed but unknown probability distribution on the input space X with

support in the ball of radius R about the origin. Then with probability 1 − δ

over randomly drawn training sets (X,Y ) of size m for all ρ > 0 such that

d((x, y),w, ρ) = 0, for some (x, y) ∈ (X,Y ), the generalization of a linear classifier

w on X satisfying ∥w∥X ≤ 1 is bounded from above by

ϵ =
2

m

(
κ log2

(
8em

κ

)
log2(32m) + log2

(
2m(28 + log2(m))

δ

))
, (2.19)

where

κ =

⌊
65[(R+D)2 + 2.25RD]

ρ2

⌋
, (2.20)

D = D(S,w, ρ) =

√√√√ m∑
i=1

d2i

di = d((xi, y),w, ρ) = max{0, ρ− y(w · xi)}

and provided m ≥ max{2/ϵ, 6} and κ ≤ em.

Applying the bound to AM–SVMs we can give the following theorem.

Theorem 2.2

Consider a fixed but unknown probability distribution on the feature space F
with support in the ball of radius R about the origin. Then with probability

1 − δ over randomly drawn training sets (X,Y ) of size m for α ≥ 0 and ξ ≥ 0

which are feasible solutions of AM–SVMs such that d((x, y),w, 1) = 0 for some

(x, y) ∈ (X,Y ), the generalization error R(f) is bounded by

ϵ =
2

m

(
κ log2

(
8em

κ

)
log2(32m) + log2

(
2m(28 + log2(m))

δ

))
, (2.21)
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where

κ ≤
⌊
65[(WR+ 3D)2]

⌋
,

D =

√√√√ m∑
i=1

[max {0, ξi − λαik(xi,xi)}]2 ,

W 2 =
m∑

i,j=1

αiαjyiyjk(xi,xj) ,

provided m ≥ max{2/ϵ, 6} and κ ≤ em.

Proof Firstly, AM–SVMs are linear classifiers f(x) = (w · Φ(x)) where w is

defined by Equation (2.16). We wish to redefine the measure of margin error

d((x, y),w, ρ) = ρ−yif(xi) in Theorem 2.1 in terms of ξi and λαik(xi,xi) to capture

the adaptive margin of a training point xi. Then we know from the assumption of

a feasible solution α, ξ that

max{0, ρ− yif(xi))} ≤ max{0, ρ− 1 + ξi − λαik(xi,xi)} . (2.22)

In order to apply Theorem 2.1 for any vector w we have to normalize ρ, D, and α

by the norm of ∥w∥F =W given by (2.16). This results in

κ =

⌊
65[(R+ 1

WD)2 + 2.25 1
WRD]

ρ2
W 2

⌋
. (2.23)

Now we fix ρ = 1 as done by AM–SVMs. This gives for Equation (2.22)

max{0, ρ− yif(xi))} ≤ max{0, ξi − λαik(xi,xi)} . (2.24)

Making use of[(
R+

1

W
D

)2

+ 2.25
1

W
RD

]
W 2 ≤ [(WR+ 3D)2] , (2.25)

the theorem is proven.

From the theorem, one can gain the following insights. Our goal to minimize the

generalization error is achieved by minimizing κ, the minimum of which is a tradeoff

between minimizing W (the margin) and D (the loss with adaptive margin). We

require a small value of both but small values of one term automatically gives a

large value of the other. By minimizing
∑m

i=1 ξi AM–SVMs effectively control the

tradeoff between the two terms through the parameter λ. For small values of λ, the

resulting D is small and W can take any value as it is not minimized (it can be

forced to very large values). For large λ the increased margin in D acts a regularizer,

penalizing large values of α. This results in small values of W (a smooth function)

but large values of D (large training error). This bound motivates the objective

function of AM–SVMs which at first appears to only minimize error and have no

regularization. In fact, as we have seen, the regularization comes from the adaptive

margin in the constraints controlled by λ.
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2.6 Experiments

2.6.1 Artificial Data

2.6.1.1 LOO–SVMs

We first describe some two dimensional examples to illustrate how the new tech-

nique works. Let us first consider AM–SVMs with regularization parameter λ = 1

(this corresponds to LOO–SVMs, see Section 2.2). Figures 2.2 and 2.3 show two

artificially constructed training problems with various solutions. We fixed k(·, ·) to
be a radial basis function (RBF) kernel

k(x,x′) = exp
(
−∥x− x′∥2/(2 σ2)

)
, (2.26)

and then found the solution to the problems with LOO–SVM, which has no other

free parameters, and with SVMs, for which one controls the soft margin with the

free parameter C = 1
λ . The first solution (left) for both training problems is the

LOO–SVM solution and the other two solutions for each problem are SVMs with

different choices of soft margin using parameter C = 1 (middle) and C = 100

(right).

