
E�cient �-Subsumption based on GraphAlgorithms?Tobias Sche�er, Ralf Herbrich and Fritz WysotzkiTechnische Universit�at Berlin, Arti�cial Intelligence Research Group, Sekr. FR 5-8,Franklinstr. 28/29, D-10587 Berlin, email: sche�er@cs.tu-berlin.deAbstract. The �-subsumption problem is crucial to the e�ciency ofILP learning systems. We discuss two �-subsumption algorithms based onstrategies for preselecting suitable matching literals. The class of clauses,for which subsumption becomes polynomial, is a superset of the deter-ministic clauses. We further map the general problem of �-subsumptionto a certain problem of �nding a clique of �xed size in a graph, andin return show that a specialization of the pruning strategy of the Car-raghan and Pardalos clique algorithm provides a dramatic reduction ofthe subsumption search space. We also present empirical results for themesh design data set.1 Introduction�-subsumption [Rob65] is a correct but incomplete, decidable consequence re-lation, while implication is undecidable in general. A clause C �-subsumes D(C `� D), i� there is a substitution �, such that C� � D.�-subsumption is used as a consequence relation in many ILP systems, forthe decision if a rule covers an example as well as for the reduction of clauses,e.g. [MF90, vdLNC93, DB93]. Especially the consistency test, i.e. the test ifa newly generalized clause covers negative samples, requires a large amountof subsumption tests. Hence, e�cient subsumption algorithms that do not comealong with restrictions of the hypothesis language, are an important contributionto ILP.�-subsumption of two clauses is NP-complete in general [KN86], even if thesecond clause is �xed [KL94]; the NP-completeness results from the ambiguityof variable identi�cation. As subsumption is performed very often in ILP, thee�ciency is crucial to the power of ILP learners; many approaches to speedingup subsumption were studied.If in a clause a literal can be found, that matches exactly one literal of theother clause, this literal can be matched deterministically [DMR92, KL94] andno backtracking needs to be done. Thus, the complexity grows exponentiallywith the number of remaining, non-deterministic literals. In this paper, we willpropose to reduce the number of candidates for each literal using context in-formation, such that for some literals only one candidate remains, and can bematched deterministically.? Proc. International Workshop on Inductive Logic Programming, 1996



For the similar problem of graph isomorphism, there are several approaches,[Tin76, Wei76, WSK81, UW81, GW96a, GW96b], to reducing matching candi-dates using context information. We will adapt a very general approach to theproblem of subsumption and show, that characteristic matrices [Soc88] are aspecial case of this approach. We will present a second approach as well andcharacterize the set of clauses, that can be subsumed in polynomial time by thisalgorithm.Eisinger [Eis81] introduces S-links into the framework of the connection graphresolution proof procedure [Kow75, Sic76]. Eisinger further points out that asubsuming substitution exists, if there is a strongly compatible tuple of substi-tutions in the cartesian product of the literal matches. Kim and Cho [KC92]propose a pruning strategy that reduces the computational e�ort of �nding acompatible substitution. The maximumclique problem is strongly related to thesubsumption problem. The clique problem is to �nd the largest subset of mutu-ally adjacent nodes in a graph. This problem is well known to be NP-complete,e.g. [FGL+91], yet much e�ort has been spent in the search for algorithms thatbehave e�cient in the average, e.g. [JT96, CP90, GHP96]. We will show, thatsubsumption can be tested by �nding a clique of size n, and we will show that aspecialization of the Carraghan and Pardalos pruning strategy [CP90] stronglyreduces the search space, we will show that this space is smaller than the carte-sian product space proposed by Kim and Cho [KC92].There is a di�erent approach to reducing the complexity of subsumption, thatcan be combined with all previously mentioned approaches: If a clause containsclasses (locals) of literals, such that there are no common variables in di�erentclasses, then each class can be matched independently and the complexity growsexponentially with the size of the largest local only [GL85, KL94].In sections 3 and 4, we describe two alternative context based algorithms,while in section 5 we describe our clique based approach. These sections may beread independently.2 The �-subsumption problem�-subsumption [Rob65, Plo70] is an approximation of the logical implication.A clause C �-subsumes a clause D, written C `� D, i� there is a substitution�, such that C� � D and jCj � jDj. We use the term subsumption instead of�-subsumption (in contrast to Loveland [Lov78], who de�nes subsumption asimplication).While implication is undecidable in general for �rst-order languages, �-subsumption is decidable but incomplete, i.e. there may exist clauses C andD, such that C 6`� D but C j= D. This occurs, if C is self-resolving (recursive)or if D is tautological [Got87]. If tautologies and self-resolution are excluded,then C `� D , C j= D [Got87, Mug93, KL94].The �-subsumption problem is NP-complete in general [KN86]. The worstcase time complexity is O(vars(D)vars(C)), or O(jDjjCj).



