Efficient 8-Subsumption based on Graph
Algorithms*

Tobias Scheffer, Ralf Herbrich and Fritz Wysotzki

Technische Universitat Berlin, Artificial Intelligence Research Group, Sekr. FR 5-8,
Franklinstr. 28/29, D-10587 Berlin, email: scheffer@cs.tu-berlin.de

Abstract. The #-subsumption problem is crucial to the efficiency of
ILP learning systems. We discuss two #-subsumption algorithms based on
strategies for preselecting suitable matching literals. The class of clauses,
for which subsumption becomes polynomial, is a superset of the deter-
ministic clauses. We further map the general problem of #-subsumption
to a certain problem of finding a clique of fixed size in a graph, and
in return show that a specialization of the pruning strategy of the Car-
raghan and Pardalos clique algorithm provides a dramatic reduction of
the subsumption search space. We also present empirical results for the
mesh design data set.

1 Introduction

G-subsumption [Rob65] is a correct but incomplete, decidable consequence re-
lation, while implication 1s undecidable in general. A clause C' #-subsumes D
(C' kg D), iff there is a substitution @, such that C¢ C D.

f-subsumption is used as a consequence relation in many ILP systems, for
the decision if a rule covers an example as well as for the reduction of clauses,
e.g. [MF90, vdLNC93, DB93]. Especially the consistency test, i.e. the test if
a newly generalized clause covers negative samples, requires a large amount
of subsumption tests. Hence, efficient subsumption algorithms that do not come
along with restrictions of the hypothesis language, are an important contribution
to ILP.

G-subsumption of two clauses is NP-complete in general [KN8&6], even if the
second clause is fixed [KL94]; the NP-completeness results from the ambiguity
of variable identification. As subsumption is performed very often in ILP, the
efficiency is crucial to the power of ILP learners; many approaches to speeding
up subsumption were studied.

If in a clause a literal can be found, that matches exactly one literal of the
other clause, this literal can be matched deterministically [DMR92, K1.94] and
no backtracking needs to be done. Thus, the complexity grows exponentially
with the number of remaining, non-deterministic literals. In this paper, we will
propose to reduce the number of candidates for each literal using context in-
formation, such that for some literals only one candidate remains, and can be
matched deterministically.

* Proc. International Workshop on Inductive Logic Programming, 1996

For the similar problem of graph isomorphism, there are several approaches,
[Tin76, Wei76, WSK81, UW81, GW96a, GWI6b], to reducing matching candi-
dates using context information. We will adapt a very general approach to the
problem of subsumption and show, that characteristic matrices [Soc88] are a
special case of this approach. We will present a second approach as well and
characterize the set of clauses, that can be subsumed in polynomial time by this
algorithm.

Eisinger [Eis81] introduces S-links into the framework of the connection graph
resolution proof procedure [KowT7h, Sic76]. Eisinger further points out that a
subsuming substitution exists, if there is a strongly compatible tuple of substi-
tutions in the cartesian product of the literal matches. Kim and Cho [KC92]
propose a pruning strategy that reduces the computational effort of finding a
compatible substitution. The maximum clique problem is strongly related to the
subsumption problem. The clique problem is to find the largest subset of mutu-
ally adjacent nodes in a graph. This problem is well known to be NP-complete,
e.g. [FGL*91], yet much effort has been spent in the search for algorithms that
behave efficient in the average, e.g. [JT96, CP90, GHP96]. We will show, that
subsumption can be tested by finding a clique of size n, and we will show that a
specialization of the Carraghan and Pardalos pruning strategy [CP90] strongly
reduces the search space, we will show that this space is smaller than the carte-
sian product space proposed by Kim and Cho [KC92].

There is a different approach to reducing the complexity of subsumption, that
can be combined with all previously mentioned approaches: If a clause contains
classes (locals) of literals, such that there are no common variables in different
classes, then each class can be matched independently and the complexity grows
exponentially with the size of the largest local only [GL85, KL.94].

In sections 3 and 4, we describe two alternative context based algorithms,
while in section b we describe our clique based approach. These sections may be
read independently.

2 The #-subsumption problem

G-subsumption [Rob65, Plo70] is an approximation of the logical implication.
A clause C' f-subsumes a clause D, written C' g D, iff there is a substitution
@, such that C6 C D and |C| < |D|. We use the term subsumption instead of
@-subsumption (in contrast to Loveland [Lov78], who defines subsumption as
implication).

While implication is undecidable in general for first-order languages, 6-
subsumption is decidable but incomplete, i.e. there may exist clauses C' and
D, such that C't/g D but C' |= D. This occurs, if C' is self-resolving (recursive)
or if D is tautological [Got87]. If tautologies and self-resolution are excluded,
then C' k¢ D & C | D [Got87, Mug93, KL94].

