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Abstract

The perceptron algorithm with margins is a
simple, fast and effective learning algorithm
for linear classifiers; it produces decision hy-
perplanes within some constant ratio of the
maximal margin. In this paper we study this
algorithm and a new variant: the perceptron
algorithm with uneven margins, tailored for
document categorisation problems (i.e. prob-
lems where classes are highly unbalanced and
performance depends on the ranking of pat-
terns). We discuss the interest of these al-
gorithms from a theoretical point of view,
provide a generalisation of Novikoff’s the-
orem for uneven margins, give a geometric-
ally description of these algorithms and show
experimentally that both algorithms yield
equal or better performances than support
vector machines, while reducing training time
and sparsity, in classification (USPS) and
document categorisation (Reuters) problems.

1. Introduction

The support vector machine (SVM) is a well known
learning algorithm for linear -classifiers and has
achieved state of the art results for many classification
problems. Besides its high performance, the SVM al-
gorithm is simple to use (i.e. few parameters need to
be tuned prior to training). Furthermore, the kernel-
trick provides an elegant and efficient way to deal with
very high-dimensional feature spaces and to introduce
domain knowledge into the learning algorithm.

The SVM algorithm requires solving a quadratic pro-
gramming problem to find the linear classifier of max-
imal margin. Because generalisation error can be up-
per bounded by a function of the margin of a linear
classifier, finding maximal margin classifiers is a sens-
ible strategy. However, this is difficult to implement
efficiently and, more importantly, often leads to very
long training times.

Surprisingly, it has been shown theoretically that there
are alternatives to finding the maximal margin hy-
perplane which often lead to algorithms that are sim-
pler to implement, faster, and provide tighter upper-
bounds on the generalisation error (e.g. Graepel et al.
(2001)). Most of these alternative algorithms are
based on Rosenblatt’s original perceptron algorithm
(PA) (Rosenblatt 1958), an on-line learning algorithm
for linear classifiers.

In this paper we study three other learning algorithms
for linear classifiers: the perceptron algorithm with
margins (PAM) (Krauth and Mézard 1987), the
ALMA algorithm (Gentile 2001) and the proposed
perceptron algorithm with uneven margins (PAUM) .
These three algorithms originate from the PA but add
additional constraints on the margin of the resulting
classifier. As such they cover the spectrum between
the PA’s no-margin constraint and the SVM’s maz-
mum margin constraint.

The PAUM is an extension of the PA specially de-
signed to cope with two class problems where posit-
ive examples are very rare compared to negative ones.
This occurs often in problems of information retrieval,
detection, speech and face recognition, etc. We ob-



serve experimentally that the SVM clearly outper-
formed the PA for such problems. We will demon-
strate that the new algorithm outperforms the SVM
for the task of document categorisation. Furthermore
we show that Novikoff’s theorem on the number of
updates of the PA can be generalised to the PAUM.

Despite the simplicity of the PAM and the PAUM, we
observe empirically these algorithms yield classifiers
equal or better than the SVM classifier, while redu-
cing training time and sparsity. Algorithms are evalu-
ated on the USPS standard classification task and the
Reuters text categorisation tasks.

In Section 2 we describe the PAM and PAUM al-
gorithms and present some theoretical results on their
quality compared to that of the SVM, as well as a geo-
metrical interpretation of these algorithms in version
space. Section 3 presents several experimental com-
parisons in image classification (USPS) and document
categorisation (Reuters).

2. The Perceptron Algorithm with
Uneven Margins

In the following, we assume that we are given
a training sample z = ((z1,91),---, (@Tm,Ym)) €
(X x {=1,41})™ of size m together with a feature
mapping ¢ : X — K C R™ into an n —dimensional
vector space K . Our aim is to learn the parameters
w € I and b € R of a linear classifier

hw,b (.T)

= sign(fwp (7)) ,
fwp () =

(w,x) +b,

where x := ¢ (x) and (-,-) denotes the inner product

in K.