De�nition1. A substitution is a mapping from variables to terms. We denotesubstitutions � = fx1 ! t1; : : : ; xn! tng.De�nition2. A matching substitution from a literal l1 to a literal l2 is a sub-stitution �, such that l1� = l2.De�nition3. The matching candidates of a literal lC 2 C is the subset of aclauseD, such that there is a matching substitution � with lC� = lD and lD 2 D.2.1 Deterministic subsumptionOne approach to cope with the NP-completeness of �-subsumption is the deter-ministic subsumption. A clause is said to be determinate, if for each literal thereis exactly one possible match that is consistent with the previously matchedliterals [MF90] or, more generally, if there is an ordering of literals, such that ateach step for each literal there is exactly one match that is consistent with thepreviously matched literals [KL94].De�nition4 deterministic subsumption. Let C = c0  fcig and D =d0  d1; : : : ; dm be Horn clauses. C deterministically �-subsumes D, writ-ten C `�DET D by � = �0�1 : : : �n, i� there exists an ordering c1; : : : ; cn ofthe ci, such that for all i, 1 � i � n there exists exactly one �i, such thatfc1; : : : cig�0 : : : �i � D.As Kietz and L�ubbe point out [KL94], the de�nition of determinate subsump-tion between two clauses is identical to the de�nition with respect to one clause,a set of background literals and an example [MF90]: if an observation e followsfrom a clause C and a set of background literals li, then C ` e fl1; : : : ; lng.C `�DET D can be tested with at most O(jCj2 � jDj) uni�cation attempts[KL94] by the following algorithm:1. While there is a literal l1 2 C that matches exactly one literal l2 2 D withl1� = l2, substitute C with �.2. If there is a literal in C that does not match any literal in D, then C� 6� D3. If any literals could not be matched uniquely, start with the clause substi-tuted so far and test for subsumption using a backtracking algorithm.The main problem of this approach is, that the condition is very strict. In ourexperiments with the mesh design data set we learned, that almost no literal at allcould be matched deterministically, unless the data set was especially prepared(see section 6). Yet, the complexity is reduced dramatically for negative examples(C 6`� D). If the number of matching candidates for some literals in C can bereduced, as is done by the following two algorithms, the condition holds moreoften and the set of clauses, to be subsumed deterministically, grows.



3 Reduction of matching candidates using graph contextWysotzki [WSK81, UW81] proposes an approach to reducing the number ofmatching candidates for the graph isomorphism problem that is based on resultsof Weisfeiler [Wei76] and Tinhofer [Tin76]. It was applied to obtaining attribute-value data for machine learning of graph classi�cation rules [GW96a, GW96b].The approach is based on the idea, that nodes may be matched to those nodesonly, that possess the same context, i.e. the same relations up to an arbitrarydepth. We will propose an approach to the subsumption problem that re
ectsthis principle. Wysotzki's algorithm is based on the algebraic representation ofgraphs by adjacency matrices. Each element Aij of an adjacency matrix containsthe relation between node i and node j. The context of the nodes is computedby multiplying the adjacency matrices.Example 1. Let G1 contain the nodes x1, x2 and x3 labeled with the unaryrelation a and the relations r(x1; x2) and r(x2; x3). We can represent G1 by theadjacency matrix A1 = 0@a r ;; a r; ; a1AThe square of this matrix yields the following:A1 �A1 = 0@ aa+ r;+ ;; ar + ra+ ;; a;+ rr + ;a;a+ a;+ r; ;r + aa+ r; ;;+ ar + ra;a+ ;;+ a; ;r + ;a+ a; ;;+ ;r + aa1AIt is important to get an understanding of this procedure: While element Aijcontains the relation between node i and node j, element A2ij of the multipliedmatrix contains a complete enumeration of all paths of length 2 leading fromnode i to node j, each summand representing one path. In general, Anij enumer-ates all paths of length n. We shall take a look at element A211, enumeratingpaths from node x1 to node x1: the �rst summand is aa, representing a paththat consists of two loops through the unary relation a. The next summand isr;, representing the relation r leading to node x2 and the empty relation ; back;this might not be considered a path in an intuitive sense because the emptyrelation was traversed, but it certainly starts from node x1 and leads to node x1.We shall now look at element A212. Summand ar represents a path that is set upby a loop through the unary a and the binary r(x1; x2) relation. Hence the pathleads from x1 to x2. The other summands are to be interpreted accordinglyThe branching factor for the isomorphism test can be reduced by only match-ing those nodes, that share the same set of paths of length k for an arbitrary k.Note, that the number of paths is jV jk, where V is the set of nodes and k is thecontext depth, and the comparison of paths is O(paths2) = O(jV j2k). But fornot too large a k this is feasible and it showed, that almost any isomorphism testcan be performed in polynomial time [Wei76, WSK81, UW81]. It is known, thattwo nodes cannot match if their context paths do not match, but it is unknown,