The G-subsumption problem is NP-complete in general [KN86]. The worst
case time complexity is O(vars(D)?¥*()) or O(|D|I€.

Definition1. A substitution is a mapping from variables to terms. We denote
substitutions § = {1 — t1,..., 2, =t}

Definition 2. A matching substitution from a literal [to a literal I3 is a sub-
stitution u, such that [y = 5.

Definition 3. The matching candidates of a literal I € C is the subset of a
clause D, such that there is a matching substitution p with {cp = lp and lp € D.

2.1 Deterministic subsumption

One approach to cope with the NP-completeness of #-subsumption is the deter-
ministic subsumption. A clause is said to be determinate, if for each literal there
1s exactly one possible match that is consistent with the previously matched
literals [MF90] or, more generally, if there is an ordering of literals, such that at
each step for each literal there is exactly one match that is consistent with the
previously matched literals [K1.94].

Definition4 deterministic subsumption. Let C' = ¢y « {¢} and D =
dy « di,...,dy, be Horn clauses. (' deterministically #-subsumes D, writ-
ten C' Foppr D by 6 = 8y, ...08,, iff there exists an ordering ¢y, ..., ¢, of
the ¢;, such that for all i, 1 < ¢ < n there exists exactly one 6;, such that
{Cla~~~ci}90~~~9i gD

As Kietz and Liibbe point out [KL94], the definition of determinate subsump-
tion between two clauses 1s identical to the definition with respect to one clause,
a set of background literals and an example [MF90]: if an observation e follows
from a clause C' and a set of background literals [;, then C'Fe « {ly,... 1,}.

C bFeprr D can be tested with at most O(|C|* - |D|) unification attempts
[KL94] by the following algorithm:

1. While there is a literal I € C' that matches exactly one literal I, € D with
lipp =I5, substitute C' with p.

2. If there is a literal in C' that does not match any literal in D, then C8 € D

3. If any literals could not be matched uniquely, start with the clause substi-
tuted so far and test for subsumption using a backtracking algorithm.

The main problem of this approach is, that the condition is very strict. In our
experiments with the mesh design data set we learned, that almost no literal at all
could be matched deterministically, unless the data set was especially prepared
(see section 6). Yet, the complexity is reduced dramatically for negative examples
(C' /o D). If the number of matching candidates for some literals in C' can be
reduced, as is done by the following two algorithms, the condition holds more
often and the set of clauses, to be subsumed deterministically, grows.

3 Reduction of matching candidates using graph context

Wysotzki [WSK81, UWS&1] proposes an approach to reducing the number of
matching candidates for the graph isomorphism problem that is based on results
of Weisfeiler [Wei76] and Tinhofer [Tin76]. It was applied to obtaining attribute-
value data for machine learning of graph classification rules [GW96a, GW96b].
The approach is based on the idea, that nodes may be matched to those nodes
only, that possess the same context, i.e. the same relations up to an arbitrary
depth. We will propose an approach to the subsumption problem that reflects
this principle. Wysotzki’s algorithm is based on the algebraic representation of
graphs by adjacency matrices. Each element A;; of an adjacency matrix contains
the relation between node 7 and node j. The context of the nodes is computed
by multiplying the adjacency matrices.

Erample 1. Let G contain the nodes x1, s and zs3 labeled with the unary
relation a and the relations r(x1, #2) and r(z2, #3). We can represent GG; by the
adjacency matrix
ar
Ai=[0ar
0 0a

The square of this matrix yields the following:

aa + 70+ 00 ar+ra+ 00 ab + rr + e
A - A= | ba+ab+rd Or+aa+rl 00+ ar + ra
fa+ 00+ abd Or + Ba + alh 0O + Or + aa

It is important to get an understanding of this procedure: While element A;;
contains the relation between node i and node j, element A?; of the multiplied
matrix contains a complete enumeration of all paths of length 2 leading from
node ¢ to node j, each summand representing one path. In general, A7, enumer-
ates all paths of length n. We shall take a look at element A%, enumerating
paths from node z; to node z;: the first summand is aa, representing a path
that consists of two loops through the unary relation a. The next summand is
), representing the relation r leading to node x3 and the empty relation §§ back;
this might not be considered a path in an intuitive sense because the empty
relation was traversed, but it certainly starts from node x; and leads to node x1.
We shall now look at element A%,. Summand ar represents a path that is set up
by a loop through the unary a and the binary r(x1, #2) relation. Hence the path
leads from z; to 3. The other summands are to be interpreted accordingly

The branching factor for the isomorphism test can be reduced by only match-
ing those nodes, that share the same set of paths of length % for an arbitrary .
Note, that the number of paths is |V|*, where V is the set of nodes and & is the
context depth, and the comparison of paths is O(paths?) = O(|V|?*). But for
not too large a k this is feasible and it showed, that almost any isomorphism test
can be performed in polynomial time [Wei76, WSK81, UW81]. It is known, that
two nodes cannot match if their context paths do not match, but it is unknown,

if a match of the context implies a match of the nodes for any fixed context depth
(note that the complexity of the graph isomorphism problem is unknown).

