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1 Introduction to Large Margin Classifiers

The aim of this chapter is to provide a brief introduction to the basic concepts of

large margin classifiers for readers unfamiliar with the topic. Moreover it is aimed

at establishing a common basis in terms of notation and equations, upon which

the subsequent chapters will build (and refer to) when dealing with more advanced

issues.

1.1 A Simple Classification Problem

Assume that we are given a set of training datatraining data

X := {x1, . . . ,xm} ⊆ RN where m ∈ N (1.1)

together with corresponding labelslabels

Y := {y1, . . . , ym} ⊆ {−1, 1}. (1.2)

The goal is to find some decision function g : RN → {−1, 1} that accurately

predicts the labels of unseen data points (x, y). That is, we seek a function g that

minimizes the classification error, which is given by the probability that g(x) ̸= y.

A common approach to representing decision functions is to use a real valued

prediction function f : RN → R whose output is passed through a sign threshold to

yield the final classification g(x) = sgn (f(x)). Let us start with a simple example:

linear decision functions. In this case the unthresholded prediction is given by a

simple linear function of the input vector xlinear

decision

function
g(x) := sgn (f(x)) where f(x) = (x ·w) + b for w ∈ RN and b ∈ R. (1.3)

This gives a classification rule whose decision boundary {x|f(x) = 0} is an

N − 1 dimensional hyperplane separating the classes “+1” and “−1” from each

other. Figure 1.1 depicts the situation. The problem of learning from data can be

formulated as finding a set of parameters (w, b) such that sgn ((w · xi) + b) = yi
for all 1 ≤ i ≤ m. However, such a solution may not always exist, in particular if

we are dealing with noisy data. For instance, consider Figure 1.1 with the triangle

replaced by an open circle. This raises the question what to do in such a situation.
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Figure 1.1 A linearly separable classification problem. Note that there may be

several possible solutions as depicted by the two lines. The problem becomes non-

separable if we replace the triangle by an open circle; in which case no solution

(w, b) exists.

1.1.1 Bayes Optimal Solution

Under the assumption that the data X,Y was generated from a probability distri-

bution p(x, y) on RN × {−1, 1} and that p is known, it is straightforward to find a

function that minimizes the probability of misclassification

R(g) :=

∫
RN×{−1,1}

1{g(x)̸=y} p(x, y)dxdy. (1.4)

This function satisfiesBayes optimal

decision function
g(x) = sgn (p(x, 1)− p(x,−1)) . (1.5)

Consider a practical example.

Example 1.1 Two Gaussian Clusters

Assume that the two classes “+1” and “−1” are generated by two Gaussian clusters

with the same covariance matrix Σ centered at µ+ and µ− respectively

p(x, y) =
1

2(2σ)N/2|Σ|1/2

{
e−

1
2 (x−µ+)⊤Σ−1(x−µ+) if y = +1

e−
1
2 (x−µ−)⊤Σ−1(x−µ−) if y = −1.

(1.6)

Since the boundaries completely determine the decision function, we seek the set of

points where p(x,+1) = p(x,−1). In the case of (1.6) this is equivalent to seeking

x such that

(x− µ+)
⊤Σ−1(x− µ+) = (x− µ−)

⊤Σ−1(x− µ−). (1.7)

By rearranging we find that this condition is equivalent to

x⊤Σ−1x− 2µ⊤
+Σ

−1x+ µ⊤
+Σ

−1µ+ − x⊤Σ−1x+ 2µ⊤
−Σ

−1x− µ⊤
−Σ

−1µ− = 0

2(µ⊤
+Σ

−1 − µ⊤
−Σ

−1)x− (µ⊤
+Σ

−1µ+ − µ⊤
−Σ

−1µ−) = 0 (1.8)
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The latter form is equivalent to having a linear decision function determined by

f(x) =
(
(µ+ − µ−)

⊤Σ−1
)
x− 1

2 (µ
⊤
+Σ

−1µ+ − µ⊤
−Σ

−1µ−). (1.9)
linear

discriminant Hence in this simple example the Bayes optimal classification rule is linear.

Problems arise, however, if p(x, y) is not known (as generally happens in practice).

In this case one has to obtain a good estimate of g(x) = sgn (f(x)) from the training

data X,Y . A famous example of an algorithm for linear separation is the perceptron

algorithm.

1.1.2 The Perceptron Algorithm

The perceptron algorithm is “incremental,” in the sense that small changes are

made to the weight vector in response to each labelled example in turn. For any

learning rate η > 0, the algorithm acts sequentially as shown in Table 1.1. Notice

argument: Training sample, X = {x1, . . . ,xm} ⊂ X, Y = {y1, . . . , ym} ⊂ {±1}
Learning rate, η

returns: Weight vector w and threshold b.
function Perceptron(X,Y, η)

initialize w, b = 0
repeat

for all i from i = 1, . . . ,m
Compute g(xi) = sgn ((w · xi) + b)
Update w, b according to

w′ = w + (η/2) (yi − g(xi))xi

b′ = b+ (η/2) (yi − g(xi)) .

endfor
until for all 1 ≤ i ≤ m we have g(xi) = yi
return f : x 7→ (w · x) + b

end

Table 1.1 Basic Perceptron Algorithm.

that (w, b) is only updated on a labelled example if the perceptron in state (w, b)

misclassifies the example. It is convenient to think of the algorithm as maintaining

the hypothesis g : x 7→ sgn ((w · x) + b), which is updated each time it misclassifiesperceptron

algorithm an example. The algorithm operates on a training sample by repeatedly cycling

through the m examples, and when it has completed a cycle through the training

data without updating its hypothesis, it returns that hypothesis.

The following result shows that if the training sample is consistent with some

simple perceptron, then this algorithm converges after a finite number of iterations.

In this theorem, w∗ and b∗ define a decision boundary that correctly classifies all

training points, and every training point is at least distance ρ from the decision

boundary.
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Theorem 1.1 Convergence of the Perceptron Algorithm

Suppose that there exists a ρ > 0, a weight vector w∗ satisfying ∥w∗∥ = 1, and a

threshold b∗ such that

yi ((w
∗ · xi) + b∗) ≥ ρ for all 1 ≤ i ≤ m. (1.10)

Then for all η > 0, the hypothesis maintained by the perceptron algorithm converges

after no more than (b∗2 + 1)(R2 + 1)/ρ2 updates, where R = maxi ∥xi∥2. Clearly,
the limiting hypothesis is consistent with the training data (X,Y ).

Proof Let (wj , bj) be the state maintained immediately before the jth update

occuring at, say, example (xi, yi). To measure the progress of the algorithm, we

consider the evolution of the angle between (wj , bj) and (w∗, b∗) and note that the

inner product ((wj , bj) · (w∗, b∗)) grows steadily with each update. To see this, note

that (wj , bj) is only updated when the corresponding hypothesis gj misclassifies yi,

which implies that yi − gj(xi) = 2yi. Therefore,

((wj+1, bj+1) · (w∗, b∗)) = ([(wj , bj) + (η/2)(yi − gj(xi))(xi, 1)] · (w∗, b∗))

= ((wj , bj) · (w∗, b∗)) + ηyi((xi, 1) · (w∗, b∗))

≥ ((wj , bj) · (w∗, b∗)) + ηρ

≥ jηρ.

On the other hand, the norm of (wj , bj) cannot grow too fast, because on an update

we have yi((wj · xi) + bj) < 0, and therefore

∥(wj+1, bj+1)∥2 = ∥(wj , bj) + ηyi(xi, 1)∥2

= ∥(wj , bj)∥2 + 2ηyi((xi, 1) · (wj , bj)) + η2∥(xi, 1)∥2

≤ ∥(wj , bj)∥2 + η2∥(xi, 1)∥2

≤ jη2(R2 + 1).

Combining these two observations with the Cauchy-Schwarz inequality shows that√
jη2(R2 + 1) ≥ ∥(wj+1, bj+1)∥

≥ ((wj+1, bj+1) · (w∗, b∗))√
1 + b∗2

≥ jηρ,

and thus j ≤ (1 + b∗2)(R2 + 1)/ρ2 as desired.

Since the perceptron algorithm makes an update at least once in every cycle through

the training data, and each iteration involves O(N) computation steps, this theorem

implies that the perceptron algorithm has time complexity O((R2 + 1)mN/ρ2).

1.1.3 Margins

The quantity ρ plays a crucial role in the previous theorem, since it determines how

well the two classes can be separated and consequently how fast the perceptron
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learning algorithm converges. This quantity ρ is what we shall henceforth call a

margin.

Definition 1.1 Margin and Margin Errors

Denote by f : RN → R a real valued hypothesis used for classification. Then

ρf (x, y) := yf(x), (1.11)
margin

i.e. it is the margin by which the pattern x is classified correctly (so that a negative

value of ρf (x, y) corresponds to an incorrect classification). Moreover denote by

ρf := min
1≤i≤m

ρf (xi, yi) (1.12)

minimum margin
the minimum margin over the whole sample. It is determined by the “worst”

classification on the whole training set X,Y .

It appears to be desirable to have classifiers that achieve a large margin ρf since

one might expect that an estimate that is “reliable” on the training set will also

perform well on unseen examples. Moreover such an algorithm is more robust with

respect to both patterns and parameters:

Intuitively, for a pattern x that is far from the decision boundary {x|f(x) = 0}
slight perturbations to x will not change its classification sgn (f(x)). To see this,

note that if f(x) is a continuous function in x then small variations in x will

translate into small variations in f(x). Therefore, if yif(xi) is much larger thanrobustness in

patterns zero, yif(xi±ε) will also be positive for small ε. (See, for example, Duda and Hart

(1973).)

Similarly, a slight perturbation to the function f will not affect any of the resulting

classifications on the training data (x1, y1), ..., (xm, ym). Assume that fw(x) is

continuous in its parameters w. Then, again, if yifw(xi) is much larger than zero,robustness in

parameters yifw±ε(xi) will also be positive for small ε.

1.1.4 Maximum Margin Hyperplanes

As pointed out in the previous section, it is desirable to have an estimator with

a large margin. This raises the question whether there exists an estimator with

maximum margin, i.e. whether there exists some f∗ with

f∗ := argmax
f

ρf = argmax
f

min
i
yif(xi). (1.13)

Without some constraint on the size of w, this maximum does not exist. In

Theorem 1.1, we constrained w∗ to have unit length. If we define f : RN → R
by

f(x) =
(w · x) + b

∥w∥
, (1.14)

then the maximum margin f is defined by the weight vector and threshold that

satisfyoptimal

hyperplane
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.
w

{x | (w  x) + b = 0}.

{x | (w  x) + b = −1}.
{x | (w  x) + b = +1}.

x2
x1

Note:

(w  x1) + b = +1
(w  x2) + b = −1

=>       (w  (x1−x2)) =   2

=> (x1−x2)   =
w

||w||( )

.

.

.

. 2
||w||

yi = −1

yi = +1❍
❍

❍

❍
❍

◆

◆

◆

◆

Figure 1.2 A binary classification toy problem: separate balls from diamonds. The

optimal hyperplane is orthogonal to the shortest line connecting the convex hulls of

the two classes (dotted), and intersects it half-way between the two classes. The

problem being separable, there exists a weight vector w and a threshold b such that

yi((w · xi) + b) > 0 (i = 1, . . . ,m). Rescaling w and b such that the point(s) closest

to the hyperplane satisfy |(w · xi) + b| = 1, we obtain a canonical form (w, b) of the

hyperplane, satisfying yi((w · xi) + b) ≥ 1. Note that in this case, the minimum

Euclidean distance between the two classes (i.e. twice the margin), measured

perpendicularly to the hyperplane, equals 2/∥w∥. This can be seen by considering

two points x1,x2 on opposite sides of the margin, i.e. (w ·x1)+b = 1, (w ·x2)+b = −1,

and projecting them onto the hyperplane normal vector w/∥w∥.

w∗, b∗ = argmax
w,b

m
min
i=1

yi((w · xi) + b)

∥w∥
(1.15)

= argmax
w,b

m
min
i=1

yi sgn ((w · xi) + b)

∥∥∥∥ (w · xi)

∥w∥2
w +

b

∥w∥2
w

∥∥∥∥ (1.16)

The formulation (1.16) has a simple geometric interpretation: −bw/∥w∥2 isEuclidean

Margin the vector in direction w that ends right on the decision hyperplane (since(
w · (−bw/∥w∥2)

)
= −b), and for a vector xi, (w · xi)w/∥w∥2 is the projec-

tion of xi onto w. Therefore, we are interested in maximizing the length of the

vector differences (w ·xi)w/∥w∥2− (−bw/∥w∥2) appropriatedly signed by yig(xi).