if a match of the context implies a match of the nodes for any �xed context depth(note that the complexity of the graph isomorphism problem is unknown).Translating this approach to the problem of �-subsumption, we have to mindtwo main di�erences: The concept of a path does not cover more than binaryrelations and we do not want to decide the identity of clauses (up to substitution),but the inclusion of clauses (up to substitution) instead. The translation is basedon the fact, that for each occurrence of a variable x1 in C there must be acorresponding occurrence of x1� in D. We de�ne the occurrence graph to denotethe occurrence of identical variables. We �rstly focus on datalog clauses, i.e.clauses with terms restricted to variables or constant symbols.De�nition5 occurrence graph. (C;EC) is the occurrence graph of a datalogclause C with if (li; lj; �i $ �j) 2 EC i� there is a variable x that occurs inliteral li at argument position �i and in literal lj at argument position �j.The edges of the occurrence graph are labeled �i $ �j, where �i and �j areargument position in which occurrences of the same variable are found.De�nition6 graph context. The graph context of depth d of a literal l1 froma clause C, congra(l1; d; C), is the set of terms p1��1 $ �2�p2�: : :��(n�1)$ �d �pd,i� there exists a set f(l1; l2; �1 $ �2); : : : ; (ld�1; ld; �d�1 $ �d)g of edges in theoccurrence graph, such that pi is the predicate symbol of li (note that l1 = ld ispossible, too).Example 2. Let C = r(x1; x2); r(x2; x3); q(x3). The occurrence graph containsonly two edges: (r(x1; x2); r(x2; x3); 2$ 1) and (r(x2; x3); q(x3); 2$ 1), denot-ing that there is a variable, that occurs on position 2 of literal r(x1; x2) and onposition 1 of literal r(x2; x3) and a variable on position 2 or r(x2; x3) that alsooccurs on position 1 of q(x3). The graph context of literal r(x1; x2) at depth 1contains only the term r � 2$ 1 � r. At depth 2 the context contains two paths:r � 2 $ 1 � r � 2 $ 1 � q and r � 2 $ 1 � r � 1 $ 2 � r. The �rst path correspondsto the literal sequence r(x1; x2) � r(x2; x3) � q(x3), the second to the sequencer(x1; x2)� r(x2; x3)� r(x1; x2).Proposition7. Let l1 2 C, l2 2 D be literals, let the depth d be any natu-ral number. Let l1� = l2, � is a matching substitution. If congra(l1; d; C) 6�congra(l2; d;D), then there is no �, such that C�� � D.That is, a literal must not be matched against another literal, if its contextcannot be embedded in the other literal's context.Outline of proof 1 Let C and D be clauses, let congra(l1; d; C) andcongra(l2; d;D) be the context of a literal from C and D respectively, such thatcongra(l1; d; C) 6� congra(l2; d;D). This implies, that there is a sequence of liter-als of C sharing at least one variable with their neighbors that has no correspon-dence in D. Let pa ��a $ �b �pb be the critical part of the path, and la, lb the pairof literals, that has no corresponding path in D. If there is a �, such that C� � D,



then �a(la)� = �b(lb)� where � is the argument selector, because the variables atthese positions are equal. But la� and lb� cannot be element of D, because theyshare a common variable and we assumed that there is no corresponding path inD. The graph context of a literal at depth 1 contains the same amount of infor-mation as the characteristic matrix [Soc88] of the literal does. Element Cij of acharacteristic matrix of a literal l contains the predicate names of those literalslk, such that there is a variable, that occurs at position i of l and on position j oflk. The graph context in turn contains a path for each literal in which a commonvariable occurs, consisting of the predicate name and a term i $ k, such thatthe variable occurs at position i and j in either literal. Clearly, this incorporatesthe same information. The graph context at a larger depth contains more in-formation, namely information about literals that are connected via a chain ofcommon variables. This cannot be represented in the characteristic matrix for-malism, because the matrix is indexed with two argument positions, it requiresa sequence of pairs of argument positions to represent context information of ahigher depth.The proposed algorithm reduces the number of literals in D, a literal in Ccan be matched with (the matching candidates). There are two interesting casesin which the subsumption can be tested with polynomial e�ort: If there is aliteral l 2 C that has no matching candidates left, then C� 6� D, and if there isa literal that has exactly one candidate, then we need not perform backtrackingfor this literal, which is the idea of deterministic subsumption. In these cases,C � D can be tested in O(jCj2 � jDj � 22d), because jCj2 � jDj is the complexity ofdeterministic subsumption [KL94] and we need to compare O(2d) paths to testfor congra(li) � congra(lj), where d is the �xed depth.Example 3. Let C = r(x1; x2); r(x2; x3) and D = r(y1; y2); r(y2; y3); r(y1; y3).We want to test if C� � D. Note, that the clauses cannot be matched deter-ministically, nor are there any locals. At depth 1, the context of the �rst literalr(x1; x2) only contains the path r �2$ 1 �r (x2 appears at position 2 of r(x1; x2)and on position 1 of r(x2; x3)), the context of r(x2; x3) contains r � 1 $ 2 � r.The context of r(y1; y2) is fr � 2 $ 1 � r; r � 1 $ 1 � rg, the context of r(y2; y3)is fr � 1 $ 2 � r; r � 2 $ 2 � rg and of r(y1; y3) is fr � 1 $ 1 � r; r � 2 $ 2 � rg.Now the context of r(x1; x2) can only be embedded in the context of r(y1; y2),not in any other literal's context; the context of r(x2; x3) is only included in thecontext of r(y1; y2). Hence, both literals can be matched deterministically andthe substitution was found without backtracking.If a clause C is not a datalog clause, i.e. the clause contains non-trivialterms, then we compute a datalog clause C 0 according to [Soc88] and generatethe context w.r.t the new datalog clause. For each literal p(t1; : : : ; tn) 2 C, C 0contains a literal p0(x1; : : : ; xm), such that the xi are the variables occurring inthe ti, in order of their appearance.