Translating this approach to the problem of #-subsumption, we have to mind
two main differences: The concept of a path does not cover more than binary
relations and we do not want to decide the identity of clauses (up to substitution),
but the inclusion of clauses (up to substitution) instead. The translation is based
on the fact, that for each occurrence of a variable z; in C' there must be a
corresponding occurrence of 16 in D. We define the occurrence graph to denote
the occurrence of identical variables. We firstly focus on datalog clauses, i.e.
clauses with terms restricted to variables or constant symbols.

Definition 5 occurrence graph. (C, F¢) is the occurrence graph of a datalog
clause C' with if (l;,1;, 7 ¢ 7;) € E¢ iff there is a variable 2 that occurs in
literal /; at argument position m; and in literal {; at argument position «;.

The edges of the occurrence graph are labeled m; <+ m;, where m; and 7; are
argument position in which occurrences of the same variable are found.

Definition 6 graph context. The graph context of depth d of a literal [y from
aclause C, congq(l1,d, C),is the set of terms py-my > To-pa-.. . T(n_1) ¢ Ta-Pa,
iff there exists a set {(l1,la,m1 < ™), ..., (ldg—1,la, Ta—1 <> mq)} of edges in the
occurrence graph, such that p; is the predicate symbol of [; (note that {; = {4 is
possible, too).

Ezample 2. Let C = r(x1,22),7(2x2, 23), ¢(x3). The occurrence graph contains
only two edges: (r(x1,z2), r(x2,23),2 ¢ 1) and (r(x2, 3), ¢(23),2 < 1), denot-
ing that there is a variable, that occurs on position 2 of literal r(xy, 22) and on
position 1 of literal r(z2, 23) and a variable on position 2 or (22, #3) that also
occurs on position 1 of ¢(z3). The graph context of literal r(z1,22) at depth 1
contains only the term r -2 < 1 - 7. At depth 2 the context contains two paths:
r-21-r- 21 gandr-2< 1-7-1¢ 2-r. The first path corresponds
to the literal sequence r(x1, z2) — r(22, #3) — ¢(x3), the second to the sequence
r(x1, w2) — r(xe, x3) — r(x1, 2).

Proposition7. Let Iy € C, Iy € D be literals, let the depth d be any natu-
ral number. Let Ly = lo, p is a matching substitution. If cong.(l1,d,C) €
congrq(lo, d, D), then there is no 8, such that Cué C D.

That is, a literal must not be matched against another literal, if its context
cannot be embedded in the other literal’s context.

Outline of proof 1 Let C' and D be clauses, let cong.q(lh,d,C) and
congrq(lo, d, D) be the context of a literal from C and D respectively, such that
congra(l1,d, C) € congrq(lo,d, D). This implies, that there is a sequence of liter-
als of C sharing at least one variable with their neighbors that has no correspon-
dence in D. Let py -y <> Ty - pp be the critical part of the path, and l,, ly the pair
of literals, that has no corresponding path in D. If there is a 6, such that C'8 C D,

then mq(1)0 = mo(lp)0 where is the argument selector, because the variables at
these positions are equal. But 1,0 and [0 cannot be element of D, because they
share a common variable and we assumed that there is no corresponding path in

D.

The graph context of a literal at depth 1 contains the same amount of infor-
mation as the characteristic matrix [Soc88] of the literal does. Element Cj; of a
characteristic matrix of a literal [contains the predicate names of those literals
li., such that there is a variable, that occurs at position ¢ of [and on position j of
li;. The graph context in turn contains a path for each literal in which a common
variable occurs, consisting of the predicate name and a term ¢ + k, such that
the variable occurs at position ¢ and j in either literal. Clearly, this incorporates
the same information. The graph context at a larger depth contains more in-
formation, namely information about literals that are connected via a chain of
common variables. This cannot be represented in the characteristic matrix for-
malism, because the matrix is indexed with two argument positions, it requires
a sequence of pairs of argument positions to represent context information of a
higher depth.