The maxi-min problem (1.15) can be easily transformed into an equivalent

constrained optimization task by conjecturing a lower bound on the margin, ρ,

and maximizing ρ subject to the constraint that it really is a lower bound:optimization

problems
w∗, b∗, ρ∗
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= argmax
w,b,ρ

ρ subject to
yi((w · xi) + b)

∥w∥
≥ ρ for 1 ≤ i ≤ m (1.17)

= argmax
w,b,ρ

ρ subject to ∥w∥ = 1 and yi((w · xi) + b) ≥ ρ for 1 ≤ i ≤ m (1.18)

= argmin
w,b

∥w∥2 subject to yi((w · xi) + b) ≥ 1 for 1 ≤ i ≤ m (1.19)

This last formulation is in the form of a quadratic programming problem, which canquadratic

program be easily handled using standard numerical routines (Luenberger, 1973; Bertsekas,

1995).

Notice that (1.18) is in a particularly intuitive form. This formulation states that

we are seeking a weight vector w that obtains large dot products yi(w · xi), but

constrain the weight vector to lie on the unit sphere to prevent obtaining such large

dot products “for free” by scaling up w. Interesting variants of problem (1.18) are

obtained by choosing different norms to constrain the length of the weight vector.

For example, constraining w to lie on the unit ℓ1 sphere instead of the unit ℓ2
sphere gives the problem of determining

w∗, b∗, ρ∗

= argmax
w,b,ρ

ρ subject to ∥w∥1 = 1 and yi((w · xi) + b) ≥ ρ for 1 ≤ i ≤ m (1.20)

which can easily be shown to be in the form of a linear programming problem.ℓ∞ margin

Mangasarian (1997) shows that this is equivalent to finding the weight vector

and threshold that maximize the minimum ℓ∞ distance between the training

patterns and the decision hyperplane, in a direct analogue to the original Euclidean

formulation (1.15).

Similarly, the constraint that w lie on the unit ℓ∞ sphere yields the problem

w∗, b∗, ρ∗

= argmax
w,b,ρ

ρ subject to ∥w∥∞ = 1 and yi((w · xi) + b) ≥ ρ for 1 ≤ i ≤ m (1.21)

which is also a linear programming problem, but now equivalent to finding theℓ1 margin

weight vector and threshold that maximize the minimum ℓ1 distance between the

training patterns and the decision hyperplane. In general, constraining w to lie on

the unit ℓp sphere yields a convex programming problem

w∗, b∗, ρ∗

= argmax
w,b,ρ

ρ subject to ∥w∥p = 1 and yi((w · xi) + b) ≥ ρ for 1 ≤ i ≤ m (1.22)

which is equivalent to finding the weight vector and threshold that maximize theℓq margin

minimum ℓq distance between the training patterns and the decision hyperplane,

where ℓp and ℓq are conjugate norms, i.e. such that 1
p +

1
q = 1 (Mangasarian, 1997).

In solving any of these constrained optimization problems, there is a notion of

critical constraints; i.e. those inequality constraints that are satisfied as equalities

by the optimal solution. In our setting, constraints correspond to training examples

(xi, yi), 1 ≤ i ≤ m, and the critical constraints are given by those training
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examples that lie right on the margin a distance ρ from the optimal hyperplane

(cf. Figure 1.2). These critical training patterns are called Support Vectors.Support Vectors

Notice that all the remaining examples of the training set are irrelevant: for non-

critical examples the corresponding constraint yi((w ·xi)+b) ≥ 1 in (1.19) does not

play a role in the optimization, and therefore these points could be removed from

the training set without affecting the results. This nicely captures our intuition

of the problem: the hyperplane (cf. Figure 1.2) is completely determined by the

patterns closest to it, the solution should not depend on the other examples.

In practice, a separating hyperplane may not exist, e.g. if a high noise level

causes a large overlap of the classes. The previous maximum margin algorithmssoft margin

hyperplane perform poorly in this case because the maximum achievable minimum margin

is negative, and this means the critical constraints are the mislabelled patterns

that are furthest from the decision hyperplane. That is, the solution hyperplane is

determined entirely by misclassified examples! To overcome the sensitivity to noisy

training patterns, a standard approach is to allow for the possibility of examples

violating the constraint in (1.19) by introducing slack variables (Cortes and Vapnik,

1995; Vapnik, 1995)

ξi ≥ 0, for all i = 1, . . . ,m, (1.23)
slack variables

along with relaxed constraints

yi((w · xi) + b) ≥ 1− ξi, for all i = 1, . . . ,m. (1.24)

A classifier which generalizes well is then found by controlling both the size of w

and the number of training errors, minimizing the objective function

τ(w, ξ) =
1

2
∥w∥2 + C

m∑
i=1

ξi (1.25)

subject to the constraints (1.23) and (1.24), for some value of the constant C > 0.

In the following section, we shall see why the size of w is a good measure of the

complexity of the classifier.

1.2 Theory

In order to provide a theoretical analysis of the learning problem we have to

introduce a few definitions and assumptions about the process generating the data.

1.2.1 Basic Assumptions

We assume that the training data X,Y is drawn independently and identically

distributed (iid) according to some probability measure p(x, y). This means thatindependently

identically

distributed

all examples (xi, yi) are drawn from p(x, y) regardless of the other examples or the

index i.
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This assumption is stronger than it may appear at first glance. For instance,

time series data fails to satisfy the condition, since the observations are typically

dependent, and their statistics might depend on the index i.

In (1.4), we defined the functional R(g) of a decision function g as the proba-

bility of misclassification. We can generalize this definition to apply to prediction

functions f as well as thresholded decision functions g. This yields what we call the

risk functional.

Definition 1.2 Risk Functional

Denote by c(x, y, f(x)) : RN × R × R → [0,∞) a cost function and by p(x, y) a

probability measure as described above. Then the risk functional for a function

f : RN → R is defined asExpected Risk

R(f) :=

∫
RN×R

c(x, y, f(x)) p(x, y) dxdy. (1.26)

Moreover the empirical risk functional for an m–sample X,Y is given by

Remp(f) :=
1
m

m∑
i=1

c(xi, yi, f(xi)). (1.27)

Empirical Risk

For thresholded decision functions g : RN → {−1, 1} we often use 0–1 classification

error as the cost function c(x, y, g(x)) = 1{g(x)̸=y}. In this case we obtain the risk

functional defined in (1.4) (the probability of misclassification),

R(g) := Pr{g(x) ̸= y}. (1.28)

In this case, the empirical risk functional is

Remp(g) :=
1
m

m∑
i=1

1{g(xi) ̸=yi}, (1.29)

which is just the training error.

Finally we need a quantity called the margin error which is given by themargin error

proportion of training points that have margin less than ρ, i.e.

Rρ(f) :=
1
m

m∑
i=1

1{yif(xi)<ρ}. (1.30)

This empirical estimate of risk counts a point as an error if it is either incorrectly

classified or correctly classified by with margin less than ρ.

While one wants to minimize the risk R(g) this is hardly ever possible since p(x, y)

is unknown. Hence one may only resort to minimizing Remp(g) which is based on the

training data. This, however, is not an effective method by itself—just consider an

estimator that memorizes all the training data X,Y and generates random outputs

for any other data. This clearly would have an empirical risk Remp(g) = 0 but would

obtain a true risk R(g) = 0.5 (assuming the finite training sample has measure 0).

The solution is to take the complexity of the estimate g into account as well, which

will be discussed in the following sections.
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1.2.2 Error Bounds for Thresholded Decision Functions

The central result of this analysis is to relate the number of training examples, the

training set error, and the complexity of the hypothesis space to the generalization

error. For thresholded decision functions, an appropriate measure for the complexity

of the hypothesis space is the Vapnik-Chervonenkis (VC) dimension.VC dimension

Definition 1.3 VC dimension

The VC dimension h of a space of {−1, 1}-valued functions, G, is the size of the

largest subset of domain points that can be labelled arbitrarily by choosing functions

only from G (Vapnik and Chervonenkis, 1971).

The VC dimension can be used to prove high probability bounds on the error of a

hypothesis chosen from a class of decision functions G—this is the famous result

of Vapnik and Chervonenkis (1971). The bounds have since been improved slightly

by Talagrand (1994)—see also (Alexander, 1984).

Theorem 1.2 VC Upper Bound

LetG be a class of decision functions mapping RN to {−1, 1} that has VC dimension

h. For any probability distribution p(x, y) on RN×{−1, 1}, with probability at least

1−δ over m random examples x, for any hypothesis g in G the risk functional with

0–1 loss is bounded by

R(g) ≤ Remp(g) +

√
c

m

(
h+ ln

(
1

δ

))
(1.31)

where c is a universal constant. Furthermore, if g∗ ∈ G minimizes Remp(·), then
with probability 1− δ

R(g∗) ≤ inf
g∈G

R(g) +

√
c

m

(
h+ ln

(
1

δ

))
(1.32)

(A short proof of this result is given by Long (1998), but with worse constants than

Talagrand’s.)

These upper bounds are asymptotically close to the best possible, since there is

also a lower bound with the same form:

Theorem 1.3 VC Lower Bound

Let G be a hypothesis space with finite VC dimension h ≥ 1. Then for any learning

algorithm there exist distributions such that with probability at least δ over m

random examples, the error of its hypothesis g satisfies

R(g) ≥ inf
g′∈G

R(g′) +

√
c

m

(
h+ ln

(
1

δ

))
(1.33)

where c is a universal constant.

(Results of this form have been given by Devroye and Lugosi (1995); Simon (1996);

Anthony and Bartlett (1999), using ideas from Ehrenfeucht et al. (1989).)
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Theorems 1.2 and 1.3 give a fairly complete characterization of the generalization

error that can be achieved by choosing decision functions from a class G. However,

this characterization suffers from two drawbacks.

The first drawback is that the VC dimension must actually be determined (or at

least bounded) for the class of interest—and this is often not easy to do. (However,

bounds on the VC dimension h have been computed for many natural decision

function classes, including parametric classes involving standard arithmetic and

boolean operations. See Anthony and Bartlett (1999) for a review of these results.)

The second (more serious) drawback is that the analysis ignores the structure of

the mapping from training samples to hypotheses, and concentrates solely on the

range of the learner’s possible outputs. Ignoring the details of the learning map

can omit many of the factors that are crucial for determining the success of the

learning algorithm in real situations.

For example, consider learning algorithms that operate by first computing a real

valued prediction function f from some class F and then thresholding this hypoth-

esis to obtain the final decision function g(x) = sgn (f(x)). Here, the VC dimension

is a particularly weak method for measuring the representational capacity of the

resulting function class G = sgn (F ).

One reason is that the VC dimension of G is not sensitive to the scale of F at

the accuracy level of interest. That is, it does not pay attention to whether the

complexity of the hypothesis class is at a scale that is relevant for the outcome of

the predictions.

The first step towards a more refined analysis that takes scale into account is given

by Vapnik (1979). Consider a set X0 ⊂ RN of input points with norm bounded by

R > 0 (that is, ∥xi∥ ≤ R for x ∈ X0), and the set F of bounded linear functions

defined on X0,

F = {x 7→ (w · x) | ∥w∥ ≤ 1, x ∈ X0 } (1.34)

satisfying |f(x)| ≥ ρ for all patterns x in X0. Then if we consider the set G of linear

decision functions obtained by thresholding functions in F , Vapnik (1979) shows

VCdim(G) ≤ min{R2/ρ2, N}+ 1. (1.35)

Note that this can be much smaller than the VC dimension of sgn (F ) obtained

without taking ρ into account, which is N + 1 in this case. Therefore, one could

hope to obtain significant benefits by using scale sensitive bounds which give much

tighter results for large margin classifiers. Unfortunately, the bound (1.35) does not

yet suffice for our purposes, because note that it requires that all points (including

the test points) satisfy the margin condition, and therefore theorem 1.2 does not

apply in this case. Rigorously obtaining these scale sensitive improvements is the

topic we now address. In the following section, we consider scale-sensitive versions

of the VC dimension, and obtain upper and lower bounds on risk in terms of these

dimensions.
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1.2.3 Margin Dependent Error Bounds for Real Valued Predictors

Definition 1.4 Fat Shattering Dimension

Let F be a set of real valued functions. We say that a set of points S ⊂ X , which

we will index as a vector x ∈ X |S|, is ρ-shattered by F if there is a vector of real

numbers b ∈ R|S| such that for any choice of signs y ∈ {−1, 1}|S| there is a function

f in F that satisfies

yi(f(xi)− bi) ≥ ρ for 1 ≤ i ≤ |S|. (1.36)

(That is, f(xi) ≥ bi + ρ if yi = 1, and f(xi) ≤ bi − ρ if yi = −1, for all xi in S.