4 Reduction of matching candidates using the literalcontextIn this section, we propose another pruning strategy that reduces the numberof matching candidates, that is based on the principle, that identical variablesin one clause have to be matched on identical variables in the other clause. Wede�ne the literal graph in which literals with common variables are adjacent,but in contrast to the occurrence graph we omit the argument positions.De�nition8 literal graph. (C;EC) is the literal graph of a clause C, if andonly if (li; lj) 2 EC i� there is a variable x occurring in both, li and lj.The literal context at a depth d of a literal includes all those literals, thatcan be reached via a path of length d.De�nition9 literal context. The context at depth d of a literal l 2 C is theclause conlit(l; C; d), that contains exactly those literals, that can be reached viaa path of length at most d in the literal graph of C.The size of the context is growing exponentially with the depth but is limitedby the size of the clause C. We write conlit(l; C; d; k) to limit the size to a �xedk, i.e. conlit(l; C; d; k) is a random subset of conlit(l; C; d), of size k.A literal l1 2 C must not be matched against a literal l2 2 D, if the contextof l1 cannot be embedded in the context of l2.Proposition10. Let C and D be clauses and l1 2 C and l2 2 D be literals,such that l1� = l2. If there is no �, such that conlit(l1; C; d)�� � conlit(l2; D; d)then there is no �0, such that C��0 � D.Outline of proof 2 Let x be a variable occurring in more than literal of C.These literals only match literals of D containing identical variables x� at thecorresponding places. This implies that any set of literals of C connected bysequence of pairs of identical variables only matches a set of literals with identicalvariables in the corresponding pairs of literals. If there is a literal lj of C in thecontext of a literal li and li matches a literal l0 of D by a literal match �, then dueto def. 9 it is connected via a chain of variable occurrences and it only matchesa literal in the context of li�. If there is no such literal, there can be no globalmatch containing �.We will now focus on the complexity of a match based on the literal contextand we will characterize the set of clauses, that can be matched in polynomialtime.Clearly, the size of the context is growing exponentially with the depth, butit is restricted to the size of the clause and furthermore can be restricted to anarbitrary size k. Note that, if C� � D is to be tested, the size of the context ofthe literals of C can be restricted to an arbitrary k, while the size of the contextof the D literals has to be computed to at least the same depth and cannot berestricted to a random subset of size k, because if A � B, then any subset of Ais a subset of B as well, but need not be a subset of a random subset of B.



De�nition11 Generalized determinacy. Let C = c0  fc1; : : : ; cng andD = d0  d1; : : : ; dm be Horn clauses and let k be the maximum numberof literals in any literal's context of an arbitrary lookahead depth d. Then Ccon(d; k)-deterministically subsumes D by � = �0 : : :�n, written C `�dkDET D,i� there exists an ordering l1; : : : ; ln, such that for all i, 1 � i � jCj, there existsexactly one �, such that there is a l0 2 D and li� = l0 and conlit(li; C; d; k)��0i �conlit(l0; D; d).Clearly, this is a generalization of the determinacy concept, because for thecontext depth of 0, conlit(li; C; d; k) is the empty set and the de�nition becomesidentical to the de�nition of the deterministic subsumption. For any contextdepth d > 0 and any context size k > 0 the context inclusion is an additionalcondition that reduces the number of candidates, and hence more often thereexists exactly one remaining matching candidate.We know, that the deterministic match can be tested in O(jCj2 � jDj), wefurthermore know, that in general subsumption can be tested in O(jDjjCj). Thus,the context inclusion can be tested in O(jDjk), because the context of the literalfrom D is restricted by the size of the whole clause, while we can restrict thecontext of the literal from C to any arbitrary k. Since we only have to modifythe deterministic matching algorithm in a way that it does not only test theliterals for matching substitutions but tests for context inclusion instead, thecon(d; k)-deterministic match can be tested in O(jDjk � jCj2 � jDj).Example 4. Let C = r(x1; x2); r(x2; x3) and D = r(y1; y2); r(y2; y3); r(y4; y3).We want to test if C� � D. Note again, that the clauses cannot be matcheddeterministically, nor are there any locals. At depth 1, the context of r(x1; x2)contains r(x2; x3) and vice versa. The context of r(y1; y2) contains r(y2; y3), thecontext of r(y2; y3) is fr(y1; y2); r(y4; y3)g and the context of r(y4; y3) containsr(y2; y3). Thus, r(x1; x2) matches all literals in D but the context can be em-bedded in the context of r(y1; y2) only; the context of r(x2; x3) subsumes thecontext of r(y2; y3). Again we can match the clauses in polynomial time, withoutany need for backtracking.5 Clique and the general subsumption problemIn this section we show that the subsumption problem can be mapped to theclique problem. We present a specialization of the Carraghan and Pardalos[CP90] pruning strategy.De�nition12. A pair (V;E) of vertices and edges with E � V � V we call agraph.De�nition13. A set of nodes C � V is a clique of a graph (V;E), i� E � C�C,i.e. all nodes are mutually adjacent.