The proposed algorithm reduces the number of literals in D, a literal in C'
can be matched with (the matching candidates). There are two interesting cases
in which the subsumption can be tested with polynomial effort: If there is a
literal [€ C' that has no matching candidates left, then C'f € D, and if there is
a literal that has exactly one candidate, then we need not perform backtracking
for this literal, which is the idea of deterministic subsumption. In these cases,
C C D can be tested in O(|C|?-|D|-22%), because |C]?-|D| is the complexity of
deterministic subsumption [KL94] and we need to compare O(2%) paths to test
for congrq(li) C congq(l;), where d is the fixed depth.

Ezample 3. Let C' = r(xy,22),r(22,23) and D = r(y1,y2), 7(y2,y3), (Y1, ¥3).
We want to test if '0 C D. Note, that the clauses cannot be matched deter-
ministically, nor are there any locals. At depth 1, the context of the first literal
r(x1,22) only contains the path -2 < 1.7 (x5 appears at position 2 of r(zy, 22)
and on position 1 of r(zse, #3)), the context of r(zq,#3) contains r -1 < 2 - r.
The context of r(y1,y2) is {r-2 < 1-r,r-1 & 1.7}, the context of r(y2, y3)
is{r- 12 rr-2c 2 r}and of r(pr,ys)is{r- 1o 1-rr-2 6 2.7}
Now the context of r(x1,22) can only be embedded in the context of r(yi, y2),
not in any other literal’s context; the context of r(xs, 3) is only included in the
context of r(y1,y2). Hence, both literals can be matched deterministically and
the substitution was found without backtracking.

If a clause C' is not a datalog clause, i.e. the clause contains non-trivial
terms, then we compute a datalog clause C” according to [Soc88] and generate
the context w.r.t the new datalog clause. For each literal p(t,...,t,) € C, "
contains a literal p/(x1,...,2m), such that the z; are the variables occurring in
the t;, in order of their appearance.

4 Reduction of matching candidates using the literal
context

In this section, we propose another pruning strategy that reduces the number
of matching candidates, that is based on the principle, that identical variables
in one clause have to be matched on identical variables in the other clause. We
define the literal graph in which literals with common variables are adjacent,
but in contrast to the occurrence graph we omit the argument positions.

Definition 8 literal graph. (C, E¢) is the literal graph of a clause ', if and
only if ({;,1;) € E¢ iff there is a variable x occurring in both, /; and {;.

The literal context at a depth d of a literal includes all those literals, that
can be reached via a path of length d.

Definition 9 literal context. The context at depth d of a literal [€ C is the
clause conyi: (I, C, d), that contains exactly those literals, that can be reached via
a path of length at most d in the literal graph of C.

The size of the context is growing exponentially with the depth but is limited
by the size of the clause C'. We write cony (I, C, d, k) to limit the size to a fixed
k,i.e. cony(l,C,d, k) is a random subset of cony;: (1, C, d), of size k.

A literal [y € C' must not be matched against a literal I, € D, if the context
of {1 cannot be embedded in the context of 5.

Proposition10. Let C' and D be clauses and 1 € C and ls € D be literals,
such that lyp = ly. If there is no 0, such that conyi (I, C, d)pb C conge(l2, D, d)
then there is no 0, such that Cpd’ C D.

Outline of proof 2 Let x be a variable occurring in more than literal of C.
These literals only match literals of D containing identical variables x6 at the
corresponding places. This implies that any set of literals of C' connected by
sequence of patrs of tdentical variables only matches a set of literals with identical
variables in the corresponding pairs of literals. If there is a literal l; of C' in the
context of a literal l; and l; matches a literall’ of D by a literal match p, then due
to def. 9 it is connected via a chain of variable occurrences and it only matches
a literal in the context of l;p. If there is no such literal, there can be no global
match containing p.

We will now focus on the complexity of a match based on the literal context
and we will characterize the set of clauses, that can be matched in polynomial
time.

Clearly, the size of the context is growing exponentially with the depth, but
it 1s restricted to the size of the clause and furthermore can be restricted to an
arbitrary size k. Note that, if C'6 C D is to be tested, the size of the context of
the literals of C' can be restricted to an arbitrary &, while the size of the context
of the D literals has to be computed to at least the same depth and cannot be
restricted to a random subset of size k, because if A C B, then any subset of A
1s a subset of B as well, but need not be a subset of a random subset of B.

Definition11 Generalized determinacy. Let C' = ¢y < {c1,...,¢,} and
D = dy « di,...,dy be Horn clauses and let & be the maximum number
of literals in any literal’s context of an arbitrary lookahead depth d. Then ('
con(d, k)-deterministically subsumes D by 6 = pg ... py, written C Foaqpppr D,
iff there exists an ordering {1, ..., l,, such that for all i, 1 < i < |C|, there exists
exactly one g, such that there is a !’ € D and l;x = I’ and cony ({5, C, d, k) bl C
coniie (', D, d).