Notice how similar this is to the notion of a minimum margin defined by (1.12).)

The fat shattering dimension fatF (ρ) of the set F is a function from the positive real

numbers to the integers which maps a value ρ to the size of the largest ρ-shatteredfat shattering

set, if this is finite, or infinity otherwise.

We may think of the fat-shattering dimension of a set of real-valued functions as

the VC dimension obtained by thresholding but requiring that outputs are ρ above

the threshold for positive classification and ρ below for negative.

The fat-shattering dimension is closely related to a more basic quantity, the

covering number of a class of functions.

Definition 1.5 Covering Numbers of a Set

Denote by (S, d) a pseudometric space, Br(x) the closed ball in S centred at x with

radius r, T a subset of S, and ε some positive constant. Then the covering number

N (ε, T ) is defined as the minimum cardinality (that is, number of elements) of acovering

number set of points T ′ ⊂ S such that

T ⊆
∪

xi∈T ′

Bε(xi), (1.37)

i.e. such that the maximum difference of any element in T and the closest element

in T ′ is less than or equal to ε.

Covering a class of functions F with an ε-cover means that one is able to ap-

proximately represent F (which may be of infinite cardinality) by a finite set. For

learning, it turns out that it suffices to approximate the restrictions of functions in a

class F to finite samples. For a subset X of some domain X , define the pseudometric

ℓ∞,X by

ℓ∞,X(f, f ′) = max
x∈X

|f(x)− f ′(x)| (1.38)

where f and f ′ are real-valued functions defined on X . Let N (ε, F,m) denote the

maximum, over all X ⊂ X of size |X| = m, of the covering number N (ε, F ) with

respect to ℓ∞,X . The following theorem shows that the fat-shattering dimension

is intimately related to these covering numbers. (The upper bound is due to Alon

et al. (1997), and the lower bound to Bartlett et al. (1997).)
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Theorem 1.4 Bounds on N in terms of fatF
Let F be a set of real functions from a domain X to the bounded interval [0, B].

Let ε > 0 and let m ≥ fatF (ε/4). Then

log2 e

8
fatF (16ε) ≤ log2 N (ε, F,m) ≤ 3 fatF (

ε
4 ) log

2
2

(
4eBm

ε

)
. (1.39)

Unfortunately, directly bounding N can be quite difficult in general. Useful tools

from functional analysis (which deal with the functional inverse of N wrt. ϵ, the so

called entropy number) for obtaining these bounds have been developed for classes

of functions F defined by linear mappings from Hilbert spaces (Carl and Stephani,

1990), and linear functions over kernel expansions (Williamson et al., 1998b).

The following result shows that we can use covering numbers to obtain upper

bounds on risk in terms of margin error (Shawe-Taylor et al., 1998; Bartlett, 1998).

Theorem 1.5 Bounds on R(f) in terms of N and ρ

Suppose that F is a set of real-valued functions defined on X , ε ∈ (0, 1) and

ρ > 0. Fix a probability distribution on X ×{−1, 1} and a sample size m. Then the

probability that some f in F has Rρ(f) = 0 but R(f) ≥ ε is no more than

2 N
(
ρ
2 , F, 2m

)
2−εm/2. (1.40)

Furthermore,

Pr (“some f in F has R(f) ≥ Rρ(f) + ε”) ≤ 2 N
(
ρ
2 , F, 2m

)
e−ε2m/8. (1.41)

In fact, it is possible to obtain a similar result that depends only on the behaviour

of functions in F near the threshold (see (Anthony and Bartlett, 1999) for details).

Let us have a close look at the bound (1.41) on the probability of excessive

error. The factor e−ε2m/8 in (1.41) stems from a bound of Hoeffding (1963) on theanatomy of a

uniform conver-

gence bound

probability of a large deviation of a sum of random variables from its mean. The

factor N
(
ρ
2 , F, 2m

)
stems from the fact that the continuous class of functions F

was approximated (to accuracy ρ/2) by a finite number of functions. The 2m is

due to the use of a symmetrization argument which is needed to make the overall

argument work. Theorem 1.4 shows that this term is bounded by an exponential

function of the fat-shattering dimension at scale ρ/8.

Interestingly, a similar result holds in regression. (For a review of these uniform

convergence results, see (Anthony and Bartlett, 1999).

Theorem 1.6 Bounds on R(f) for Regression

Suppose that F is a set of functions defined on a domain X and mapping into

the real interval [0, 1]. Let p be any probability distribution on X × [0, 1], ε any

real number between 0 and 1, and m ∈ N. Then for the quadratic cost function

c(x, y, f(x)) = (y − f(x))2 we have

Pr

(
sup
f∈F

|R(f)−Remp(f)| ≥ ε

)
≤ 4 N

(
ε
16 , F, 2m

)
e−ε2m/32. (1.42)
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Comparing with (1.41), notice that the scale of the covering number depends on

the desired accuracy ε, whereas in (1.41) it depends on the scale ρ at which the

margins are examined.

1.2.4 Error Bounds for Linear Decision Functions

The following result, due to Bartlett and Shawe-Taylor (1999), gives a bound on

the fat-shattering dimension of large margin linear classifiers. It has a similar form

to the bound (1.35) on the VC dimension of linear functions restricted to certain

sets. It improves on a straightforward corollary of that result, and on a result of

Gurvits (1997).

Theorem 1.7 Fat Shattering Dimension for Linear Classifiers

Suppose that BR is the ℓ2 ball of radius R in Rn, centered at the origin, and consider

the set

F := {fw | fw(x) = (w · x) with ∥w∥ ≤ 1,x ∈ BR } . (1.43)

Then

fatF (ρ) ≤
(

R
ρ

)2
. (1.44)

Using this result together with Theorems 1.4 and 1.5 gives the following theorem.

Theorem 1.8 Error Bounds for Linear Classifiers

Define the class F of real-valued functions on the ball of radius R as in (1.43). There

is a constant c such that, for all probability distributions, with probability at least

1 − δ over m independently generated training examples, every ρ > 0 and every

function f ∈ F with margin at least ρ on all training examples (i.e. Rρ(f) = 0)

satisfies

R(f) ≤ c

m

(
R2

ρ2
log2

(
m

ρ

)
+ log

(
1

δ

))
. (1.45)

Furthermore, with probability at least 1 − δ, for all ρ > 0, every function f in F

has error

R(f) ≤ Rρ(f) +

√
c

m

(
R2

ρ2
log2

(
m

ρ

)
+ log

(
1

δ

))
. (1.46)

For estimators using a linear programming approach as in (Mangasarian, 1968) one

may state the following result, which then, via Theorem 1.4 can be transformed

into a generalization bound as well.

Theorem 1.9 Capacity Bounds for Linear Classifiers

There is a constant c such that for the class

FR =
{
x 7→ wTx | ∥x∥∞ ≤ 1, ∥w∥1 ≤ R

}
(1.47)



Smola, Bartlett, Schölkopf, and Schuurmans: Advances in Large Margin Classifiers 2011/04/16 20:50

1.3 Support Vector Machines 15

we have

fatFR
(ε) ≤ c

(
R

ε

)2

ln(2N + 2). (1.48)

Finally, we can obtain bounds for convex combinations of arbitrary hypotheses from

a class G of {−1, 1}-valued functions,

co (G) =

{∑
i

αigi

∣∣∣∣∣ αi > 0,
∑
i

αi = 1, gi ∈ G

}
. (1.49)

See (Schapire et al., 1998). These bounds are useful in analysing boosting algo-

rithms; see Section 1.4.

Theorem 1.10 Bounds for Convex Combinations of Hypotheses

Let p(x, y) be a distribution over X ×{−1, 1}, and let X be a sample of m examples

chosen iid according to p. Suppose the base-hypothesis space G has VC dimension

h, and let δ > 0. Then with probability at least 1− δ over the random choice of the

training set X, Y , every convex combination of functions f ∈ co (G) satisfies the

following bound for all ρ > 0.

R(f) ≤ Rρ(f) +

√
c

m

(
h log2(m/h)

ρ2
+ log

(
1

δ

))
(1.50)

1.3 Support Vector Machines

1.3.1 Optimization Problem

To construct the Optimal Hyperplane (cf. Figure 1.2), one solves the following

optimization problem:

minimize τ(w) =
1

2
∥w∥2 (1.51)

subject to yi((w · xi) + b) ≥ 1, for all i = 1, . . . ,m. (1.52)

This constrained optimization problem is dealt with by introducing Lagrange

multipliers αi ≥ 0 and a LagrangianLagrangian

L(w, b,α) =
1

2
∥w∥2 −

m∑
i=1

αi (yi((xi ·w) + b)− 1) . (1.53)

The Lagrangian L has to be minimized with respect to the primal variables w and

b and maximized with respect to the dual variables αi (i.e. a saddle point has to be

found). Let us try to get some intuition for this. If a constraint (1.52) is violated,

then yi((w · xi) + b) − 1 < 0, in which case L can be increased by increasing

the corresponding αi. At the same time, w and b will have to change such that

L decreases. To prevent −αi (yi((w · xi) + b)− 1) from becoming arbitrarily large,

the change in w and b will ensure that, provided the problem is separable, the
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constraint will eventually be satisfied.

Similarly, one can understand that for all constraints which are not precisely met

as equalities, i.e. for which yi((w · xi) + b) − 1 > 0, the corresponding αi mustKKT

conditions be 0: this is the value of αi that maximizes L. The latter is the statement of the

Karush-Kuhn-Tucker complementarity conditions of optimization theory (Karush,

1939; Kuhn and Tucker, 1951; Bertsekas, 1995).

The condition that at the saddle point, the derivatives of L with respect to the

primal variables must vanish,

∂

∂b
L(w, b,α) = 0 and

∂

∂w
L(w, b,α) = 0, (1.54)

leads to
m∑
i=1

αiyi = 0 (1.55)

and

w =
m∑
i=1

αiyixi. (1.56)

The solution vector thus has an expansion in terms of a subset of the training

patterns, namely those patterns whose Lagrange multiplier αi is non-zero. By thesupport vector

expansion Karush-Kuhn-Tucker complementarity conditions these training patterns are the

ones for which

αi(yi((xi ·w) + b)− 1) = 0, i = 1, . . . ,m, (1.57)

and therefore they correspond precisely to the Support Vectors (i.e. critical con-

straints) discussed in Section 1.1.4. Thus we have the satisfying result that the

Support Vectors are the only training patterns that determine the optimal deci-

sion hyperplane; all other training patterns are irrelevant and do not appear in the

expansion (1.56).

By substituting (1.55) and (1.56) into L, one eliminates the primal variables and

arrives at the Wolfe dual of the optimization problem (e.g. Bertsekas, 1995): find

multipliers αi whichdual

optimization

problem maximize W (α) =
m∑
i=1

αi −
1

2

m∑
i,j=1

αiαjyiyj (xi · xj) (1.58)

subject to αi ≥ 0 for all i = 1, . . . ,m, and
m∑
i=1

αiyi = 0. (1.59)

The hyperplane decision function can thus be written as

f(x) = sgn

(
m∑
i=1

yiαi (x · xi) + b

)
(1.60)

where b is computed using (1.57).
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The structure of the optimization problem closely resembles those that typically

arise in Lagrange’s formulation of mechanics (e.g. Goldstein, 1986). In that case

also, it is often only a subset of the constraints that are active. For instance, if we

keep a ball in a box, then it will typically roll into one of the corners. The constraints

corresponding to the walls which are not touched by the ball are irrelevant, the walls

could just as well be removed.

Seen in this light, it is not too surprising that it is possible to give a mechanical

interpretation of optimal margin hyperplanes (Burges and Schölkopf, 1997): If we

assume that each support vector xi exerts a perpendicular force of size αi and sign

yi on a solid plane sheet lying along the hyperplane, then the solution satisfies the

requirements of mechanical stability. The constraint (1.55) states that the forces

on the sheet sum to zero; and (1.56) implies that the torques also sum to zero, via∑
i xi × yiαiw/∥w∥ = w ×w/∥w∥ = 0.

1.3.2 Feature Spaces and Kernels

To construct Support Vector Machines, the optimal hyperplane algorithm is aug-

mented by a method for computing dot products in feature spaces that are nonlin-

early related to input space (Aizerman et al., 1964; Boser et al., 1992). The basic

idea is to map the data into some other dot product space (called the feature space)

F via a nonlinear mapfeature space

Φ : RN → F , (1.61)

and then in the space F perform the linear algorithm described above.