5.1 S-link method of subsumptionEisinger [Eis81] proposes a subsumption test that is based on selecting a com-patible tuple of substitutions.De�nition14. Two substitutions �1 and �2 are called strongly compatible i��1 � �2 = �2 � �1, i.e. no variable is assigned di�erent terms in �1 and �2.De�nition15. uni(C; li; D) = f�jli 2 C; li� 2 Dg is the set of all matchingsubstitutions from a literal li in C to to some literal in D.Proposition16 Eisinger. A clause C subsumes a clause D (C� � D), i� thereis an n-tuple (�1; : : : ; �n) 2 �ni=1uni(C; li; D), where n = jCj, such that all �iare pairwise strongly compatible.Example 5. Let C = fP (x; y); P (y; z)g and D = fP (a; b); P (b; c); Q(d)g. Thenuni(C;P (x; y); D) = ffx! a; y! bg; fx! b; y ! cgg and uni(C;P (y; z); D) =ffy ! a; z ! bg; fy ! b; z ! cgg. The cartesian product of these sets is�2i=1uni(C; li; D) = ffx ! a; y ! bg � fy ! a; z ! bg; fx ! a; y ! bg � fy !b; z ! cg; fx ! b; y ! cg � fy ! a; z ! bg; fx ! b; y ! cg � fy ! b; z ! cgg,of which only fx ! a; y ! bg � fy ! b; z ! cg = fx ! a; y ! b; z ! cg is astrongly compatible substitution.To test if there is a compatible substitution, the cartesian product of allmatching substitutions has to be enumerated, there are jDjjCj combinations ofmatching substitutions in the worst case. We now map this problem to theclique problem. We therefore de�ne a graph, the nodes of which are all matchingsubstitutions from any literal of C to some literal in D, and the edges of whichare given by the compatibility of the substitutions. We augment the substitutionwith the number of the originating literal in C because we want each clique tocontain only one matching substitution for each literal of C.De�nition17 substitution graph. Let C and D be clauses and n = jCj.Then (VC;D; EC;D) is the substitution graph i� VC;D = Sni=1(uni(C; li; D); i)and ((�1; i); (�2; j)) 2 EC;D i� �1 and �2 are strongly compatible and i 6= j.Proposition18. Let C and D be clauses. Then C� � D with � = �1 � : : : � �n,i� there is a clique f�1; : : : ; �ng of size jCj in the substitution graph of C and D.Proof 4 \)" Let C� � D. Then each literal li of C is embedded in D, i.e. wecan split � into �1 � : : : �n such that li 2 C, li�i 2 D. The �i are clearly stronglycompatible because it C� � D, then no variable can be assigned two di�erentterms in �. Then (�1; 1); : : : ; (�n; n) is a clique in the substitution graph due todef 17. Furthermore, there can exist no clique of size > n, because matchingsubstitution for the same literal of C are not adjacent (see def. 17) and there aren literals in C only.\(" Let ((�1; 1); : : : ; (�n; n)) be a clique in the substitution graph. Due todef. 17 the �i are mutually strongly compatible. If (�i; i) and (�j ; j) are in theclique, then i 6= j, otherwise the nodes had got no edge (see def 17). As there aren matching substitutions for n di�erent literals of C and n = jCj, each literal ofC is embedded into some literal of D, hence for � = �1 � : : : � �n C� � D holds.



5.2 Searching for MAXCLIQUECarraghan and Pardalos present the following algorithm to determine the largestclique of a graph [CP90]:1. Start with initial sets nodes containing all nodes, best-clique, initially empty,and a recursion depth, initially 1.2. For all nodes �i in nodes repeat(a) select a new set nodes0 = nodes \ neighbors(�i)(b) if jbest-cliquej < depth + jnodes0j (and nodes0 6= ;), then starting re-cursively from point (2) with depth + 1 and nodes0, determine the maxclique of nodes0.(c) If f�ig[ max clique of nodes0 is larger than the best-clique, save the newclique in best-clique.(d) remove �i and from nodes and continue the loop at point 2.3. return best-cliqueExample 6. HH 14 HH 6 HH�� �� ��5 32Fig. 1. Graph used in example 6depth nodes �i nodes' best-clique comment1 123456 1 23456 -2 23456 2 36 -3 36 3 6 -4 6 6 - 6 nodes0 empty, return3 362 2362 3456 3 6 236 depth+ nodes0 = 2 + 1 � 3! prune2 456 4 5 236 as above2 56 5 - 236 nodes0 empty, return1 12361 23456 2 36 1236 depth+ nodes0 = 1 + 2 � 4! prune1 3456 3 6 1236 depth+ nodes0 = 1 + 1 � 4! prune1 456 4 5 1236 depth+ nodes0 = 1 + 1 � 4! prune1 56 5 - 1236 nodes0 empty, return 1236.The important aspect of this algorithm is point 2b. A current node �i isexpanded, only if the number of nodes expanded so far plus the number of