The starting point of our analysis is the classical
perceptron algorithm (Rosenblatt 1958).  This is
an on-line algorithm which proceeds by checking
whether or not the current training examples (z;,y;) €
z is correctly classified by the current -classifier
(y; ((wy, x;) + b) > 0) and updating the weight vector
w; otherwise. In the update step, the weight vector w;
and the “bias” b, are changed into w1 = Wy + ny;x;
and by41 = by +n . This algorithm is guaranteed to
converge whenever the training data is linearly sep-
arable in feature space (Novikoff 1962). The central
quantity controlling the speed of convergence of the
PA (i.e., an upper bound on the number of updates
until convergence) is the maximal margin of the train-
ing data. The margin v (w,b, 2z) of a classifier fwp
is minimal real-valued output on the training sample,
that is,

) ) Ag b
v(w,b,z) := min Y \Wo Xi) T 0) ((w, xi) +b)
(zi,yi)€= [wl

(2.1)

In a nutshell, the larger the maximal margin v (z) :=
maxy p v (W,b, z) for a particular training sample z
, the less updates the PA performs until convergence.
Unfortunately, no lower bounds can be given for the
margin v (wy, by, z) of the PA’s solution (wy,b;) .

It is well known that the SVM algorithm finds (up to
a scaling factor) the parameters (wsyvnm, bsym) which
maximise the margin v (w,b,z) . Maximum margin
classifiers exhibit excellent generalisation performance
in terms of misclassification error (Shawe-Taylor et al.
1998; Cristianini and Shawe-Taylor 2000). However,
this maximisation requires solving a quadratic pro-
gramming problem.

A generalisation of the PA was presented in Krauth
and Mézard (1987). This algorithm, which is also
known as the perceptron algorithm with margins, is
more conservative in the test condition for updates.
Rather than notifying only misclassified training ex-
amples, the PAM updates until y; ({(w¢, x;) + b)) > 7
, where 7 € RT is a fixed parameter chosen be-
fore learning. The effect of 7 is that the upper
bound on the number of updates until convergence
increases by a factor of approximately 7 but, in re-
turn, the margin v (wy, by, z) can proven to be at least
v(z) 7/ (21 + R?) .

Our algorithm differs from the PAM insofar as it
treats positive and negative examples differently. For
example, in document categorisation problems it is
much more important to correctly classify positive ex-
amples than to correctly classify negative examples,
partly because their numbers differ by several orders
of magnitude. An easy way to incorporate this idea
into the PAM 1is to consider the positive and negat-
ive margin separately. The positive (negative) margin
Y41 (W, b, 2z) is defined as

Y+1 (W, b,2) := min
(wibz)i= W = w]

The resulting algorithm — which is a direct general-
isation of the PAM — is called perceptron algorithm
with uneven margins and is given in Algorithm 1.

Recently, Gentile (2001) has presented ALMA, a vari-
ation of the PA which also aims at finding a large mar-
gin classifier. In a nutshell, after j mistakes ALMA
uses 7; x 1/4/j and n; « 1/1/j instead of a fixed mar-
gin parameter 7 and learning rate 7 .

Remark. In order to generalise these algorithms to the
application of kernels, that is, inner product functions



Algorithm 1 PAUM (7_1,741 )

Require: A linearly separable training sample z =
(@.y) € (X x {~1,+1})"

Require: A learning rate n € RT

Require: Two margin parameters 7_1, 741 € R

wo=0:b=0:t=03R=max,eq x|
repeat
fori=1tom do
if y; ((wy,x;) + b)) <7y, then
Wil = Wi + NYiX;
bs1 = by + nyiR?
t+—t+1
end if
end for
until no updates made within the for loop
return (wy,b;)

k(x,%) := (x,X) , we observe that the each weight
vector must be expressible as w; = Z;’;l oX; because
in the update step training examples are only added to
the initial weight vector wg = 0 . Inserting the linear
expansion into the inner products (w,x;) , we see that
Algorithm 1 can alternatively be written in terms of
the expansion coefficients a € R™ . This, however, is
only computationally advantageous if n > m .

2.1. An Extension of Novikoff’s Theorem

We analyse the PAUM by giving an upper bound on
the numbers of updates as well as a lower bound on the
positive and negative margin of the resulting classifier.
This theorem is an extension of Novikoff’s theorem
(Novikoff 1962) as well as of the result of Krauth and
Mézard (1987).

Theorem 2.1. Let z = (z,y) € (X x {—1,+1})" be
a given training sample, and let R := maxXzeq || -

1. Suppose there exists (Wopt, bopt) € (K X R) such
that ||Wopt|| =1, |bopt| < R and

’V(Wopt;boptaz) Z T. (23)

Then the mnumber of wupdates made by the
PAUM(T_1,741) on z is bounded by

4 ((?):W) .

2. Fiz a learning rate n € RT and margin paramet-

2
Let o := ZRI?Z% and sup-

pose there exists (Wopt, bopt) € (K X R) such that

(2.4)

ers T_1,741 € RT .