For instance, suppose we are given patterns x ∈ RN where most informa-

tion is contained in the d-th order products (monomials) of entries xj of x, i.e.

xj1xj2 · · ·xjd , where j1, . . . , jd ∈ {1, . . . , N}. In that case, we might prefer to ex-

tract these monomial features first, and work in the feature space F of all products

of d entries.

This approach, however, fails for realistically sized problems: for N -dimensional

input patterns, there exist (N + d− 1)!/(d!(N − 1)!) different monomials. Already

16 × 16 pixel input images (e.g. in character recognition) and a monomial degree

d = 5 yield a dimensionality of 1010.

This problem can be overcome by noticing that both the construction of the

optimal hyperplane in F (cf. (1.58)) and the evaluation of the corresponding

decision function (1.60) only require the evaluation of dot products (Φ(x) · Φ(x′)),

and never require the mapped patterns Φ(x) in explicit form. This is crucial, since

in some cases, the dot products can be evaluated by a simple kernel (Aizerman

et al., 1964; Boser et al., 1992).Mercer kernel

k(x,x′) = (Φ(x) · Φ(x′)). (1.62)
polynomial

kernel For instance, the polynomial kernel

k(x,x′) = (x · x′)d (1.63)
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can be shown to correspond to a map Φ into the space spanned by all products of

exactly d dimensions of RN (Poggio (1975); Boser et al. (1992)). For a proof, see

Schölkopf (1997). For d = 2 and x,x′ ∈ R2, for example, we have (Vapnik, 1995)

(x · x′)2 = (x21, x
2
2,
√
2 x1x2)(y

2
1 , y

2
2 ,
√
2 y1y2)

⊤ = (Φ(x) · Φ(x′)), (1.64)

defining Φ(x) = (x21, x
2
2,
√
2 x1x2).

By using k(x,x′) = ((x ·x′)+c)d with c > 0, we can take into account all product

of order up to d (i.e. including those of order smaller than d).

More generally, the following theorem of functional analysis shows that kernels

k of positive integral operators give rise to maps Φ such that (1.62) holds (Mercer,

1909; Aizerman et al., 1964; Boser et al., 1992; Dunford and Schwartz, 1963):

Theorem 1.11 Mercer

If k is a continuous symmetric kernel of a positive integral operator T , i.e.positive

integral

operator (Tf)(x′) =

∫
X
k(x,x′)f(x) dx (1.65)

with∫
X×X

k(x,x′)f(x)f(x′) dx dx′ ≥ 0 (1.66)

for all f ∈ L2(X ) (X being a compact subset of RN ), it can be expanded in a

uniformly convergent series (on X × X ) in terms of T ’s eigenfunctions ψj and

positive eigenvalues λj ,

k(x,x′) =

NF∑
j=1

λjψj(x)ψj(x
′), (1.67)

where NF ≤ ∞ is the number of positive eigenvalues.

An equivalent way to characterize Mercer kernels is that they give rise to positive

matrices Kij := k(xi,xj) for all {x1, . . . ,xm} (Saitoh, 1988).

From (1.67), it is straightforward to construct a map Φ into a potentially infinite-

dimensional l2 space which satisfies (1.62). For instance, we may use

Φ(x) = (
√
λ1ψ1(x),

√
λ2ψ2(x), . . .). (1.68)

Rather than thinking of the feature space as an l2 space, we can alternatively

represent it as the Hilbert space Hk containing all linear combinations of the

functions f(.) = k(xi, .) (xi ∈ X ). To ensure that the map Φ : X → Hk, which in

this case is defined as

Φ(x) = k(x, .), (1.69)

satisfies (1.62), we need to endow Hk with a suitable dot product ⟨., .⟩. In view of

the definition of Φ, this dot product needs to satisfy

⟨k(x, .), k(x′, .)⟩ = k(x,x′), (1.70)
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feature spaceinput space

Φ
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Figure 1.3 The idea of SV machines: map the training data nonlinearly into a

higher-dimensional feature space via Φ, and construct a separating hyperplane with

maximum margin there. This yields a nonlinear decision boundary in input space.

By the use of a kernel function (1.62), it is possible to compute the separating

hyperplane without explicitly carrying out the map into the feature space.

which amounts to saying that k is a reproducing kernel for Hk. For a Mercer kernelreproducing

kernel (1.67), such a dot product does exist. Since k is symmetric, the ψi (i = 1, . . . , NF )

can be chosen to be orthogonal with respect to the dot product in L2(C), i.e.

(ψj , ψn)L2(C) = δjn, using the Kronecker δjn. From this, we can construct ⟨., .⟩
such that

⟨
√
λjψj ,

√
λnψn⟩ = δjn. (1.71)

Substituting (1.67) into (1.70) then proves the desired equality (for further details,

see Aronszajn (1950); Wahba (1973); Girosi (1998); Schölkopf (1997)).

Besides (1.63), SV practictioners use sigmoid kernelssigmoid

kernel
k(x,x′) = tanh(κ(x · x′) + Θ) (1.72)

for suitable values of gain κ and threshold Θ, and radial basis function kernels, as

for instance (Aizerman et al., 1964; Boser et al., 1992; Schölkopf et al., 1997)Gaussian RBF

kernel
k(x,x′) = exp

(
−∥x− x′∥2/(2 σ2)

)
, (1.73)

with σ > 0. Note that when using Gaussian kernels, for instance, the feature space

Hk thus contains all superpositions of Gaussians on X (plus limit points), whereas

by definition of Φ (1.69), only single bumps k(x, .) do have pre-images under Φ.

The main lesson from the study of kernel functions, is that the use of kernels can

turn any algorithm that only depends on dot products into a nonlinear algorithm

which is linear in feature space. In the time since this was explicitly pointed out

(Schölkopf et al., 1998c) a number of such algorithms have been proposed: until then

the applications of the kernel trick were a proof of the convergence of rbf network

training by (Aizerman et al., 1964) and the nonlinear variant of the SV algorithm

by Boser et al. (1992) (see Figure 1.3). To construct SV machines, one computes

an optimal hyperplane in feature space. To this end, we substitute Φ(xi) for each

training example xi. The weight vector (cf. (1.56)) then becomes an expansion in
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feature space. Note that w will typically no more correspond to the image of just a

single vector from input space (cf. Schölkopf et al. (1998a) for a formula to compute

the pre-image if it exists), in other words,wmay not be directly accessible any more.

However, since all patterns only occur in dot products, one can substitute Mercer

kernels k for the dot products (Boser et al., 1992; Guyon et al., 1993), leading to

decision functions of the more general form (cf. (1.60))decision

function

g(x) = sgn

(
m∑
i=1

yiαi (Φ(x) · Φ(xi)) + b

)
= sgn

(
m∑
i=1

yiαi k(x,xi) + b

)
(1.74)

and the following quadratic program (cf. (1.58)):

maximize W (α) =
m∑
i=1

αi −
1

2

m∑
i,j=1

αiαjyiyjk(xi,xj) (1.75)

subject to αi ≥ 0, i = 1, . . . ,m, and
m∑
i=1

αiyi = 0. (1.76)

Recall that, as discussed in Section 1.1.4 a separating hyperplane may not always

exist, even in the expanded feature space F . To cope with this difficulty, slacksoft margin

and kernels variables were introduced to yield the soft margin optimal hyperplane problem

(1.25). Incorporating kernels, and rewriting (1.25) in terms of Lagrange multipliers,

this again leads to the problem of maximizing (1.75), but now subject to the

constraints

0 ≤ αi ≤ C, i = 1, . . . ,m, and

m∑
i=1

αiyi = 0. (1.77)

The only difference from the separable case (1.76) is the upper bound C on the

Lagrange multipliers αi. This way, the influence of the individual patterns (which

could always be outliers) gets limited. As above, the solution takes the form (1.74).

The threshold b can be computed by exploiting the fact that for all SVs xi with

αi < C, the slack variable ξi is zero (this again follows from the Karush-Kuhn-

Tucker complementarity conditions), and hence

m∑
j=1

yjαj k(xi,xj) + b = yi. (1.78)

If one uses an optimizer that works with the double dual (e.g. Vanderbei, 1997), one

can also recover the value of the primal variable b directly from the corresponding

double dual variable.

Finally, the algorithm can be modified such that it does not require the regu-

larization constant C. Instead, one specifies an upper bound 0 ≤ ν ≤ 1 on the

fraction of points allowed to lie in the margin (asymptotically, the number of SVs)

(Schölkopf et al., 1998d). This leaves us with a homogeneous target function made

up by the quadratic part of (1.75), and an additional lower bound constraint on

the sum over all Lagrange multipliers.
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Σ

. . .

output    σ (Σ υi k (x,xi))

weightsυ1 υ2  υm

. . .

. . .

test vector x

support vectors x1 ... xn

mapped vectors Φ(xi), Φ(x)Φ(x) Φ(xn)

dot product (Φ(x).Φ(xi)) =  k (x,xi)( . ) ( . ) ( . )

Φ(x1) Φ(x2)

        σ ( )

Figure 1.4 Architecture of SV machines. The input x and the Support Vectors

xi are nonlinearly mapped (by Φ) into a feature space F , where dot products are

computed. By the use of the kernel k, these two layers are in practice computed in

one single step. The results are linearly combined by weights υi, found by solving

a quadratic program (in pattern recognition, υi = yiαi; in regression estimation,

υi = α∗
i − αi). The linear combination is fed into the function σ (in pattern

recognition, σ(x) = sgn (x+ b); in regression estimation, σ(x) = x+ b).

1.3.3 Smoothness and Regularization

For kernel-based function expansions, one can show (Smola and Schölkopf, 1998b)

that given a regularization operator P mapping the functions of the learning

machine into some dot product space, the problem of minimizing the regularized

risk

Rreg(f) := Remp(f) +
λ

2
∥Pf∥2 (1.79)

regularized risk
(with a regularization parameter λ ≥ 0) can be written as a constrained optimiza-

tion problem. For particular choices of the loss function, it further reduces to a

SV type quadratic programming problem. The latter thus is not specific to SV

machines, but is common to a much wider class of approaches. What gets lost in

the general case, however, is the fact that the solution can usually be expressed in

terms of a small number of SVs (cf. also Girosi (1998), who establishes a connection

between SV machines and basis pursuit denoising (Chen et al., 1995)). This specific

feature of SV machines is due to the fact that the type of regularization and the
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class of functions that the estimate is chosen from are intimately related (Girosi

et al., 1993; Smola and Schölkopf, 1998a; Smola et al., 1998): the SV algorithm is

equivalent to minimizing the regularized risk Rreg(f) on the set of functions

f(x) =
∑
i

αik(xi,x) + b, (1.80)

provided that k and P are interrelated by

k(xi,xj) = ((Pk)(xi, .) · (Pk)(xj , .)) . (1.81)

To this end, k is chosen as a Green’s function of P ∗P , for in that case, the right hand

side of (1.81) equals (k(xi, .) · (P ∗Pk)(xj , .)) = (k(xi, .) · δxj (.)) = k(xi,xj). For

instance, an RBF kernel corresponds to regularization with a functional containing

a specific differential operator.

In SV machines, the kernel thus plays a dual role: firstly, it determines the class

of functions (1.80) that the solution is taken from; secondly, via (1.81), the kernel

determines the type of regularization that is used. The next question, naturally,

is what type of regularization (i.e. kernel) we should use in order to get the best

generalization performance. Using bounds on covering numbers of Hilbert spaces

(Carl and Stephani, 1990), one can show (Williamson et al., 1998b,a; Schölkopf

et al., 1999) that the eigenspectrum of the matrix k(xi, xj) is closely connected to

the latter and also to the eigenspectrum of the kernel k.

For arbitrary expansions of f into basis functions, say fi, the considerations about

smoothness of the estimate still hold, provided ∥Pf∥ is a norm in the space spanned

by the basis functions fi (otherwise one could find functions f ∈ span {fi} withregularization

networks ∥Pf∥ = 0, however f ̸= 0). In this case the existing bounds for kernel expansions

can be readily applied to regularization networks as well (cf. e.g. (Williamson et al.,

1998b; Smola, 1998) for details). However, one can show (Kimeldorf and Wahba,

1971; Cox and O’Sullivan, 1990), that such an expansion may not fully minimize

the regularized risk functional (1.79). This is one of the reasons why often only

kernel expansions are considered.