Clearly, this is a generalization of the determinacy concept, because for the
context depth of 0, cony (I;, C, d, k) is the empty set and the definition becomes
identical to the definition of the deterministic subsumption. For any context
depth d > 0 and any context size k > 0 the context inclusion is an additional
condition that reduces the number of candidates, and hence more often there
exists exactly one remaining matching candidate.

We know, that the deterministic match can be tested in O(|C|* - |D|), we
furthermore know, that in general subsumption can be tested in O(|D|I°l). Thus,
the context inclusion can be tested in O(|D|*), because the context of the literal
from D is restricted by the size of the whole clause, while we can restrict the
context of the literal from C to any arbitrary k. Since we only have to modify
the deterministic matching algorithm in a way that it does not only test the
literals for matching substitutions but tests for context inclusion instead, the
con(d, k)-deterministic match can be tested in O(|D|* - |C|? - |D]).

Ezample 4. Let C' = r(xy,22),r(22,23) and D = r(y1,y2), 7(y2,y3), (ya, y3).
We want to test if C'0 C D. Note again, that the clauses cannot be matched
deterministically, nor are there any locals. At depth 1, the context of r(x1, #2)
contains (g, x3) and vice versa. The context of r(y1, y2) contains r(y2, y3), the
context of 7(y2,y3) is {r(y1,y2),7(ya, y3)} and the context of r(y4,ys) contains
7(y2,y3). Thus, r(z1,22) matches all literals in D but the context can be em-
bedded in the context of r(y1,y2) only; the context of r(xa, £3) subsumes the
context of 7(y2, y3). Again we can match the clauses in polynomial time, without
any need for backtracking.

5 Clique and the general subsumption problem

In this section we show that the subsumption problem can be mapped to the
clique problem. We present a specialization of the Carraghan and Pardalos
[CPI0] pruning strategy.

Definition12. A pair (V, E) of vertices and edges with E C V x V we call a
graph.

Definition13. A set of nodes C' C Vis a clique of a graph (V,), ift E D C'x C,
1.e. all nodes are mutually adjacent.

5.1 S-link method of subsumption

Eisinger [Eis81] proposes a subsumption test that is based on selecting a com-
patible tuple of substitutions.

Definition 14. Two substitutions 6, and 8- are called strongly compatible iff
61 -2 = 65 -6, 1.e. no variable is assigned different terms in §; and 6.

Definition15. uni(C,l;, D) = {p|l; € C i € D} is the set of all matching
substitutions from a literal [; in C to to some literal in D.

Proposition16 Eisinger. A clause C' subsumes a clause D (C0 C D), iff there
is an n-tuple (01,...,0,) € xP_juni(C,l;, D), where n = |C|, such that all 6,
are pairwise strongly compatible.

Ezample 5. Let C' = {P(x,y), P(y,z)} and D = {P(a,b), P(b,c),Q(d)}. Then
uni(C, P(z,y), D)= {{xr = a,y = b}, {x = b,y — c}}and uni(C, P(y,z), D) =
Hy = a,2 = b}, {y = b,z = c}}. The cartesian product of these sets is
x?_uni(C)l;, D) = {{z = a,y = b} - {y = a,z = b}, {x = a,y = b} - {y —
bz = ch{e =2 by —c} - {y > a,z > b} {e—>by—ect-{y—bz—c}}
of which only {# — a,y = b} - {y = bz > c} =1 2 a,y > bz —>clisa
strongly compatible substitution.

To test if there is a compatible substitution, the cartesian product of all
matching substitutions has to be enumerated, there are |D|I! combinations of
matching substitutions in the worst case. We now map this problem to the
clique problem. We therefore define a graph, the nodes of which are all matching
substitutions from any literal of C' to some literal in D, and the edges of which
are given by the compatibility of the substitutions. We augment the substitution
with the number of the originating literal in C' because we want each clique to
contain only one matching substitution for each literal of C'.

Definition 17 substitution graph. Let C' and D be clauses and n = |C].
Then (Ve,p, Ecp) is the substitution graph iff Ve p = U, (uni(C,1;, D),7)
and ((01,19), (f2,7)) € Ec p iff 01 and 6, are strongly compatible and ¢ # j.

Proposition18. Let C' and D be clauses. Then C C D with 8§ =01 - ... 0,,
iff there is a clique {61, ...,0,} of size |C| in the substitution graph of C' and D.