[Woptll =1, [bopt| < R and, for j € {—1,+1} ,

Vi (Woptagopta Z) =Ty, (2.5)
where I'_1 € RT and 'yq ;== -T'_1 . Then, for
the solution (wy,bt) of the PAUM(T_1,741) , for
je{-1,+1} , we know

7

v (Wi, by, z) > T - W
J

(2.6)

The proof can be found in Appendix A. First, (2.4) is
a direct generalisation of Novikoff’s theorem because
setting 7.1 = 7—1 = 0 , we retain the original result.
Furthermore, choosing 71 = 7_; recovers the results
of Krauth and Mézard (1987). Most interestingly, we
observe that n defines a trade-off between (guaran-
teed) convergence time and approximation w.r.t. both
positive and negative margins: For n — 0 the PAUM
finds a solution with maximal margins (up to a factor
of \/1/8 ) but the algorithm is no longer guaranteed
to converge (see (2.6) and (2.4)). On the other hand,
for n — oo the algorithm converges as quickly as the
original PA but we are no longer able to guarantee
any positive (negative) margin of the resulting solu-
tion. Finally, note that the constants 4 and \/m in
the two bounds can be further optimised by fixing the
bias to 0 .

2.2. A Graphical Illustration of the PAUM

In order to enhance the understanding of the PAUM,
we recall that for every training sample z , there must
exist the so called version space V (z) defined as

V(z):={(w,b) € (KxR) |v(w,b,z)>0}.

Note that V' (z) is empty if z is not linearly separable
in feature space. The version space is a convex region
because it is the intersection of m halfspaces. Every
solution of the PAUM(7_1,741) as well as the SVM
solution must be a point in the set V' (2z) . Since, in
general, dim (XC) > 1 it is impossible to visualise ver-
sion space for real-world datasets. Hence, we project
version space onto a plane spanned by three points
within version space; the SVM solution, the PA solu-
tion and the PAM(0.5) solution. In Figure 2.1 we have
depicted such a “slice” for a typical learning problem
(for details on the dataset, see Section 3). As expec-
ted, if we use the PA the resulting classifier (“0.0”) is
very close to the bounding training examples (the mar-
gin of this classifier is very small). Increasing 7 in the
PAM(7) finds solutions (e.g. ”1.0”) which are visibly
close to the support vector solution. However, this can
also be achieved with less conservative updates on the



Figure 2.1. A slice through version space for the Reuters-
21578 categorisation problem ’earn’. Solid/dotted lines
correspond to negative/positive training examples. Some
solutions of PAUM(7—1, 741) for different (7—1,74+1) para-
meters, along with the SVM solution, are displayed. Points
which have only one number were obtained by using 7_1 =
T+1 -

negative examples (of which there are approximately
three times more than positive) using, for example,
PAUM(0,1) .

2.3. The )\ Trick for Linearly Inseparable
Training Samples

Theorem 2.1 shows that the PAUM will stop after
some finite number of updates for any linearly sep-
arable training sample. In order to deal with training
samples which are linearly inseparable in feature space,
we use the so-called “\ trick”. In the current formula-
tion, this amounts to augmenting each feature vector
x; by the m —dimensional unit vector v Ae; , A € RT |
where e; € R™ has all components zero except for the
1 th component which equals one. Since every train-
ing examples spans a new dimension in the augmen-
ted feature space, the training sample is necessarily
linearly separable. Intuitively, if o; o< ny; denotes the
cumulated updates of the 7 th training example then
the real-valued output of the augmented example x;
is given by

> b+ ay (A4 g7 -
i#] —
>0

Now, the second term can dominate the sum by just
adjusting a; which, by definition, has the same sign as
y; - Though the augmented training sample becomes
linearly separable in feature space, the final classifier
will commit some training errors in the original feature

space, the number of which is controlled by X .
Remark. If we are using a kernel k£ : X x X — R rather
than an explicit feature mapping, the A trick amounts
to a simple change of the kernel function during train-
ing. More formally,

kx(z,%) =k (2,7) + X - [z .

This trick is discussed in greater detail in Herbrich
(2002). Tt is known that the A trick for linear classi-
fication learning algorithms can not only deal with in-
separable training samples, but also tolerate noise and
outliers. Hence, we expect that the PAUM combined
with the A trick can have better performance even for
linearly separable training samples, as confirmed by
our experiments (see Section 3).