Finally it is worth while pointing out the connection between Gaussian Processes

and Support Vector machines. The similarity is most obvious in regression, where

the Support Vector solution is the maximum a posteriori estimate of the corre-

sponding Bayesian inference scheme (Williams, 1998). In particular, the kernel k ofGaussian

processes Support Vector machines plays the role of a covariance function such that the prior

probability of a function f =
∑

i αik(xi,x) is given by

P (f) ∝ exp
(
−1

2∥Pf∥
2
)
= exp

−1
2

∑
i,j

αiαjk(xi,xj)

 . (1.82)

Bayesian methods, however, require averaging over the posterior distribution

P (f |X,Y ) in order to obtain the final estimate and to derive error bounds. In

classification the situation is even more complicated, since we have Bernoulli dis-

tributed random variables for the labels of the classifier. See (Williams, 1998) for
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more details on this subject.

1.3.4 A Bound on the Leave-One-Out Estimate

Besides the bounds directly involving large margins, which are useful for stating

uniform convergence results, one may also try to estimate R(f) by using leave-

one-out estimates. Denote by fi the estimate obtained from X\{xi}, Y \{yi}. Then

Rout(f) :=
1

m

m∑
i=1

c(xi, yi, fi(xi)) (1.83)

One can show (cf. e.g. (Vapnik, 1979)) that the latter is an unbiased estimator of

R(f). Unfortunately, Rout(f) is hard to compute and thus rarely used. In the case

of Support Vector classification, however, an upper bound on Rout(f) is not too

difficult to obtain. Vapnik (1995) showed that the fraction of Support Vectors is an

upper bound on Rout(f). Jaakkola and Haussler (1999) have generalized this result

as follows

Rout(f) ≤
1

m

m∑
i=1

1{yi

∑
j ̸=i αjyjk(xj ,xi)+yib>0}

=
1

m

m∑
i=1

1{yif(xi)−αik(xi,xi))>0}. (1.84)

The latter can be obtained easily without explicitly solving the optimization

problem again for the reduced samples. In particular, for kernels with k(x,x) = 1

like many RBF kernels the condition reduces to testing whether yif(xi)− αi > 0.

The remaining problem is that Rout(f) itself is a random variable and thus it does

not immediately give a bound on R(f). See also chapters ?? and ?? for futher

details on how to exploit these bounds in practical cases.

1.4 Boosting

Freund and Schapire (1995) proposed the AdaBoost algorithm for combining clas-

sifiers produced by other learning algorithms. AdaBoost has been very successful

in practical applications (see Section 1.5). It turns out that it is also a large margin

technique.

Table 1.2 gives the pseudocode for the algorithm. It returns a convex combination

of classifiers from a class G, by using a learning algorithm L that takes as input a

training sample X, Y and a distribution D on X (not to be confused with the true

distribution p), and returns a classifier from G. The algorithm L aims to minimize

training error on X, Y , weighted according to D. That is, it aims to minimize

m∑
i=1

Di1{h(xi )̸=yi}. (1.85)
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argument: Training sample, X = {x1, . . . ,xm} ⊂ X, Y = {y1, . . . , ym} ⊂ {±1}
Number of iterations, T

returns: Convex combination of functions from G, f =
∑T

t=1 αtgt.
function AdaBoost(X,Y, T)

for all i from i = 1, . . . ,m
D1(i) := 1/m

endfor
for all t from {1, . . . , T}

gt := L(X,Y,Dt)

εt :=

m∑
i=1

Dt(i)1gt(xi) ̸=yi

αt :=
1

2
ln

(
1− εt
εt

)
Zt := 2

√
εt(1− εt)

for all i from i = 1, . . . ,m

Dt+1(i) :=

{
Dt(i)e

−αt/Zt if yi = gt(xi)

Dt(i)e
αt/Zt otherwise,

endfor
endfor

return f =

∑T
t=1 αtgt∑T
i=1 αt

.

end

Table 1.2 Pseudocode for the Adaboost algorithm. (L is a learning algorithm that

chooses a classifier from G to minimize weighted training error.)

AdaBoost iteratively combines the classifiers returned by L. The idea behind Ad-

aBoost is to start with a uniform weighting over the training sample, and pro-

gressively adjust the weights to emphasize the examples that have been frequently

misclassified by the classifiers returned by L. These classifiers are combined with

convex coefficients that depend on their respective weighted errors. The following

theorem shows that Adaboost produces a large margin classifier, provided L is suc-

cessful at finding classifiers with small weighted training error. See (Schapire et al.,

1998). Recall (1.30) that the margin error of a function f with respect to ρ on a

sample X,Y is Rρ(f) =
1
m

∑m
i=1 1{yif(xi)<ρ}.

Theorem 1.12 Margin Error of AdaBoost

If, at iteration t, L returns a function with weighted training error εt < 1/2, then

AdaBoost returns a function f that satisfies

Rρ(f) ≤ 2T
T∏

t=1

√
ε1−ρ
t (1− εt)1+ρ. (1.86)
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In particular, if εt ≤ 1/2− 2ρ, then

Rρ(f) < (1− ρ2)T/2, (1.87)

and this is less than ε for T ≥ (2/ρ2) ln(1/ε).

1.5 Empirical Results, Implementations, and Further Developments

Large margin classifiers are not only promising from the theoretical point of view.

They also have proven to be competitive or superior to other learning algorithms

in practical applications. In the following we will give references to such situations.

1.5.1 Boosting

Experimental results show that boosting is able to improve the performance of

classifiers significantly. Extensive studies on the UC Irvine dataset, carried out

by Freund and Schapire (1996) and Quinlan (1996) with tree classifiers show the

performance of such methods. However, also other learning algorithms can benefit

from boosting. Schwenk and Bengio (1998) achieve record performance on an OCR

task on the UC Irvine database, using neural networks as the base classifiers. See

Rätsch (1998) and chapter ?? for further results on the performance of improved

versions of boosted classifiers.

1.5.2 Support Vector Machines

SV Machines perform particularly well in feature rich highdimensional problems.

Schölkopf et al. (1995); Schölkopf et al. (1996, 1998b); Burges and Schölkopf

(1997); Schölkopf (1997) achieve state of the art, or even record performance in

several Optical Character Recognition (OCR) tasks such as the digit databases

of the United Postal Service (USPS) and the National Institute of Standards and

Technology (NIST). The latter can be obtained at

http://www.research.att.com/∼yann/ocr/mnist/

Similar results have been obtained for face recognition by Oren et al. (1997); Osuna

et al. (1997b) and object recognition (Blanz et al., 1996; Schölkopf, 1997). Finally,

also on large noisy problems SV Machines are very competitive as shown in (Smola,

1998).

1.5.3 Implementation and Available Code

Whilst Boosting can be easily implemented by combining a base learner and

following the pseudocode of table 1.2. Hence one only has to provide a base learning

algorithm satisfying the properties of a weak learner, which defers all problems to
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the underlying algorithm.

http://www.research.att.com/∼yoav/adaboost/

provides a Java applet demonstrating the basic properties of AdaBoost.

The central problem in Support Vector Machines is a quadratic programming

problem. Unfortunately, off-the-shelf packages developed in the context of mathe-

matical programming like MINOS (Murtagh and Saunders, 1993), LOQO (Vander-

bei, 1994), OSL (IBM Corporation, 1992), or CPLEX (CPL, 1994) are often pro-

hibitively expensive or unsuitable for optimization problems in more than several

thousand variables (whilst the number of variables may be in the tens of thousands

in practical applications). Furthermore these programs are often optimized to deal

with sparse matrix entries, causing unneeded overhead when solving generic SV

optimization problems (which are sparse in the solution, not in the matrix entries).

This situation led to the development of several quadratic optimization algo-

rithms specifically designed to suit the needs of SV machines. Starting from simple

subset selection algorithms as initially described by Vapnik (1979) and subsequently

implemented in e.g. (Schölkopf et al., 1995), more advanced chunking methods were

proposed (Osuna et al., 1997a) (see also (Joachims, 1999) for a detailed description

of the algorithm) for splitting up the optimization problem into smaller subproblems

that could be easily solved by standard optimization code. Other methods exploit

constrained gradient descent techniques (Kaufmann, 1999), or minimize very small

subproblems, such as the Sequential Minimal Optimization algorithm (SMO) by

Platt (1999). See also chapter ?? for further methods for training a SV classifier.

Implementations include SvmLight by Joachims (1999),

http://www-ai.cs.uni-dortmund.de/thorsten/svm light.html

the Royal Holloway / ATT / GMD Support Vector Machine by Saunders et al.

(1998), available at

http://svm.dcs.rhbnc.ac.uk/

and the implementation by Steve Gunn which can be downloaded from

http://www.isis.ecs.soton.ac.uk/resources/svminfo/.

The first two of these optimizers use the GMD (Smola) implementation of an interior

point code along the lines of Vanderbei (1994) as the core optimization engine. It

is available as a standalone package at

http://www.svm.first.gmd.de/software.html.

This site will also contain pointers to further toolboxes as they become available.

Java applets for demonstration purposes can be found at

http://http://svm.dcs.rhbnc.ac.uk/pagesnew/GPat.shtml

http://http://svm.research.bell-labs.com/SVT/SVMsvt.html.
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1.6 Notation

We conclude the introduction with a list of symbols which are used throughout the

book, unless stated otherwise.

N the set of natural numbers

R the set of reals

X a sample of input patterns

Y a sample of output labels

X an abstract domain

ln logarithm to base e

log2 logarithm to base 2

(x · x′) inner product between vectors x and x′

∥.∥ 2-norm (Euclidean distance), ∥x∥ :=
√

(x · x)

∥.∥p p-norm , ∥x∥p :=
(∑N

i=1 |xi|p
)1/p

∥.∥∞ ∞-norm , ∥x∥∞ := maxNi=1 |xi|
ℓp ℓp metric

L2(X) space of functions on X square integrable wrt. Borel–Lebesgue measure

E(ξ) expectation of random variable ξ

Pr(·) probability of an event

N dimensionality of input space

m number of training examples

xi input patterns

yi target values, or (in pattern recognition) classes

w weight vector

b constant offset (or threshold)

h VC dimension

f a real valued function f : RN → R (unthresholded)

F a family of real valued functions f

g a decision function g : RN → {−1, 1}
F a family of decision functions g

ρf (x, y) margin of function f on the example (x, y), i.e. y f(x)

ρf minimum margin, i.e. min1≤i≤m ρf (xi, yi)
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c(x, y, f(x)) cost function

R(g) risk of g, i.e. expected fraction of errors

Remp(g) empirical risk of g, i.e. fraction of training errors

R(f) risk of f

Remp(f) empirical risk of f

k Mercer kernel

F Feature space induced by a kernel

Φ map into feature space (induced by k)

αi Lagrange multiplier

α vector of all Lagrange multipliers

ξi slack variables

ξ vector of all slack variables

C regularization constant for SV Machines

λ regularization constant (C = 1
λ )
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In contrast to the standard machine learning tasks of classification and metric

regression we investigate the problem of predicting variables of ordinal scale, a

setting referred to as ordinal regression. This problem arises frequently in the social

sciences and in information retrieval where human preferences play a major role.

Whilst approaches proposed in statistics rely on a probability model of a latent

(unobserved) variable we present a distribution independent risk formulation of

ordinal regression which allows us to derive a uniform convergence bound. Applying

this bound we present a large margin algorithm that is based on a mapping from

objects to scalar utility values thus classifying pairs of objects. We give experimental

results for an information retrieval task which show that our algorithm outperforms

more naive approaches to ordinal regression such as Support Vector Classification

and Support Vector Regression in the case of more than two ranks.

2.1 Introduction

Let us shortly recall the model presented in Chapter 1. Given an iid sample (X,Y ),

and a set F of mappings f : X 7→ Y, a learning procedure aims at finding f∗ such

that — using a predefined loss c : X × Y × Y 7→ R — the risk functional (1.26) is

minimized. Using the principle of Empirical Risk Minimization (ERM), one chooses

the function femp which minimizes the mean of the loss Remp(f) (Equation 1.27)
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given the sample (X,Y ). Introducing a quantity which characterizes the capacity of

F , bounds for the deviation |R(femp)− inff∈F R(f)| can be derived (see Theorems

1.2, 1.3, 1.5, and 1.6). Two main scenarios were considered in the past: (i) If Y is a

finite unordered set (nominal scale), the task is referred to as classification learning.classification and

regression Since Y is unordered, the 0 − 1 loss, i.e., cclass(x, y, f(x)) = 1f(x)̸=y, is adequate

to capture the loss at each point (x, y). (ii) If Y is a metric space, e.g., the set

of real numbers, the task is referred to as regression estimation. In this case the

loss function can take into account the full metric structure. Different metric loss

functions have been proposed which are optimal under given probability models

¶(y|x) (c.f Huber (1981)). Usually, optimality is measured in terms of the mean

squared error of femp.

Here, we consider a problem which shares properties of both cases (i) and (ii).