Proof 4 =" Let C8 C D. Then each literal l; of C' s embedded in D, 1.e. we
can split 6 into 01 - .. .0, such that l; € C, [;0; € D. The 0; are clearly strongly
compatible because it C@ C D, then no variable can be assigned two different
terms in 6. Then (61,1),...,(0n,n) is a clique in the substitution graph due to
def 17. Furthermore, there can exist no clique of size > n, because matching
substitution for the same literal of C' are not adjacent (see def. 17) and there are
n literals in C only.

“=7" Let ((01,1),...,(0n,n)) be a cliqgue in the substitution graph. Due to
def. 17 the 8; are mutually strongly compatible. If (8;,4) and (8;,7) are in the
clique, then i # j, otherwise the nodes had got no edge (see def 17). As there are
n matching substitutions for n different literals of C and n = |C|, each literal of
C' is embedded into some literal of D, hence for @ =601 -...- 8, C8 C D holds.

5.2 Searching for MAXCLIQUE

Carraghan and Pardalos present the following algorithm to determine the largest

clique of a graph [CP90]:

1. Start with initial sets nodes containing all nodes, best-clique, initially empty,

and a recursion depth, initially 1.

2. For all nodes #; in nodes repeat
(a) select a new set nodes’ = nodes N neighbors(6;)

(b) if |best-clique| < depth + |nodes’| (and nodes’ # (), then starting re-
cursively from point (2) with depth + 1 and nodes’, determine the max

clique of nodes’.

(c) If {6;}U max clique of nodes’ is larger than the best-clique, save the new

clique in best-clique.
(d) remove §; and from nodes and continue the loop at point 2.
3. return best-clique

Ezrample 6.

~

4
|-
5

2

P
1\6—'73

Fig. 1. Graph used in example 6

depth|nodes |9i nodes’|best-clique{comment
1 |123456|1|23456 |-
2 (23456 2136 -
3 136 316 -
4 16 6 |- 6 nodes’ empty, return
3 36
2 236
2 13456 |36 236 depth + nodes’ =2+ 1 < 3 — prune
2 1456 415 236 as above
2 |56 5 |- 236 nodes’ empty, return
1 1236
1 123456 (236 1236 depth + nodes’ =1+ 2 < 4 — prune
1 [3456 |36 1236 depth + nodes’ =1+ 1 <4 — prune
1 456 415 1236 depth + nodes’ =1+ 1 <4 — prune
1 |56 5 |- 1236 nodes’ empty, return 1236.

The important aspect of this algorithm is point 2b. A current node 6; is
expanded, only if the number of nodes expanded so far plus the number of

nodes not expanded yet, that are neighbors of the current node, exceeds the size
of the best clique found so far. Since all nodes in a clique are mutually adjacent,
any clique containing node #; cannot include any node that is not a neighbor
of 6;. Obviously, there is no clique containing the current clique and ;, that is
larger than the current clique plus the neighbors of 6; plus 1 (namely 0; itself).
If the best clique found so far is even larger, we need not further expand ;. This
pruning strategy provides an optimal reduction, if the best clique known so far is
almost as large as the maximum clique in the graph. For the pruning to become
mostly efficient, the nodes should be sorted by decreasing output degree; such
that large cliques are most likely to be found early. Note that due to point (2a),
nodes C neighbours(f1) N...N neighbours(fp_1).

The Carraghan and Pardalos clique algorithm can be used to decide if the
substitution graph contains a clique of size n. But while this algorithm uses the
best clique found so far to decide, if the pruning strategy can be applied, we now
know that no clique larger than |C| can exist; thus, we can use the full power of
the pruning strategy from the beginning. We can rewrite the pruning strategy
in order to find cliques of size n:

(2b”) if depth+|nodes’| > n, then starting recursively from point (2) with depth+1
and nodes’, determine the max clique of nodes’.

This rule can still be improved. Remember, that in definition 17 we aug-
mented each substitution with the number of the literal from the left hand side
clause. Two nodes of the substitution graph are adjacent, only if their literal
numbers are not identical (see def 17 and note, that each literal can be matched
to one literal of the right hand side clause only). We can therefore state, that
there can be no clique of size i + j which 1s a superset of a current clique of
size ¢, 1f the set of remaining nodes does not contain at least j different literal
numbers.

2b”) if depth + |{1|3(6;,1) € nodes’}| > n, then starting recursively from point (2
2 g
with depth + 1 and nodes’, determine the max clique of nodes’.

We will now compare this algorithm to the algorithm proposed by Kim and
Cho [KC92].

1. Generate the set of matching substitutions

2. Delete those substitutions, that are strongly compatible with less than |C'|—1
different substitutions

3. enumerate the cartesian product of the remaining substitutions of dimension
n and check, if there is a strongly compatible n-tuple.