3. Experimental Results

We now provide experimental comparisons of the al-
gorithms presented above. In Section 3.1 we will eval-
uate the SVM, ALMA, PA and PAM on a well known
classification problem, the USPS dataset which is a
benchmark for optical character recognition systems.
In Section 3.2 we evaluate the SVM, PAM and PAUM
on two standard datasets for document categorisation,
the Reuters collections.

3.1. Classification Experiments (USPS)

The USPS dataset consists of vectors corresponding to
images of hand-written digits, labelled with the digit
they represent (0,1,...,9). There are a total of 7291
training patterns and 2007 test patterns. We made no
special preprocessing of the images and used a Gaus-
sian kernel: k (Z;,Z;) = exp(—(20) 72 ||Z; — &;||°) with
o = 3.5 as in Gentile (2001).

For this problem we adhere to the standard approach
of learning independently 10 binary classifiers (one for
each digit) on the training sample and then, for each
pattern in the test sample, choosing the class of the
classifier that produces the highest output. For PA,
PAM and ALMA, which depend on the ordering of
the training sample, we repeat the entire process ten
times (permuting randomly the training sample every
time) and we average results over the ten runs.

Table 1 reports the percentage of test examples mis-
classified on average (as described above) for the PA,
PAM (with 7 equal to 0.2 and 0.4) and ALMA (with
7 equal to 0.9 and 0.95). Performance of the on-line
algorithms is shown after 1 and 3 training epochs as
well as after convergence (= 8 epochs). Results for the
SVM are taken from Platt et al. (2000) and for ALMA
from Gentile (2001).



Algorithm % Misclassification
1 epoch 3 epochs Convergence
PA 6.20% 5.50% 5.10%
PAM (0.2) 4.84% 4.72% 4.69%
PAM (0.4) 4.71% 4.64% 4.56%
ALMA (0.9) 5.43% 4.90% —
ALMA (0.95) 5.72% 4.85% —
SVM 4.58%

Table 1. Classification experiments on the USPS dataset.

First note that after one epoch of training all al-
gorithms yield reasonable results, while SVM outper-
forms PA and ALMA, and only slightly the PAM. This
is remarkable given the simplicity of the PA and PAM,
and the fact that each training example has been used
only once for each class. In this case, the training
time as compared to SVMs was reduced by an order
of magnitude. After 3 epochs all algorithms improved,
specially ALMA, although the SVM continues to out-
perform slightly. None of the algorithms dramatically
improves in performance after convergence, but it must
be noted that eventually the PAM with 7 = 0.4 slightly
outperforms the SVM (not statistically significant).

We see from these results that PAM offer a good com-
promise between the simplicity of PA and the accuracy
of SVMs. Despite ALMA’s theoretical motivation, it
does not seem to improve on the simple PAM.

3.2. Document Categorisation Experiments
(Reuters)

In document categorisation we need to rank a set of
documents with respect to their relevance to a par-
ticular topic, and evaluate the quality of the resulting
ranked list of documents. Topics are not mutually ex-
clusive and their size (i.e. the number of documents
relevant to a topic) can vary widely.

Performance measures for document categorisation
differ from usual machine learning performance meas-
ures due to the fact that there are very few positive
examples and a range of misclassification costs need to
be considered. Performance is often measured by some
average function of the precision of a classifier meas-
ured at different recall values. After training a classi-
fier on a particular topic, the resulting function fw p
can be used to order any sample of documents. Then,
for a given sample z , a given classification function f
and any threshold 6 on this function, we can compute
the precision and recall as:

{(ziyi) € z | (f (=) > 0) A (yi = +1) }
{(ziy:) € 2 | f (i) > 0}

Pz, (0) ==

ALL TOP10 LAST30
Macro-Average Precision:
PA 0.700 0.917 0.539
PAM(1) 0.714 0.920 0.543
PAUM(-1,1) 0.716 0.921 0.582
PAUM(1,50) 0.751 0.924 0.636
SVM 0.746 0.918 0.634
Average Sparsity:
PA 91 442 9
PAM(1) 132 650 12
PAUM(-1,1) 89 443 8
PAUM(1,50) 462 1872 82
SVM 269 933 72

Table 2. Experiments on Reuters-21578 dataset. We have
indicated in bold face the results for the PAUM model with
best performance over the training sample using 10-fold
cross-validation.

and

(@i, yi) € 2 | (f (zi) > O) Ay = +1) }|
H(zi,yi) € z |yi = +1}] '

By plotting precision vs. recall for all values of 6 we
obtain the so called precision-recall curve, from which
most performance measures in information retrieval
originate. Here, we use the macro-averaged precision
(MAP) measure, which approximates the area under a
precision-recall curve by averaging the precision values
obtained at each positive point:

Tz, f (9) =

1
MAP. ji= > pog(f(2)).
{(z:, +1) € 2} {(zs,+1)€=}
In order to gain a better insight into the behaviour of
the algorithms with respect to topic size, we report
three different averages, the average over all topics
(ALL), the 10 largest (TOP10) and the 30 smallest

(LAST30).