Like in (i) Y is a finite set and like in (ii) there exists an ordering among the elements

of Y. In contrast to regression estimation we have to deal with the fact that Y is

a non–metric space. A variable of the above type exhibits an ordinal scale and can

be considered as the result of a coarsely measured continuous variable (Anderson

and Philips, 1981). The ordinal scale leads to problems in defining an appropriate

loss function for our task (see also McCullagh (1980) and Anderson (1984)): On the

one hand, there exists no metric in the space Y, i.e., the distance (y − y′) of two

elements is not defined. On the other hand, the simple 0−1 loss does not reflect the

ordering in Y. Since no loss function c(x, y, f(x)) can be found that acts on true

ranks y and predicted ranks f(x), we suggest to exploit the ordinal nature of the

elements of Y by considering the order on the space X induced by each mapping

f : X 7→ Y. Thus our loss function cpref(x1,x2, y1, y2, f(x1), f(x2)) acts on pairs of

true ranks (y1, y2) and predicted ranks (f(x1), f(x2)). Such an approach makes it

possible to formulate a distribution independent theory of ordinal regression anddistribution inde-

pendent theory of

ordinal regression

to give uniform bounds for the risk functional. Roughly speaking, the proposed

risk functional measures the probability of misclassification of a randomly drawn

pair (x1,x2) of observations, where the two classes are x1 ≻X x2 and x2 ≻X x1 (see

Section 2.3). Problems of ordinal regression arise in many fields, e.g., in information

retrieval (Wong et al., 1988; Herbrich et al., 1998), in econometric models (Tangian

and Gruber, 1995; Herbrich et al., 1999), and in classical statistics (McCullagh,

1980; Fahrmeir and Tutz, 1994; Anderson, 1984; de Moraes and Dunsmore, 1995;

Keener and Waldman, 1985).

As an application of the above–mentioned theory, we suggest to model ranks

by intervals on the real line. Then the task is to find a latent utility function

that maps objects to scalar values. Due to the ordering of ranks, the function is

restricted to be transitive and asymmetric, because these are the defining properties

of a preference relation. The resulting learning task is also referred to as learning ofpreference

relation preference relations (see Herbrich et al. (1998)). One might think that learning of

preference relations reduces to a standard classification problem if pairs of objects

are considered. This, however, is not true in general because the properties of

transitivity and asymmetry may be violated by traditional Bayesian approaches due

to the problem of stochastic transitivity (Suppes et al., 1989). Considering pairs of
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objects, the task of learning reduces to finding a utility function that best reflects the

preferences induced by the unknown distribution p(x, y). Our learning procedure

on pairs of objects is an application of the large margin idea known from data–

dependent Structural Risk Minimization (Shawe-Taylor et al., 1998). The resultinglarge margin

algorithm is similar to Support Vector Machines (see Section 1.3). Since during

learning and application of SVMs only inner products of object representations xi

and xj have to be computed, the method of potential functions can be applied (see

Aizerman et al. (1964) or Section 1.3.2).

In Section 2.2 we introduce the setting of ordinal regression and shortly present

well known results and models from the field of statistics. In Section 2.3 we introduce

our model for ordinal regression and give a bound for the proposed loss function.

In the following section we present an algorithm for ordinal regression based on

large margin techniques. In Section 2.5 we give learning curves of our approach in

a controlled experiment and in a real–world experiment on data from information

retrieval.

2.2 Classical Models for Ordinal Regression

In this section we shortly recall the well–known cumulative or threshold model for

ordinal regression (McCullagh and Nelder, 1983).

In contrast to Equation (1.2) we assume that there is an outcome space Y =

{r1, . . . , rq} with ordered ranks rq ≻Y rq−1 ≻Y · · · ≻Y r1. The symbol ≻Y denotes

the ordering between different ranks and can be interpreted as ”is preferred to”.

Since Y contains only a finite number of ranks, P (y = ri|x) is a multinomial

distribution.

Let us make the assumption of stochastic ordering of the related space X , i.e.,stochastic

ordering for all different x1 and x2 either

Pr(y ≤ ri|x1) ≥ Pr(y ≤ ri|x2) for all ri ∈ Y , (2.1)

or

Pr(y ≤ ri|x1) ≤ Pr(y ≤ ri|x2) for all ri ∈ Y . (2.2)

Stochastic ordering is satisfied by a model of the form

l−1(Pr(y ≤ ri|x)) = θ(ri)− (w · x) , (2.3)

where l−1 : [0, 1] 7→ (−∞,+∞) is a monotonic function often referred to as the

inverse link function and θ : Y 7→ R is increasing for increasing ranks. The stochastic

ordering follows from the fact that

Pr(y ≤ ri|x1) ≥ Pr(y ≤ ri|x2) ⇔ Pr(y ≤ ri|x1)− Pr(y ≤ ri|x2) ≥ 0

⇔ l−1(Pr(y ≤ ri|x1))− l−1(Pr(y ≤ ri|x2)) ≥ 0

⇔ (w · (x2 − x1)) ≥ 0 ,

which no longer depends on ri (the same applies to Pr(y ≤ ri|x1) ≤ Pr(y ≤ ri|x2)).
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model inverse link function P−1
ϵ (∆) density dPϵ(η)/dη

logit ln ∆
1−∆

exp(η)

(1+exp(η))2

probit N−1(∆) 1√
2π

exp
{
− η2

2

}
complementary log–log ln(− ln(1−∆)) exp{η − exp(η)}

Table 2.1 Inverse link functions for different models for ordinal regression (taken

from McCullagh and Nelder (1983)). Here, N−1 denotes the inverse normal function.

Such a model is called a cumulative or threshold model and can be motivated by thecumulative model

following argument: Let us assume that the ordinal response is a coarsely measured

latent continuous variable U(x). Thus, we observe rank ri in the training set iff

y = ri ⇔ U(x) ∈ [θ(ri−1), θ(ri)] , (2.4)

where the function U (latent utility) and θ = (θ(r0), . . . , θ(rq))
T are to be deter-

mined from the data. By definition θ(r0) = −∞ and θ(rq) = +∞. We see that the

real line is divided into q consecutive intervals, where each interval corresponds to

a rank ri. Let us make a linear model of the latent variable U(x)linear utility mo-

del
U(x) = (w · x) + ϵ , (2.5)

where ϵ is the random component of zero expectation, Eϵ (ϵ) = 0, and distributed

according to Pϵ. It follows from Equation (2.4) that

Pr(y ≤ ri|x) =
i∑

j=1

Pr(y = rj |x) =
i∑

j=1

Pr(U(x) ∈ [θ(rj−1), θ(rj)])

= Pr(U(x) ∈ [−∞, θ(ri)]) = Pr((w · x) + ϵ ≤ θ(ri))

= P (ϵ ≤ θ(ri)− (w · x)︸ ︷︷ ︸
η

) = Pϵ(θ(ri)− (w · x)) .

If we now make a distributional assumption Pϵ for ϵ we obtain the cumulative model

by choosing as the inverse link function l−1 the inverse distribution function P−1
ϵ

(quantile function). Note that each quantile function P−1
ϵ : [0, 1] 7→ (−∞,+∞)

is a monotonic function. Different distributional assumptions for ϵ yield the logit,

probit, or complementary log–log model (see Table 2.1).

In order to estimate w and θ from model (2.3), for the observation (xi, y) we see

o1(xi)

o2(xi)
...

oq−2(xi)

oq−1(xi)


︸ ︷︷ ︸

o(xi)

=



−xi 1 0 · · · 0 0

−xi 0 1 · · · 0 0
...

...
...

. . .
...

−xi 0 0 · · · 1 0

−xi 0 0 · · · 0 1


︸ ︷︷ ︸

Z(xi)



w

θ(r1)

θ(r2)
...

θ(rq−2)

θ(rq−1)


︸ ︷︷ ︸

wGLM

,
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where oj(xi) = P−1
ϵ (Pr(y ≤ rj |xi)) is the transformed probability of ranks less thandesign matrix

or equal to rj given xi, which will be estimated from the sample by the transformed

frequencies of that event. Note that the complexity of the model is determined by

the linearity assumption (2.5) and by P−1
ϵ which can be thought of as a regularizer

in the resulting likelihood equation. For the complete training set we obtain
o(x1)

...

o(xℓ)


︸ ︷︷ ︸

l−1(y) (random)

=


Z(x1) . . . 0

...
. . .

...

0 . . . Z(xℓ)


︸ ︷︷ ︸

Z (random)


wGLM

...

wGLM


︸ ︷︷ ︸

WGLM (parameters)

. (2.6)

The last equation is called the design matrix of a multivariate generalized linear

model (GLM). A generalized linear model y = l(ZWGLM) is mainly determined by

the design matrix Z and the link function l(·) = Pϵ(·). Then given a sample (X,Y )

and a link function — which coincides with a distributional assumption about the

data — methods for calculating the maximum likelihood estimate WGLM existmaximum likeli-

hood estimate (see McCullagh and Nelder (1983) or Fahrmeir and Tutz (1994) for a detailed

discussion). The main difficulty in maximizing the likelihood is introduced by the

nonlinear link function.

To conclude this review of classical statistical methods we want to highlight the

two main assumptions made for ordinal regression: (i) the assumption of stochastic

ordering of the space X (ii) and a distributional assumption on the unobservable

latent variable.

2.3 A Risk Formulation for Ordinal Regression

Instead of the distributional assumptions made in the last section, we now consider

a parameterized model space G of mappings from objects to ranks. Each such

function g induces an ordering ≻X on the elements of the input space by the

following rule

xi ≻X xj ⇔ g(xi)≻Y g(xj) . (2.7)

If we neglect the ordering of the space Y, it was already shown in Section 1.1.1 that

the Bayes–optimal function g∗class given by Equation (1.5) is known to minimize

Rclass(g) = Ex,y

(
1g(x)̸=y

)
= Ex,y (cclass(x, y, g(x))) . (2.8)

Let us rewrite Rclass(g) by

Rclass(g) =

∫
X
Qclass(x, g) p(x)dx ,

where

Qclass(x, g) =

q∑
i=1

Pr(ri|x)− Pr(g(x)|x) = 1− Pr(g(x)|x) . (2.9)
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A closer look at Equation (2.9) shows that a sufficient condition for two mappings

g1 and g2 to incur equal risks Rclass(g1) and Rclass(g2) is given by Pr(g1(x)|x) =

Pr(g2(x)|x) for every x. Assuming that Pr(ri|x) is one for every x at a certain rank

rk the risks are equal — independently of how ”far away” (in terms of rank differ-

ence) the mappings g1(x) and g2(x) are from the optimal rank argmax ri∈Y Pr(ri|x).
This evidently shows that cclass is inappropriate for the case where a natural order-

ing is defined on the elements of Y.

Since the only available information given by the ranks is the induced ordering

of the input space X (see Equation (2.7)) we argue that a distribution independent

model of ordinal regression has to single out that function g∗pref which induces

the ordering of the space X that incurs the smallest number of inversions on pairs

(x1,x2) of objects (for a similar reasoning see Sobel (1993)). To model this property

we note that due to the ordering of the space Y, each mapping g induces an ordering

on the space X by Equation (2.7). Let use define the rank difference ⊖ : Y×Y 7→ Z
by

ri ⊖ rj := i− j . (2.10)

Now given a pair (x1, y1) and (x2, y2) of objects we distinguish between two different

events: y1⊖y2 > 0 and y1⊖y2 < 0. According to Equation (2.7) a function g violates

the ordering if y1⊖y2 > 0 and g(x1)⊖g(x2) ≤ 0, or y1⊖y2 < 0 and g(x1)⊖g(x2) ≥ 0.

Additionally taking into account that each weak order ≻Y induces an equivalence

∼Y (Fishburn, 1985) the case y1 ⊖ y2 = 0 is automatically taken care of. Thus, an

appropriate loss function is given byloss function for

ordinal regression

cpref(x1,x2, y1, y2, g(x1), g(x2)) =


1 y1 ⊖ y2 > 0 ∧ g(x1)⊖ g(x2) ≤ 0

1 y2 ⊖ y1 > 0 ∧ g(x2)⊖ g(x1) ≤ 0

0 else

(2.11)

Note, that we can obtain m2 samples drawn according to p(x1,x2, y1, y2). It

is important that these samples do not provide m2 iid samples of the function

cpref(x1,x2, y1, y2, g(x1), g(x2)) for any g. Furthermore, if we define

cg(x1, y1, g(x1)) = Ex,y [cpref(x1,x, y1, y, g(x1), g(x))] , (2.12)

the risk functional to be minimized is given byrisk functional for

ordinal regression
Rpref(g) = Ex1,y1,x2,y2

(cpref(x1,x2, y1, y2, g(x1), g(x2)))

= Ex1,y1
(cg(x1, y1, g(x1))) . (2.13)

Although Equation (2.13) shows great similarity to the classification learning risk

functional (2.8) we see that due to the loss function cg, which exploits the ordinal

nature of Y, we have a different pointwise loss function for each g . Thus we have

found a risk functional which can be used for ordinal regression and takes into

account the ordering as proposed by McCullagh and Nelder (1983).