In the first problem (Figure 2.2) the two classes (represented by crosses and

dots) are almost linearly separable apart from a single outlier. The automatic soft

margin control of LOO–SVM constructs a classifier which incorrectly classifies the

far right dot, assuming that it is an outlier. The Support Vector solutions both

classify the outlier correctly resulting in non–smooth decision rules. In the second

problem (Figure 2.3) the two classes occupy opposite sides (horizontally) of the

picture, but slightly overlap. In this case the data is only separable with a highly

nonlinear decision rule, as reflected in the solution by an SVM with parameter

C = 100 (right). Both problems highlight the difficulty of choosing the parameter C

in SVMs, whereas LOO–SVM (AM–SVM with λ = 1) appears to produce robust7,

natural decision rules.

2.6.1.2 AM–SVMs

In order to demonstrate how the regularization parameter λ in AM–SVMs (rather

than being fixed to λ = 1 as in LOO-SVMs) affects the generated decision rule we

give a comparison on the same toy problem as SVMs and LP-SVMs. We generated

another two class problem in R2 (represented by crosses and dots) and trained an

AM–SVM using RBF–kernels (σ = 0.5) with λ = 1, 2, 5, 10 (see Figure 2.4). As

can be seen increasing λ allows AM–SVM to widen the margin for points far away

7. As there is no unique definition of robustness (see e.g. (Huber, 1981)) we call a
classification learning algorithm robust if a few pattern far apart from the remaining ones
(in the metric induced by Φ) have no influence on the resulting decision function.
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Figure 2.2 A simple two dimensional problem with one outlier solved by LOO-

SVMs (left) and SVMs with C = 1 (middle) and C = 100 (right). LOO-SVMs soft

margin regularization appears to perform better than the choices of parameter for

SVMs.

Figure 2.3 A simple two dimensional problem of two overlapping classes solved by

LOO-SVMs (left) and SVMs with C = 1 (middle) and C = 100 (right). LOO-SVMs

soft margin regularization appears to perform better than the choices of parameter

for SVMs.

from the decision surface. Consequently, the algorithm is more robust to outliers

which results in very smooth decision functions. In Figure 2.5 we used the same

dataset and trained ν LP–SVMs (Graepel et al., 1999). ν LP–SVMs are obtained

by reparameterizing Equation (2.18) where ν upper–bounds the number of margin

errors. Varying ν = 0.0, 0.1, 0.2, 0.5 shows that margin errors are sacrificed in order

to lower the complexity of the decision function f measured in the one–norm (see

Equation (2.17) where λ can be replaced by a fixed function of ν). As already

mentioned this leads to non–smooth functions. Furthermore it should be noted

that the outlier (dot) on the far left side leads to very rugged decision functions.

Similar conclusions can be drawn for ν SVMs (Schölkopf et al., 1998d) (see Figure

2.6) though the decision functions are smoother. Thus, AM–SVMs turn out to

provide robust solutions (through control of the regularization parameter) which

provide a new approach when compared to the solutions of SVMs and LP–SVMs.

In these toy examples AM–SVMS appear to provide decision functions which are

less influenced by single points (outliers).
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Figure 2.4 Decision functions (solid lines) obtained by AM–SVMs with different

choices of the regularization parameter λ. The dashed line represents the minimal

margin over all training points. (a) λ = 1 is equivalent to LOO–SVMs (b) λ = 2,

(c) λ = 5, and (d) λ = 10 widens the amount to which margin errors at each point

are accepted and thus results in very flat functions. Note, that less attention is paid

to the outlier (dot) at the left hand side.

Figure 2.5 Decision functions (solid lines) obtained by ν LP–SVMs with different

choices of the assumed noise level ν. The dashed line represents the margin. (a)

ν = 0.0 leads to very non–smooth and overfitted decision functions. (b) ν = 0.1, (c)

ν = 0.2, and (d) ν = 0.5 smooth the decision function.

2.6.2 Benchmark Datasets

We conducted computer simulations using 6 artificial and real world datasets from

the UCI benchmark repositories, following the same experimental setup as in Rätsch

et al. (1998). The authors of this article also provide a website to obtain the data8.

Briefly, the setup is as follows: the performance of a classifier is measured by its

average error over one hundred partitions of the datasets into training and testing

sets. Free parameter(s) in the learning algorithm are chosen as the median value of

the best model chosen by cross validation of the first five training datasets.