nodes not expanded yet, that are neighbors of the current node, exceeds the sizeof the best clique found so far. Since all nodes in a clique are mutually adjacent,any clique containing node �i cannot include any node that is not a neighborof �i. Obviously, there is no clique containing the current clique and �i, that islarger than the current clique plus the neighbors of �i plus 1 (namely �i itself).If the best clique found so far is even larger, we need not further expand �i. Thispruning strategy provides an optimal reduction, if the best clique known so far isalmost as large as the maximum clique in the graph. For the pruning to becomemostly e�cient, the nodes should be sorted by decreasing output degree, suchthat large cliques are most likely to be found early. Note that due to point (2a),nodes � neighbours(�1) \ : : :\ neighbours(�n�1).The Carraghan and Pardalos clique algorithm can be used to decide if thesubstitution graph contains a clique of size n. But while this algorithm uses thebest clique found so far to decide, if the pruning strategy can be applied, we nowknow that no clique larger than jCj can exist; thus, we can use the full power ofthe pruning strategy from the beginning. We can rewrite the pruning strategyin order to �nd cliques of size n:(2b') if depth+jnodes0j � n, then starting recursively from point (2) with depth+1and nodes0, determine the max clique of nodes0.This rule can still be improved. Remember, that in de�nition 17 we aug-mented each substitution with the number of the literal from the left hand sideclause. Two nodes of the substitution graph are adjacent, only if their literalnumbers are not identical (see def 17 and note, that each literal can be matchedto one literal of the right hand side clause only). We can therefore state, thatthere can be no clique of size i + j which is a superset of a current clique ofsize i, if the set of remaining nodes does not contain at least j di�erent literalnumbers.(2b") if depth+ jfij9(�i; i) 2 nodes0gj � n, then starting recursively from point (2)with depth+ 1 and nodes0, determine the max clique of nodes0.We will now compare this algorithm to the algorithm proposed by Kim andCho [KC92].1. Generate the set of matching substitutions2. Delete those substitutions, that are strongly compatible with less than jCj�1di�erent substitutions3. enumerate the cartesian product of the remaining substitutions of dimensionn and check, if there is a strongly compatible n-tuple.This notation of the algorithm is essentially identical to the algorithm in[KC92], that is expressed in terms of bit vectors. Although this algorithm doesnot refer to the clique problem, we will explain, that the search space set up bythe cartesian product of the remainingmatching substitutions is a superset of thesearch space the clique has to be found in. Since the set of matching substitutions



sets up the vertices of the substitution graph and the compatibility relation setsup the edges, any n-tuple of pairwise strongly compatible substitutions sets up aclique in the substitution graph. Hence point (3) of the Kim and Cho algorithmperforms the search for a clique of size n. Point (2) excludes substitutions withless than jCj � 1 compatible substitutions, or, in terms of substitution graphs,excludes nodes with an output degree of less than jCj � 1. The rewritten rule(2b') in turn does not expand a node i, if depth+ jnodes0j < n, where nodes0 =nodes\neighbors of i. At the top level, where depth = 1 and nodes = V , bothrules are identical. If depth > 1 (note that depth is always identical to thenumber of nodes in the current clique), then obviously neighbour(�1) \ : : : \neighbour(�i) � neighbours(�i) (remember, that nodes0 � neighbour(�1)\ : : :\neighbour(�i)). Since neighbour is irre
exive (see def. 17), at least depth � 1nodes (namely �1; : : : ; �i�1), that are neighbors of �i are missing in nodes0, i.e.depth+jnodes0j � depth+jneighbour(�1)\: : :\neighbour(�i)j � neighbours(�i).As neighbours(�i) is the degree of the vertex �i in the substitution graph, therewritten Carraghan and Pardalos rule is more general than the Kim and Chorule, i.e. if the Kim and Cho rule �res, this implies that the Carraghan andPardalos rule �res as well, but not vice versa.Kim and Cho additionally propose a second pruning strategy: If two incom-patible matching substitutions possess an identical set of adjacent nodes, thenone of them can be removed. This directly corresponds to a simple symmetrydetection in clique search and may increase the performance of the algorithm: iftwo non-adjacent nodes share the same set of adjacent nodes, then there are atleast two cliques of identical size containing exactly one of these nodes, and it isirrelevant, which one of them is chosen.6 Empirical resultsOur experiments are based on the well known �nite element mesh design dataset [BM92]. We used the complete and non-determinate data set, provided bythe MLnet server at the GMD. To obtain clauses C of any size, we set upclauses that contained a mesh/2 literal as a head and the set of literals linkedto the head via an increasing variable depth as the body. We computed thelgg [Plo70] of two such clauses and drew a random subset of the body literalsto more precisely adjust the clause size. The D clauses were generated using a�xed variable depth, they are of approximately the same size (approximately 130literals). We varied the size of C and tested for C� � D. For each curve we usedabout 5,000 to 10,000 subsumption tests in the positive and up to 25,000 tests inthe negative case, taking 140 days of computation time on Sparc20 workstationsin total. The matches-deterministic, and the context based algorithms invokethe plain prolog-like matching algorithm after the candidate sets are reduced bythe context inclusion criterion. The combination of the graph context and cliquealgorithm �rst maximally reduces the set of matching candidates and invokesthe clique algorithm to search the remaining substitution space. All algorithmsare implemented in \C" and the experiments were performed on sparc stations.