This notation of the algorithm is essentially identical to the algorithm in
[KC92], that is expressed in terms of bit vectors. Although this algorithm does
not refer to the clique problem, we will explain, that the search space set up by
the cartesian product of the remaining matching substitutions is a superset of the
search space the clique has to be found in. Since the set of matching substitutions

sets up the vertices of the substitution graph and the compatibility relation sets
up the edges, any n-tuple of pairwise strongly compatible substitutions sets up a
clique in the substitution graph. Hence point (3) of the Kim and Cho algorithm
performs the search for a clique of size n. Point (2) excludes substitutions with
less than |C| — 1 compatible substitutions, or, in terms of substitution graphs,
excludes nodes with an output degree of less than |C| — 1. The rewritten rule
(2b) in turn does not expand a node i, if depth + |nodes’| < n, where nodes’ =
nodesNneighbors of 7. At the top level, where depth = 1 and nodes = V', both
rules are identical. If depth > 1 (note that depth is always identical to the
number of nodes in the current clique), then obviously neighbour(fy) N...N
neighbour(6;) C neighbours(6;) (remember, that nodes’ C neighbour(61)N...N
neighbour(6;)). Since neighbour is irreflexive (see def. 17), at least depth — 1
nodes (namely 6y, ...,6;_1), that are neighbors of §; are missing in nodes’, i.e.
depth+|nodes’| < depth+|neighbour(61)N. . .Nneighbour(8;)| < neighbours(6;).
As neighbours(6;) is the degree of the vertex ; in the substitution graph, the
rewritten Carraghan and Pardalos rule is more general than the Kim and Cho
rule, i.e. if the Kim and Cho rule fires, this implies that the Carraghan and
Pardalos rule fires as well, but not vice versa.

Kim and Cho additionally propose a second pruning strategy: If two incom-
patible matching substitutions possess an identical set of adjacent nodes; then
one of them can be removed. This directly corresponds to a simple symmetry
detection in clique search and may increase the performance of the algorithm: if
two non-adjacent nodes share the same set of adjacent nodes, then there are at
least two cliques of identical size containing exactly one of these nodes, and it is
irrelevant, which one of them is chosen.

6 Empirical results

Our experiments are based on the well known finite element mesh design data
set [BM92]. We used the complete and non-determinate data set, provided by
the MLnet server at the GMD. To obtain clauses ' of any size, we set up
clauses that contained a mesh/2 literal as a head and the set of literals linked
to the head via an increasing variable depth as the body. We computed the
lgg [Plo70] of two such clauses and drew a random subset of the body literals
to more precisely adjust the clause size. The D clauses were generated using a
fixed variable depth, they are of approximately the same size (approximately 130
literals). We varied the size of C' and tested for C'¢ C D. For each curve we used
about 5,000 to 10,000 subsumption tests in the positive and up to 25,000 tests in
the negative case, taking 140 days of computation time on Sparc20 workstations
in total. The matches-deterministic, and the context based algorithms invoke
the plain prolog-like matching algorithm after the candidate sets are reduced by
the context inclusion criterion. The combination of the graph context and clique
algorithm first maximally reduces the set of matching candidates and invokes
the clique algorithm to search the remaining substitution space. All algorithms
are implemented in “C” and the experiments were performed on sparc stations.

We examined mainly two questions: (1) How does the maximum clique ap-
proach compare to a plain subsumption algorithm and (2) How do the context
based approaches compare to the deterministic match, especially for negative
examples, which are the major problem of the prolog-like algorithms.

The main problem we were facing is the high variance of the measured time.
While 95% of the problems can be solved in only a fraction of the average
time, very rare cases occur that require several hours up to days to be solved.
As we were not able to observe a sufficiently large number of these rare and
very expensive cases — which would have required several hundred days — our
curves for the positive case are fairly noisy. Yet, we are able to state to state
significant results covering 95% of the problems, after we omitted those 5% of
cases with the largest deviation from the mean value. Fig. 2 shows the time
results in the positive case for 100%, fig. 3 for 95% of the observed problems.
The strong similarity between the two diagrams indicates that the exclusion of
5% extrema successfully eliminates the noise but does not influence the obtained
results. In contrast to Kietz [KL94] who obtained an improvement of performance
using deterministic subsumption (based on an artificial data set), we cannot
confirm that deterministic subsumption yields an improvement on the mesh
design data set in the positive case. The context based algorithms clearly improve
the performance, the curve is shifted by about 10 literals. Although the difference
between the algorithms is rather small, the graph context based approach at a
depth of 2 yields the best results. While the clique based subsumption shows
an impressive behavior, the combination of the graph context and the clique
approach produces an even better result. The mean time for 50 literals is only 1
second, while this problem is completely intractable for the plain subsumption
algorithm.