We conducted experiments on two document collec-
tions, the well known 'Mod-Apte’ split of the Reuters-
21578 collection, and a subset of the new Reuters-
Voll collection. The Mod-Apte sample has 9603 and
3299 training and test documents respectively, and
90 classes (ranging from 1 to = 1000 relevant train-
ing documents). For the new Reuters-Voll collection
we chose the following split: All the 12807 documents
in the week starting the 26/08/1996 for training, and
all 12800 documents of the following week for testing.
We considered only the 99 categories for which there
was at least one training document and one test doc-
ument in these two periods. The usual preprocessing
of documents was carried out leading to 20000 fea-
tures (i.e. distinct words or terms) for Reuters-21578



ALL TOP10 LAST30
Macro-Average Precision:
PA 0.535 0.891 0.269
PAM(1) 0.561 0.899 0.303
PAUM(-1,1)  0.538 0.890 0.275
PAUM(1,50) 0.589 0.904 0.345
SVM 0.574 0.897 0.325
Average Sparsity:
PA 454 1811 42
PAM(1) 667 2659 65
PAUM(-1,1) 455 1830 41
PAUM(1,50) 1811 5737 375
SVM 980 2841 266

Table 3. Experiments on the Reuters-Voll dataset. We
have indicated in bold face the results for the PAUM model
with best performance over the training sample using 10-
fold cross-validation.

and 120000 features for Reuters-Voll. Vectors were
constructed from documents in the usual bag-of-words
way using tf-idf weighting and normalising vectors. In
other words, the document x is represented as an n —
dimensional vector x where z; := tf; - log (m/df;) , tf;
is the number of times term i appears in document x
and df; is the number of documents in which the term
i appears. Note that df; and n refer to the training
sample.

Table 2 reports results on the Reuters-21578 collec-
tions for the SVM and the PAUM with a number of
(721, 741) settings. First we note that the PA provides
results which are close to those of the SVM!. Indeed,
when considering only the 10 largest topics (TOP10)
the PA is as good as the SVM, and is twice as sparse
(indeed, for these topics we observe training times for
the PA orders of magnitude smaller than for the SVM).

Second, note that although the PAM increases per-
formance slightly over the PA, the price paid in
sparsity? and training time does not seem to be worth-
while. The real gain in performance is obtained when
uneven margins are used. The PAUM(—1,1) suc-
ceeds in achieving near-SVM performance with low
sparsity. Note that negative values for 741 allow for
misclassification errors though Theorem 2.1 remains
valid (for small magnitudes). Indicated in bold is the
performance of the PAUM(1, 50) which achieved the
best performance on the training sample using 10-fold

!Note that uneven margins in SVMs only lead to a
change in the bias b . This, however, does not change
the macro-averaged precision.

2In this paper sparsity is defined as the number of zero
components, a; = 0, of the vector a € R™ of expansion
coefficients.

3The  best

A=0 A=1
MAP 0.689 0.694
Sparsity 76 67

Table 4. The macro-average precision and sparsity results
of the PA on the Reuters-21578 collection, for the 77 lin-
early separable classes, without the noise parameter (A =0
) and with A=1.

cross-validation on classes with at least 40 positive ex-
amples®. This model performs better than the SVM
and reduced the training time of the SVM by a factor
of two.

Note that probably better results would be obtained
by further increasing 711 at the price of less sparsity.
This quantity acts as a trade-off between sparsity and
performance. We did not conduct further experiments
to keep the sparsity comparable to that of the SVM.

Results on the Reuters-Voll dataset are presented in
Table 3. The overall behaviour of the algorithms is
similar: Again the PA performs as well as the rest of al-
gorithms for the largest topics (TOP10), and the SVM
and the PAUM perform similarly for similar sparsity
values.