We examined mainly two questions: (1) How does the maximum clique ap-proach compare to a plain subsumption algorithm and (2) How do the contextbased approaches compare to the deterministic match, especially for negativeexamples, which are the major problem of the prolog-like algorithms.The main problem we were facing is the high variance of the measured time.While 95% of the problems can be solved in only a fraction of the averagetime, very rare cases occur that require several hours up to days to be solved.As we were not able to observe a su�ciently large number of these rare andvery expensive cases { which would have required several hundred days { ourcurves for the positive case are fairly noisy. Yet, we are able to state to statesigni�cant results covering 95% of the problems, after we omitted those 5% ofcases with the largest deviation from the mean value. Fig. 2 shows the timeresults in the positive case for 100%, �g. 3 for 95% of the observed problems.The strong similarity between the two diagrams indicates that the exclusion of5% extrema successfully eliminates the noise but does not in
uence the obtainedresults. In contrast to Kietz [KL94] who obtained an improvement of performanceusing deterministic subsumption (based on an arti�cial data set), we cannotcon�rm that deterministic subsumption yields an improvement on the meshdesign data set in the positive case. The context based algorithms clearly improvethe performance, the curve is shifted by about 10 literals. Although the di�erencebetween the algorithms is rather small, the graph context based approach at adepth of 2 yields the best results. While the clique based subsumption showsan impressive behavior, the combination of the graph context and the cliqueapproach produces an even better result. The mean time for 50 literals is only 1second, while this problem is completely intractable for the plain subsumptionalgorithm.Figure 4 shows the results for the negative case (C� 6� D). Since the testsare much faster in the negative case, we were able to perform up to 25,000tests, hence the curves are less noisy. The deterministic test is signi�cantly fasterthan the plain subsumption in the negative case, in fact more than 95% of allproblems are solved in less than 0.01 second. This occurs, if a literal is found,that does not match any literal of the other clause; otherwise backtracking hasto be performed. The most expensive test observed took 34 hours, in contrastthe most expensive graph context based test took 4 seconds, the most expensivetest done by the combination of the context and clique based algorithm, basedon 25,000 observations, took 0.4 seconds.Figure 5 shows the variances 1nP(ti � �si)2, where ti is the observed timeand �si the mean time for a clause size of si literals, for the studied algorithmsin the positive and negative case respectively. In the positive case, the variance isvery high in general, i.e. most tests require only a fraction of the mean time, themean value is strongly in
uenced by a small number of expensive tests. Both, thecontext approach and the pruning strategy of the clique algorithm reduce thenumber of these expensive tests. The combination of these approaches reducesthe variance by a factor of 1000. In the negative case the di�erences are evenlarger. The deterministic subsumption shows a very high variance as expected,



0

200

400

600

800

1000

1200

5 10 15 20 25 30 35 40 45 50

se
co

nd
s

number of literals

plain subsumption
deterministic subsumption

graph context (d=1)
graph context (d=2)
literal context (d=1)
literal context (d=2)

clique based subsumption
graph context and clique

Fig. 2. Average time for 100% of the positive samples
0

5

10

15

20

25

30

35

40

5 10 15 20 25 30 35 40 45 50

se
co

nd
s

number of literals

plain subsumption
deterministic subsumption

graph context (d=1)
graph context (d=2)
literal context (d=1)
literal context (d=2)

clique based subsumption
graph context and clique

Fig. 3. Average time for 95% of the positive samples



0

50

100

150

200

250

300

350

400

0 5 10 15 20 25 30 35 40 45 50

se
co

nd
s

number of literals

plain subsumption
deterministic subsumption

graph context (d=2)
literal context (d=1)

clique based subsumption
graph context and clique

Fig. 4. Average time for negative samples
05e+061e+071.5e+072e+072.5e+073e+07

plain subs.26,455,704.0 det. subs.22,867,988.0 context6,776,206.5 clique7,472,368.5 con./clique22,349.9�2t 02e+064e+066e+068e+061e+071.2e+07
plain subs.4,508,992.5 det. subs.10,133,475.0 context0.084821 clique45.869541 con./clique0.000787�2tFig. 5. Variance for positive and negative samplesbecause more than 95% of all problems are solved instantly. As the candidateelimination procedure leaves only a very small search space (if any), and thepruning strategy works very reliable, the combined algorithm solves all observedproblems very fast and shows a very low variance in the time required.7 Conclusion and further researchWe proposed two approaches to coping with the complexity of the �-subsumptionproblem. One approach is a mapping of the subsumption problem to the prob-lem of the maximum clique and the use of a strongly specialized version of the



Carraghan and Pardalos algorithm, that dramatically reduces the search space.We showed that the Kim and Cho algorithm, that enumerates the cartesianproduct of the matching substitutions operates in a larger search space, due to amuch weaker reduction strategy. The other approach is based on a reduction ofthe matching candidates using context information for each literal. The contextis given by occurrences of identical variables or chains of such occurrences. Wepresented two algorithms, that re
ected this idea. We showed that there is a setof clauses, which is a superset of the determinate clauses, that can be tested forsubsumption in polynomial time. The approaches are combined to a powerfulalgorithm: �rst the candidate sets are reduced using the graph context criterion,the remaining space is searched using the proposed clique algorithm.Our empirical results, based on the �nite element mesh design data set, showthat both approaches strongly improve the performance, a combination of bothapproaches yields the best results, i.e. the least mean time and a small variance.The determinate subsumption improves the performance in the negative case,although we could not observe an improvement in the positive case. In the neg-ative case, there are very few problems that are extremely expensive.The proposed combination of the context and the clique based subsumptionalgorithm can in turn be combined with the k-local match [GL85, KL94]. If Ccontains classes of literals such that there are no common variables in di�erentclasses, then each class can be matched independently and the complexity growsexponentially with the size of the largest local only. Each class can be matchedusing the presented algorithm.The e�ciency of the �-subsumption test is crucial to the performance of ILPlearning algorithms. This is of special importance to generalization based learn-ing algorithms, that usually generate larger clauses and have to test generalizedclauses for consistency w.r.t a huge set of samples. Hence, our future work willfocus on graph based machine learning algorithms, that make use of the pre-sented e�cient matching algorithms. We shortly completed the implementationof a �rst prototype of our learning system, that requires about 2 minutes to learna fairly good hypothesis for the mesh design data set.ACKNOWLEDGMENTThis work was partially supported by an Ernst-von-Siemens-Fellowship held byTobias Sche�er. We wish to thank all our colleagues for their patience duringthe long time we performed our experiments on their workstations.References[BM92] B. Bolsak and S. Muggleton. The application of inductive logic program-ming to �nite-element mesh design. In Inductive Logic Programming, Lon-don, 1992. Academic Press.[CP90] R. Carraghan and P. Pardalos. An exact algorithm for the maximum cliqueproblem. Operations Research Letters, 9:375{382, 1990.