In order to relate Rpref(g) to a simple classification risk we slightly redefine

the empirical risk based on cpref and the training data (X,Y ). For notational
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simplification let us define the space E of events of pairs x and y with unequal

ranks by

E := {(z, t) | z = (xi,xj) ∈ X × X , t = Ω(yk, yl), yk ∈ Y, yl ∈ Y, |yk ⊖ yl| > 0}

Furthermore, using the shorthand notation x(1) and x(2) to denote the first and

second object of a pair, a new training set (X ′, Y ′) can be derived from (X,Y ) if

we use all 2–sets in E derivable from (X,Y ), i.e.

∀ 0 < |y(1)i − y
(2)
i | (X ′, Y ′) =

{((
x
(1)
i ,x

(2)
i

)
,Ω
(
y
(1)
i , y

(2)
i

))}m′

i=1
(2.14)

Ω(y1, y2) := sgn (y1 ⊖ y2) , (2.15)

where Ω is an indicator function for rank differences and m′ is the cardinality of

(X ′, Y ′).

Theorem 2.1 Equivalence of risk functionalspreference learn-

ing ⇔ classifica-

tion

Assume an unknown probability measure p(x, y) on X ×Y is given. Then for each

g : X 7→ Y the following equalities hold true

Rpref(g) = Ey1,y2
(|Ω(y1, y2)|)Ez,t (cclass(z, t,Ω(g(x1), g(x2)))) , (2.16)

Remp(g) =
m′

m2

m′∑
i=1

cclass

((
x
(1)
i ,x

(2)
i

)
,Ω
(
y
(1)
i , y

(2)
i

)
,Ω
(
g
(
x
(1)
i

)
, g
(
x
(2)
i

)))
.

Proof Let us derive the probability p(z, t) on E derived from p(x1,x2, y1, y2):

p(z, t) =

{
0 t = 0

p(x1,x2, y1, y2)/∆ t ̸= 0
,

where

∆ = Ey1,y2 (|Ω(y1, y2)|) = Pr(|y1 ⊖ y2| > 0) .

Now exploiting the definition (2.11) of cpref we see

∀x1,x2, y1, y2, g : t = cpref(x1,x2, y1, y2, g(x1), g(x2)) .

The first statement is proven. The second statement follows by setting X = X,Y =

Y and assigning constant mass of 1/m2 at each point (x1,x2, y1, y2).

Taking into account that each function g ∈ G defines a function pg : X × X 7→
{−1, 0,+1} by

pg(x1,x2) := Ω(g(x1), g(x2)) , (2.17)

Theorem 2.1 states that the empirical risk of a certain mapping g on a samplereduction to clas-

sification problem (X,Y ) is equivalent to the cclass loss of the related mapping pg on the sample

(X ′, Y ′) up to a constant factor m′/m2 which depends neither on g nor on pg.

Thus, the problem of distribution independent ordinal regression can be reduced to

a classification problem on pairs of objects. It is important to emphasize the chain of

argument that lead to this equivalence. The original problem was to find a function

g that maps objects to ranks given a sample (X,Y ). Taking the ordinal nature
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of ranks into account leads to the equivalent formulation of finding a function pg
that maps pairs of objects to the three classes ≻Y , ≺Y , and ∼Y . Reverting the

chain of argumentation may lead to difficulties by observing that only those pg are

admissible — in the sense that there is a function g that fulfills Equation (2.17) —

which define an asymmetric, transitive relation on X . Therefore we also call this

the problem of preference learning. It was shown that the Bayes optimal decision

function given by (1.5) on pairs of objects can result in a function pg which is no

longer transitive on X (Herbrich et al., 1998). This is also known as the problem

of stochastic transitivity (Suppes et al., 1989). Note also that the conditions of

transitivity and asymmetry effectively reduce the space of admissible classification

functions pg acting on pairs of objects.

However, the above formulation is — in the form presented — not amenable to

the straightforward application of classical results from learning theory. The reasonuniform conver-

gence bounds is that the constructed samples of pairs of objects violate the iid assumption. In

order to still be able to give upper bounds on a risk for preference learning we

have to reduce our sample such that the resulting realization of the loss (2.11)

is distributed iid. Under this condition it is then possible to bound the deviation

of the expected risk from the empirical risk. Let σ be any permutation of the

numbers 1, . . . ,m. Furthermore, for notational convenience let Cg(i, j) abbreviate

cpref(xi,xj , yi, yj , g(xi), g(xj)). Then we see that for any g ∈ G

Pr(Cg(σ(1), σ(2)), Cg(σ(2), σ(3)), . . . , Cg(σ(m− 1), σ(m))) =

Pr(Cg(σ(1), σ(2))) · Pr(Cg(σ(2), σ(3))) · . . . · Pr(Cg(σ(m− 1), σ(m))) . (2.18)

Clearly, m − 1 is the maximum number of pairs of objects that still fulfil the

iid assumption. In order to see this consider that by transitivity the ordering

g(x1)≺Y g(x2) and g(x2)≺Y g(x3) implies g(x1)≺Y g(x3) (and vice versa for ≻Y
and ∼Y ). Now we can give the following theorem.

Theorem 2.2 A Margin Bound for Ordinal Regression

Let p be a probability measure on X × {r1, . . . , rq}, let (X,Y ) be a sample of size

m drawn iid from p. Let σ be any permutation of the numbers 1, . . . ,m. For each

function g : X 7→ {r1, . . . , rq} there exists a function f ∈ F and a vector θ such

that1

g(x) = ri ⇔ f(x) ∈ [θ(ri−1), θ(ri)] . (2.19)

Let the fat–shattering dimension of the set of functions F be bounded above by

the function afatF : R 7→ N. Then for each function g with zero training error, i.e.∑m−1
i=1 Cg(σ(i), σ(i+ 1)) = 0 and

ρf = min
i=1,...,m−1

Ω
(
yσ(i), yσ(i+1)

)
|f(xσ(i))− f(xσ(i+1))|

1. Note the close relationship to the cumulative model presented in Section 2.2.
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with probability 1− δ

Rpref(g) ≤
2

m− 1

(
k log2

(
8e(m− 1)

k

)
log2(32(m− 1)) + log2

(
8(m− 1)

δ

))
,

where k = afatF (ρf/8) ≤ e(m− 1).

Proof Let us recall the following theorem based on Theorem 1.5.

Theorem 2.3 (Shawe-Taylor et al., 1998)

Consider a real valued function class F having fat shattering function bounded

above by the a function afatF : R 7→ N which is continuous from the right.

Fix θ ∈ R. Then with probability 1 − δ a learner that correctly classifies m

iid generated examples (x1, y1), . . . , (xm, ym) with h = Tθ(f) ∈ Tθ(F ) such that

h(xi) = yi, i = 1, . . . ,m and ρf = mini yi (|f(xi)− θ|) will have error of h bounded

from above by

2

m

(
k log2

(
8em

k

)
log2(32m) + log2

(
8m

δ

))
, (2.20)

where k = afatF (ρf/8) ≤ em.

Taking into account that by construction we got m − 1 iid examples and that

the classification of a pair is carried out by a decision based on the difference

f(xσ(i))− f(xσ(i+1)) we can upper bound Rpref(g) by replacing each m with m− 1

and using θ = 0.

The afatF (ρ)–shattering dimension of F can be thought of as the maximum number

of objects that can be arranged in any order using functions from F and a

minimum margin minΩ(y1, y2)|f(x1)−f(x2)| of ρ (utilizing Equation (2.7) together

with (2.19)). Note, that the zero training error condition for the above bound is

automatically satisfied for any σ if Remp(g) = 0. Even though this empirical risk

was not based on an iid sample its minimization allows the application of the

above bound. In the following section we will present an algorithm which aims

at minimizing exactly that empirical risk while at the same time enforcing large

margin rank boundaries.

2.4 An Algorithm for Ordinal Regression

Based on the results of Theorem 2.2 we suggest to model ranks as intervals on the

real line. In accordance to the classical cumulative model used in ordinal regression,

let us introduce a (latent) linear function f : X 7→ R for each function g

f(x) = (w · x) , (2.21)

which are related by (2.19). In order to apply the given theorem we see that we have

to find a function f∗ which incurs no training error on (X ′, Y ′) while controlling

the generalization error by maximizing the margin ρf . Note, thatranks as intervals

on the real line
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•
•

×××
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×
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ρf

(a) (b)

Figure 2.1 (a) Mapping of objects from rank r1 (×), rank r2 (•), and rank

r3 (◦) to the axis f(x), where x = (x1, x2)
T . Note that by θ(r1) and θ(r2) two

coupled hyperplanes are defined. (b) The margin of the coupled hyperplanes ρf =

min(X′,Y ′) Ω(y
(1)
i , y

(2)
i )|f(x(1)

i ) − f(x
(2)
i )| is this time defined at the rank boundaries

θ(ri).

f(xi)− f(xj) = (w · (xi − xj)) ,

which makes apparent that each pair (xi,xj) ∈ X ′ is represented by its difference

vector (xi − xj) assuming a linear model of f . This allows the straightforward

application of the large margin algorithm given by Equation (1.51) and (1.52)

replacing each xi by (x
(1)
i − x

(2)
i ). Hence, the maximization of the margin takes

place at the rank boundaries θ(ri) (see Equation (2.19) and Figure 2.1). In practice

it is preferable to use the soft margin extension of the large margin algorithm (see

Equation (1.25)). Furthermore due to the KKT conditions (see Equation (1.54))

w∗ can be written in terms of the training data. This gives

w∗ =
m′∑
i=1

α∗
i ti

(
x
(1)
i − x

(2)
i

)
, (2.22)

where α∗ is given bysoft margin

α∗ = argmax
C1≥α≥0

(α·t)=0

 m′∑
i=1

αi −
1

2

m′∑
i,j=1

αiαjtitj

(
(x

(1)
i − x

(2)
i ) · (x(1)

j − x
(2)
j )
) , (2.23)

and t = (Ω(y
(1)
1 , y

(2)
1 ), . . . ,Ω(y

(1)
m′ , y

(2)
m′ )). Note, however, that due to the expansion

of the last term in (2.23),(
(x

(1)
i − x

(2)
i ) · (x(1)

j − x
(2)
j )
)
= (x

(1)
i · x(1)

j )− (x
(1)
i · x(2)

j )− (x
(2)
i · x(1)

j ) + (x
(2)
i · x(2)

j ) ,

the solution α∗ to this problem can be calculated solely in terms of the inner

products between the feature vectors without reference to the feature vectors

themselves. Hence, the idea of (implicitly) mapping the data X via a nonlinear
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mapping Φ : X 7→ F into a feature space F can successfully applied (for further

details see Section 1.3.2). Replacing each occurrence of x by Φ(x) giveskernel trick

α∗ = argmax
C1≥α≥0

(α·t)=0

 t∑
i=1

αi −
1

2

t∑
i,j=1

αiαjtitjK
(
x
(1)
i ,x

(2)
i ,x

(1)
j ,x

(2)
j

) . (2.24)

where K is for a given function k defined by

K(x1,x2,x3,x4) = k(x1,x3)− k(x1,x4)− k(x2,x3) + k(x2,x4) . (2.25)

Here, k : X × X 7→ R is a Mercer kernel and for a fixed mapping Φ is defined by

k(x,x′) = (Φ(x) · Φ(x′)) .

Some kernels k to be used in learning are given by Equations (1.63) and (1.73). Note

that the usage of kernels instead of explicitly performing the mapping Φ allows us

to deal with nonlinear functions f without running into computational difficulties.

Moreover, as stated in Theorem 2.2 the bound on the risk Rpref(w) does not depend

on the dimension of F but on the margin ρf .