Table 2.1 compares percentage test error of LOO–SVMs to AdaBoost (AB),

Regularized AdaBoost (ABR) and SVMs which are all known to be excellent

8. http://svm.first.gmd.de/∼raetsch/data/benchmarks.htm. The datasets have been pre-
processed to have zero mean and standard deviation one, and the exact one hundred splits
of training and testing sets used in the author’s experiments can be obtained.
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Figure 2.6 Decision functions (solid lines) obtained by ν SVMs with different

choices of the assumed noise level ν. The dashed line represents the margin. (a)

ν = 0.0 leads to an overfitted decision functions (note the captured outlier in the

lower left region). (b) ν = 0.1, (c) ν = 0.2, and (d) ν = 0.5 allow for much flatter

functions though regularizing differently to AM–SVMs.

AB ABR SVM LOO–SVM

Banana 12.3 10.9 11.5 10.6

B. Cancer 30.4 26.5 26.0 26.3

Diabetes 26.5 23.9 23.5 23.4

Heart 20.3 16.6 16.0 16.1

Thyroid 4.4 4.4 4.8 5.0

Titanic 22.6 22.6 22.4 22.7

Table 2.1 Comparison of percentage test error of AdaBoost (AB), Regularized

AdaBoost (ABR), Support Vector Machines (SVMs) and Leave–One–Out Machines

(LOO–SVMs) on 6 datasets.

classifiers9. The competitiveness of LOO–SVMs to SVMs and ABR (which both

have a soft margin control parameter) is remarkable considering LOO–SVMs have

no free parameter. This indicates that the soft margin automatically selected by

LOO–SVMs is close to optimal. AdaBoost loses out to the three other algorithms,

being essentially an algorithm designed to deal with noise-free data.

To give more insight into the behaviour of the algorithm we give two plots in

Figure 2.7. The left graph shows the fraction of training points that have non–zero

coefficients (SVs) plotted against log(σ) (RBF width) on the thyroid dataset. Here,

one can see the sparsity of the decision rule, the sparseness of which depends on

the chosen value of σ. The right graph shows the percentage training and test error

(train err and test err), the value of
∑m

i=1 ξi (slacks) and the value of the bound

given in Theorem 1 (l-o-o bound). One can see the training and test error (and the

bound) closely match. The minimum of all four plots is roughly at log(σ) = −1,

indicating one could perform model selection using one of the known expressions.

9. The results for AB, ABR and SVMs were taken from (Rätsch et al., 1998)
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Figure 2.7 The fraction of training patterns that are Support Vectors (top) and

various error rates (bottom) both plotted against RBF kernel width for Leave–One–

Out Machines on the thyroid dataset.
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Figure 2.8 Test error plotted against the regularization parameter λ in AM–

SVMs. The three plots from left to right are (a) the banana dataset, (b) heart

dataset and (c) titanic dataset. Note how λ = 1 is close to the optimum of the bowl

in the first two plots, but in the third plot the plot is not a bowl at all – the best

choice of regularization is to choose no regularization (λ = 0).

Note also that for a reasonable range of σ the test error is roughly the same,

indicating the soft margin control overcomes overfitting problems.

Finally, we conducted experiments to assess the effect in generalization perfor-

mance by controlling the regularization parameter λ in AM-SVMs. Figure 2.8 plots

λ against test error for three of the datasets averaged over 10 runs for the first two,

and over all 100 runs for the last. The banana dataset (left) and the heart dataset

(middle) gave bowl-shaped graphs with the minimum exactly (banana) or almost

(heart) at λ = 1. The optimum choice of λ for the titanic dataset, on the hand, is

at λ = 0. In this case the best choice of the regularization parameter λ is to have

no regularization at all – the training points give enough information about the

unknown decision function. Note this error rate for λ = 0 is as good as the best

SVM solution (see Table 2.1). The first two plots and the results in Table 2.1 justify

the choice of λ = 1 in LOO-SVMs. The last plot in Figure 2.8 justifies AM-SVMs.
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2.7 Discussion

In this chapter we presented a new learning algorithm for kernel classifiers. Mo-

tivated by minimizing a bound on leave–one–out error we obtained LOO–SVMs

and generalizing this approach to control regularization through the margin loss we

obtained AM-SVMs. This approach introduced a novel method of capacity control

via margin maximization by allowing adaptive rather than fixed margins at each

training pattern. We have shown experimentally that this reformulation results in

an algorithm which is robust against outliers. Nevertheless, our algorithm has a

parameter λ which needs to be optimized for a given learning problem. Further

investigations will be made in the derivation of bounds on the leave–one–out error

of this algorithm which allows for efficient model order selection. Finally, we note

that penalization of the diagonal of the kernel matrix is a well known technique in

regression estimation known as Ridge Regression (Hoerl and Kennard, 1970).
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