[DB93] L. DeRaedt and M. Bruynooghe. A theory of clausal discovery. In Proc.Workshop on ILP, 1993.[DMR92] S. Dzeroski, S. Muggleton, and S. Russel. Pac-learnability of determinatelogic programs. In Proc. 5th ACM Workshop on Computational LearningTheory, pages 128{135, 1992.[Eis81] N. Eisinger. Subsumption and connection graphs. In Proc. IJCAI, 1981.[FGL+91] U. Feige, S. Goldwasser, L. Lovasz, S. Safra, and M. Szegedy. Approximat-ing the maxclique is almost NP-complete. In Proc. 32nd IEEE Symp. onFoundations of Comp. Sci., 1991.[GHP96] L. Gibbons, D. Hearn, and P. Pardalos. A continuous based heuristic forthe maximum clique problem. In Clique, Graph Coloring and Satis�ability:Second DIMACS Implementation Challenge, 1996.[GL85] G. Gottlob and A. Leitsch. On the e�ciency of subsumption algorithms.J. ACM, 32(2):280{295, 1985.[Got87] G. Gottlob. Subsumption and implication. Information Processing Letters,24:109{111, 1987.[GW96a] P. Geibel and F. Wysotzki. Learning relational concepts with decisiontrees. In Proc. ICML, 1996.[GW96b] P. Geibel and F. Wysotzki. Relational learning with decision trees. InProc. ECAI, 1996.[JT96] D. S. Johnson and M. A. Trick, editors. Clique, Graph Coloring and Satis�-ability: Second DIMACS Implementation Challenge, DIMACS series, 1996.[KC92] B. M. Kim and J. W. Cho. A new subsumption method in the connectiongraph proof procedure. Theoretical Computer Science, 103:283{309, 1992.[KL94] J.-U. Kietz and M. L�ubbe. An e�cient subsumption algorithm for induc-tive logic programming. In Proc. International Conference on MachineLearning, 1994.[KN86] D. Kapur and P. Narendran. NP-completeness of the set uni�cation andmatching problems. In Proc. 8th International Conference on AutomatedDeduction, 1986.[Kow75] R. Kowalski. A proof procedure using connection graphs. J. ACM,22(4):572{595, 1975.[Lov78] D. W. Loveland. Automated theorem proving: A logical basis. Elsevier,North Holland, 1978.[MF90] S. Muggleton and C. Feng. E�cient induction of logic programs. In Proc.1st Conf. on Algorithmic Learning Theory, pages 368{381, 1990.[Mug93] S. Muggleton. Inverting implication. Arti�cial Intelligence Journal, 1993.[Plo70] G. D. Plotkin. A note on inductive generalization. In B. Meltzer andD. Michie, editors, Machine Intelligence, volume 5, pages 153{163, 1970.[Rob65] J. A. Robinson. A machine-oriented logic based on the resolution principle.J. ACM, 12(1):23{41, 1965.[Sic76] Sharon Sickel. A search technique for clause interconnectivity graphs.IEEE Transactions on Computers, C-25(8):823{835, 1976.[Soc88] R. Socher. A subsumption algorithm based on characteristic matrices. InProc. 9th Int. Conf. on Automated Deduction, 1988.[Tin76] G. Tinhofer. Zum algorithmischen Nachweis der Isomorphie von endlichenGraphen. In H. Noltemeier, editor, Graphen, Algorithmen, Datenstruk-turen. 2. Fachtagung �uber Graphentheoretische Konzepte der Informatik.Carl Hanser Verlag, 1976.



[UW81] S. Unger and F. Wysotzki. Lernf�ahige Klassi�zierungssysteme. AkademieVerlag Berlin, 1981.[vdLNC93] P. van der Laag and S. Nienhuys-Cheng. Subsumption and re�nement inmodel inference. In Machine Learning: ECML, 1993.[Wei76] B. Weisfeiler. On Construction and Identi�cation of Graphs. Number 558in Lecture Notes in Mathematics. Springer Verlag, Berlin, 1976.[WSK81] F. Wysotzki, J. Selbig, and W. Kolbe. Concept learning by structured ex-amples { an algebraic approach. In Proceedings of the 7th InternationalJoint Conference on Arti�cial Intelligence, 1981.

This article was processed using the LATEX macro package with LLNCS style