Finally, we evaluate experimentally the effect of the
noise parameter A needed to deal with linearly insep-
arable problems. Out of the 90 topics in the Reuters-
21578 collection, and using the document encoding
described earlier, there are 77 topics with linearly-
separable training samples. On these 77 topics we
can set the noise parameter A to 0 and observe how
performance and sparsity is affected; we show the res-
ults of this comparison in Table 4. For this particular
problem, MAP performance increased by 0.005 and
sparsity decreased when using A =1 .

4. Conclusions

We have shown that the perceptron algorithm with
margins is a very efficient learning algorithm for linear
classifiers. We have generalised this algorithm to allow
uneven margins, proved a generalisation of Novikoff’s
for this algorithm, and provided a geometrical picture
of this family of linear learning algorithms. Uneven
margins are specially appropriate for problems were
class sizes are highly unbalanced. We demonstrated
this on a standard classification problem and a docu-
ment categorisation problem, where the use of uneven
margins yields classifier which are sparser and more

parameters  where  chosen  from
-1 € {-15,-1,-0.5,0,0.1,0.5,1.0} and 741 €
{-1,-0.5,0,0.1,0.5,1,2,5,10,50} , respectively.



performant than SVMs.

There are several directions that we will pursue in the
future. Firstly, it seems intuitive to adapt the mar-
gin parameters to the size of each topic individually.
Promising results were obtained in preliminary exper-
iments were we fixed 7_; to a small negative number
and used 741 o< (14 exp (—k-¢))”" with ¢ being the
fraction of positive examples in a topic. Secondly, in
the context of document categorisation, it seems that
performance measures are so decorrelated from mis-
classification error that performance on the training
sample (in terms of MAP) can be used for model se-
lection. Since PAUM’s are fast to train, one could
afford to try many values of 71 and 7_1 .
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A. Proof of Theorem 2.1

Proof. Throughout the proof we will use the short-
hand notation X := (x/,R)" and W := (w’, %), to de-
note augmented training examples (mapped into fea-
ture space) and weight vectors.

1. From Algorithm 1 we know that w; = w;_1 +

ny;X; whenever y; ((Wy—_1,%;)) <7, . Thus,
1We1ll” + 2ny; (W1, %i) + 07 1%
< 1wl + 207y, + 20° R,

~ 112
[[w:

because ||X;||> = ||lxi||> + B2 < 2R% . A repeated
application of this inequality implies that
HV/Ot||2 S 2t772R2 + 2"7 (t+17'+1 + t_17'_1) (Al)
< 2tn (NR? + Tinax) (A.2)
where ¢, 1 is the number of updates of positive ex-
amples, t_1 :=t—t41 and Tyax = max{741,7_1}
. Similarly, from (2.3) we have
<wopt7 wt> = <V/‘\/opta ®t71> + nYi <wopt7 §2>
> (Wopt, We—1) + 1L > tnl'.  (A.3)
Combining (A.2) and (A.3) and using the Cauchy-
Schwarz inequality gives the relation
£ ()" < (Wopt, Wt))* < [[Wopt | [ W

< [ Foptll? 2t (NR? + Tomax) - (A4)

Since bept < R by assumption, ||v?ropt||2 <
[ Wopt|>+1 = 2 which, inserted into (A.4), implies
the result (2.4).

2. By the update rule w; = w;_1 + ny;X; and (2.5),
just as in the derivation of (A.3), we have
<V~VoptaVAVt> >yl +tT20)

=l (Ytp +to1)

where the relationship I' {1 := ¢ -T'_; is used. On
the other hand, from the inequality (A.1) we have

(A.5)

1% < 20°R? + 2 (#1741 + 17 1)
=20 [ty1 (MR? + 741) +t_1 (NR? +7_1)]
=2n [(Wty +1o1) (R*+7-1)] . (A6)
where the relationship ¢ = ¢,1+t_; and the defin-
ition of ¢ are used. The two inequalities (A.5)

and (A.6) combined together with the Cauchy-
Schwarz inequality give the relations
2712 2 = 12~ 2
T2 (Wt +1-1)° < [[Wope | 1504

< dn [(ter +to1) (MR? +7-1)]

~ 2
where ||Wopt|| < ||v710pt||2 4+ 1 = 2 is used. This

inequality implies the bound

(nR* + 7_1)

t t_1<4
Yt +t-1 < 771—‘24

(A7)

By substituting (A.7) into (A.6), we obtain

(B2 +70)” (R 7).

IW:)* <8
e, N

The result (2.6) follows by combining the last in-
equality with (2.2) and observing that, at termin-
ation, min(mi’il)ez + <\/A\/t,§l> > T4q .

O
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