In order to estimate the rank boundaries we note that due to Equations (1.52) the

difference in f∗ is greater or equal to one for all training examples which constitute

a correctly classified pair. These can easily be obtained by checking 0 < α∗
i < C, i.e.

training patterns which do not meet the box constraint (see Section 1.1.4). Thus

if Θ(k) ⊂ X ′ is the fraction of objects from the training set with 0 < α∗
i < C and

rank difference ⊖ exactly one starting from rank rk, i.e.rank boundaries

Θ(k) =
{(

x
(1)
i ,x

(2)
i

) ∣∣∣y(1)i = rk ∧ y(2)i = rk+1 ∧ 0 < α∗
i < C

}
(2.26)

then the estimation of θ(rk) is given by

θ∗(rk) =
f∗(x1) + f∗(x2)

2
, (2.27)

where

(x1,x2) = argmin
(xi,xj)∈Θ(k)

[f∗(xi)− f∗(xj)] . (2.28)

In other words, the optimal threshold θ∗(rk) for rank rk lies in the middle of the

utilities of the closest (in the sense of their utility) objects of rank rk and rk+1.

After the estimation of the rank boundaries θ(rk) a new object is assigned to a

rank according to Equation (2.19).

We want to emphasize that taking the difference vector as a representation of

a pair of objects effectively couples all hyperplanes f(x) = θ(rk) thus resulting incoupled

hyperplanes a standard QP problem. Furthermore, the effective coupling is retained if we use

general ℓq–margins (see Section 1.1.4). It is the reduction of the hypothesis space

which makes the presented algorithm suited for the task of ordinal regression. Note,

that also the kernel K derived from k acts only in F and thus avoids considering

too large a hypothesis space. All properties are consequences of the modeling of

ranks as intervals on the real line and of the prior knowledge of the ordering of Y.
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2.5 Experimental Results

In this section we present some experimental results for the algorithm presented in

Section 2.4. We start by giving results for artificial data which allows us to analyze

our algorithm in a controlled setting. Then we give learning curves for an example

from the field of information retrieval.

2.5.1 Learning Curves for Ordinal Regression

In this experiment we want to compare the generalization behavior of our algo-

rithm with the multi-class SVM (Weston and Watkins, 1998) and Support Vectormulti-class SVM

and support vec-

tor regression

regression (SVR) (c.f. Smola (1998)) — the methods of choice, if one does not pay

attention to the ordinal nature of Y and instead treats ranks as classes (classifi-

cation) or continuous response values (regression estimation). Another reason for

choosing those algorithms is their similar regularizer ∥w∥2 and hypothesis space

F which make them as comparable as possible. We generated 1000 observations

x = (x1, x2) in the unit square [0, 1]× [0, 1] ⊂ R2 according to a uniform distribu-

tion. We assigned to each observation x a value y according to

y = i⇔ 10((x1 − 0.5) · (x2 − 0.5))︸ ︷︷ ︸
f(x)

+ϵ ∈ [θ(ri−1), θ(ri)] , (2.29)

where ϵ was normally distributed, i.e. ϵ ∼ N(0, 0.125), and θ = (−∞,−1,−0.1, 0.25,example utility

function 1,+∞) is the vector of predefined thresholds. In Figure 2.2 (a) the points xi which

are assigned to a different rank after the addition of the normally distributed

quantity ϵi are shown. If we treat the whole task as a classification problem, we

would call them incorrectly classified training examples. The solid lines in Figure

2.2 (a) indicate the ”true” rank boundaries θ on f(x).

In order to compare the three different algorithms we randomly drew 100 training

samples (X,Y ) of training set sizes m ranging from 5 to 45, thereby making sure

that at least one representative of each rank was within the drawn training set.comparison to

other methods Classification with multi-class SVMs was carried out by computing the pairwise

5 · 4/2 = 10 hyperplanes. For all algorithms, i.e. multi-class SVMs, SVR, and

the algorithm presented in Section 2.4, we chose the kernel k(xi,xj) = ((xi ·
xj) + 1)2 and a trade-off parameter C = 1000000. In the particular case of

Support Vector regression we used a value of ε = 0.5 for the ε–insensitive loss

function (see (Vapnik, 1995) for the definition of this loss function) and thresholds

θ = (0.5, 1.5, 2.5, 3.5, 4.5) to transform real valued predictions into ranks.

In order to estimate the risk Rpref(g
∗)/Ey1,y2(|Ω(y1, y2)|) from the remaining

995 to 955 data points we averaged over all 100 results for a given training set

size. Thus we obtained the three learning curves shown in Figure 2.2 (b). Notelearning curves

that we used the scaled Rpref — which is larger by a constant factor. It can be

seen that the algorithm proposed for ordinal regression generalizes much faster by

exploiting the ordinal nature underlying Y compared to classification. This can be
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Figure 2.2 (a) Scatter plot of data points x which f(x) maps to a different interval

than f(x)+ϵ (see Equation (2.29)). (b) Learning curves for multi-class SVM (dashed

lines), SV regression (dashed–dotted line) and the algorithm for ordinal regression

(solid line) if we measure Rpref . The error bars indicate the 95% confidence intervals

of the estimated risk Rpref .

explained by the fact that due to the model of a latent utility all ”hyperplanes”

f(x) = θ(rk) are coupled (see Figure 2.1) which does not hold true for the case

of multi-class SVMs. Furthermore, the learning curves for SVR and the proposed

ordinal regression algorithm are very close which can be explained by the fact

that the predefined thresholds θ(rk) are defined in such a way that their pairwise

difference is about 0.5 — the size of the ε–tube chosen beforehand. Thus the utility

and the continuous ranks estimated by the regression algorithm are of the same

magnitude which results in the same generalization behavior.

In Figure 2.3 we plotted the assignments of the unit square to ranks r1 (black

areas) to ranks r5 (white areas) for the functions g∗(x) learned from randomly

drawn training sets ranging from size m = 5 (top row) to m = 25 (bottom row).

We used the same parameters as for the computation of the learning curves. In the

rightmost column (e) the true assignment, i.e., y = ri ⇔ f(x) ∈ [θ(ri−1), θ(ri)] is

shown. In the first column (a) we can see how the algorithm presented in Section

2.4 performs for varying training set sizes. As expected, for the training set size

m = 25, the method found a utility function together with a set of thresholds which

represent the true ranking very well. The second column (b) shows the results of the

abovementioned multi-class SVM on the task. Here the pairwise hyperplanes are

not coupled since the ordinal nature of Y is not taken into account. This results in

a worse generalization, especially in regions, where no training points were given.

The third column (c) gives the assignments made by the SVR algorithm if we

represent each rank ri by i. Similar to the good results seen in the learning curve,

the generalization behavior is comparable to the ordinal regression method (first
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(a) (b) (c) (d) (e)

Figure 2.3 Assignments of points to ranks r1 (black area) to r5 (white area) by the

learned function g∗(x) based on randomly drawn training samples of size 5, 10, 15, 20,

and 25 (top row to bottom row). (a) Results of the algorithm presented in Section

2.4. (b) Results of multi-class SVM if we treat each rank as a class. (c) Results of

SVR if we assign rank ri to number i. (d) Results of SVR if we assign rank ri to

real number exp(i). (e) Underlying assignment uncorrupted by noise.

column). The deficiency of SVR for this task becomes apparent when we change

the representation of ranks. In the fourth column (d) we applied the same SVR

algorithm, this time on the representation exp(i) for rank ri. As can be seen, this

dramatically changes the generalization behavior of the SVR method. We concluderepresentation of

ranks that the crucial task for application of metric regression estimation methods to

the task of ordinal regression is the definition of the representation of ranks. This

is automatically — although more time–consuming — solved by the proposed

algorithm.

2.5.2 An Application to Information Retrieval

In this experiment we make the following assumption: After an initial (textual)

query a user makes to an IR system, the system returns a bundle of documents toinformation

retrieval the user. Now the user assigns ranks to a small fraction of the returned documents

and the task for the learning algorithm is to assign ranks to the remaining unranked

documents in order to rank the remaining documents. We assume that the quantity

of interest is the percentage of inversions incurred by the ranking induced by the
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Figure 2.4 Learning curves for multi-class SVM (dashed lines) and the algorithm

for ordinal regression (solid line) for the OHSUMED dataset query 1 if we measure

(a) Rpref and (b) Rclass. Error bars indicate the 95% confidence intervals.

learning algorithm. This quantity is captured by Remp(g)/m
′ (m′ = |(X ′, Y ′)|,

see Equation (2.14) for an exact definition) and thus after using m = 6 up to

m = 24 documents and their respective ranking we measure this value on the

remaining documents. For this experiment we used the same parameters as in

the previous experiment. The investigated dataset was the OHSUMED dataset

collected by William Hersh2, which consists of 348 566 documents and 106 queries

with their respective ranked results. There are three ranks: ”document is relevant”,

”document is partially relevant”, and ”irrelevant document” wrt. the given textual

query. For our experiments we used the results of query 1 (”Are there adverse

effects on lipids when progesterone is given with estrogen replacement therapy?”)

which consists of 107 documents taken from the whole database. In order to apply

our algorithm we used the bag–of–words representation (Salton, 1968), i.e., webag–of–words

representation computed for every document the vector of ”term–frequencies–inverse–document–

frequencies” (TFIDF) components. The TFIDF is a weighting scheme for the bag–

of–words representation which gives higher weights to terms which occur very rarely

in all documents. We restricted ourselves to terms that appear at least three times

in the whole database. This results in ≈ 1700 terms which leads for a certain

document to a very high–dimensional but sparse vector. We normalized the length

of each document vector to unity (see Joachims (1998)).

Figure 2.4 (a) shows the learning curves for multi-class SVMs and our algorithm

for ordinal regression measured in terms of the number of incurred inversions. As

can be seen from the plot, the proposed algorithm shows very good generalization

behavior compared to the algorithm which treats each rank as a separate class.

2. This dataset is publicly available at ftp://medir.ohsu.edu/pub/ohsumed/.
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Figure 2.4 (b) shows the learning curves for both algorithms if we measure the

number of misclassifications — treating the ranks as classes. As expected, the multi-

class SVMs perform much better than our algorithm. It is important to note again,

that minimizing the zero–one loss Rclass does not automatically lead to a minimal

number of inversions and thus to an optimal ordering.
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Figure 2.5 Learning curves for SVR (dashed lines) and the algorithm for ordinal

regression (solid line) for the OHSUMED dataset query 1 if we measure (a) Rpref

and (b) R0−1. Error bars indicate the 95% confidence intervals.

Figure 2.5 (a) shows the learning curves for SVR and for our algorithm for ordinal

regression, measured the number of incurred inversions. While the former performs

quite well on the artificial dataset, in the real world dataset the SVR algorithm fails

to find a ranking which minimizes the number of inversions. This can be explained

by fact that for the real–world example the equidistance in the assumed utility may

no longer hold — especially taking into account that the data space is very sparse

for this type of problem. Similarly, Figure 2.5 (b) shows the learning curves for both

algorithms if we measure the number of misclassifications. As expected from the

curves on the right the SVR algorithm is worse even on that measure. Note that

the SVR algorithm minimizes neither Rpref nor R0−1 which may explain its bad

generalization behavior. Also note that we made no adaptation of the parameter ε

— the size of the tube. The reason is that in this particular task there would not

be enough training examples available to set aside a reasonable portion of them for

validation purposes.

2.6 Discussion and Conclusion

In this chapter we considered the task of ordinal regression which is mainly

characterized by the ordinal nature of the outcome space Y. All known approaches

to this problem (see Section 2.2) make distributional assumptions on an underlying
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continuous random variable. In contrast, we proposed a loss function which allows

for application of distribution independent methods to solve ordinal regression

problems. By exploiting the fact that the induced loss function class is a set of

indicator functions we could give a distribution independent bound on our proposed

risk. Moreover, we could show that to each ordinal regression problem there exists a

corresponding preference learning problem on pairs of objects. This result built the

link between ordinal regression and classification methods — this time on pairs of

objects. For the representation of ranks by intervals on the real line, we could give

margin bounds on our proposed risk — this time applied at the rank boundaries.

Based on this result we presented an algorithm which is very similar to the well

known Support Vector algorithm but effectively couples the hyperplanes used for

rank determination.

Noting that our presented loss involves pairs of objects we see that the problem

of multi-class classification can also be reformulated on pairs of objects which leads

to the problem of learning an equivalence relation. Usually, in order to extend alearning of equiv-

alence relation binary classification method to multiple classes, one–against–one or one–against–

all techniques are devised (Hastie and Tibshirani, 1996; Weston and Watkins, 1998).

Such techniques increase the size of the hypothesis space quadratically or linearly

in the number of classes, respectively. Recent work (Phillips, 1998) has shown that

learning equivalence relations can increase the generalization behavior of binary–

class methods when extended to multiple classes.

Further investigations will include the following question: Does the application of

the GLM methods presented in Section 2.2 lead automatically to large margins (see

Theorem 2.2)? The answer to such a question would finally close the gap between

methods extensively used in the past to theories developed currently in the field of

Machine Learning.
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