Figure 4 shows the results for the negative case (C' € D). Since the tests
are much faster in the negative case, we were able to perform up to 25,000
tests, hence the curves are less noisy. The deterministic test is significantly faster
than the plain subsumption in the negative case, in fact more than 95% of all
problems are solved in less than 0.01 second. This occurs, if a literal i1s found,
that does not match any literal of the other clause; otherwise backtracking has
to be performed. The most expensive test observed took 34 hours, in contrast
the most expensive graph context based test took 4 seconds, the most expensive
test done by the combination of the context and clique based algorithm, based
on 25,000 observations, took 0.4 seconds.

Figure 5 shows the variances %Z(tl — s,)%, where t; is the observed time
and s, the mean time for a clause size of s; literals, for the studied algorithms
in the positive and negative case respectively. In the positive case, the variance is
very high in general, i.e. most tests require only a fraction of the mean time, the
mean value is strongly influenced by a small number of expensive tests. Both, the
context approach and the pruning strategy of the clique algorithm reduce the
number of these expensive tests. The combination of these approaches reduces
the variance by a factor of 1000. In the negative case the differences are even
larger. The deterministic subsumption shows a very high variance as expected,

seconds

seconds

T
plain subsumption <—
deterministic subsumption -+-
graph context (d=1) -8--
graph context (d= 3
1000 H * literal context (d=1) -&— |
! ; literal context (d=2) -*--
/ clique based subsumption -<--
! graph context and clique -+---

1200

800 |-

600 |-

B N T S
25 30 35 40
number of literals

50

Fig. 2. Average time for 100% of the positive samples

40 T T T
/ plain subsumption —~<—

deterministic subsumption -+-

graph context (d=1) -
graph context (d=

literal context (d=

literal context (d=2) -¥ -
clique based subsumption -<--
graph context and clique -+---

a--
%
N

30

20 -

10

25 30
number of literals

Fig. 3. Average time for 95% of the positive samples

400 T T
plain subsumption <—
deterministic subsumption -+-
graph context (d=2) -8--
350 - literal context (d=1) -x-
clique based subsumption -5
graph context and clique -¥*-
300]
250 1
/*/
) Y
g .
S 200 B
Q
@
150 B
,"+/
100 |- T R
,’*"/V‘
50 B
0 1 y & S B tettettette otw—
0 5 0 25 30 35 40 45 50
number of literals
Fig. 4. Average time for negative samples
3e+07 1.2e4+07
2.5e+07 - le4+07 1
2e+07 B 8e+06 - g
o} 1.5e+07 < o} Get06 - -
1e+07 | g 4406 [g
5e+06 - g 2e+06 - B
26,455,704.0|22,867,988.0| 6,776,206.5 | T 22,349.9 4.508,992.5 |10,133,475.0| 0.084821 45.869541 0.000787
0 | | | . 0 | | | | | | |
plain subs. det. subs. context clique con./clique plain subs. det. subs context clique con./clique

Fig. 5. Variance for positive and negative samples

because more than 95% of all problems are solved instantly. As the candidate
elimination procedure leaves only a very small search space (if any), and the
pruning strategy works very reliable, the combined algorithm solves all observed
problems very fast and shows a very low variance in the time required.

7 Conclusion and further research

We proposed two approaches to coping with the complexity of the §-subsumption
problem. One approach is a mapping of the subsumption problem to the prob-
lem of the maximum clique and the use of a strongly specialized version of the

Carraghan and Pardalos algorithm, that dramatically reduces the search space.
We showed that the Kim and Cho algorithm, that enumerates the cartesian
product of the matching substitutions operates in a larger search space, due to a
much weaker reduction strategy. The other approach is based on a reduction of
the matching candidates using context information for each literal. The context
is given by occurrences of identical variables or chains of such occurrences. We
presented two algorithms, that reflected this idea. We showed that there is a set
of clauses, which is a superset of the determinate clauses, that can be tested for
subsumption in polynomial time. The approaches are combined to a powerful
algorithm: first the candidate sets are reduced using the graph context criterion,
the remaining space is searched using the proposed clique algorithm.

Our empirical results, based on the finite element mesh design data set, show
that both approaches strongly improve the performance, a combination of both
approaches yields the best results, i.e. the least mean time and a small variance.

The determinate subsumption improves the performance in the negative case,
although we could not observe an improvement in the positive case. In the neg-
ative case, there are very few problems that are extremely expensive.

The proposed combination of the context and the clique based subsumption
algorithm can in turn be combined with the k-local match [GL85, KL.94]. If C'
contains classes of literals such that there are no common variables in different
classes, then each class can be matched independently and the complexity grows
exponentially with the size of the largest local only. Each class can be matched
using the presented algorithm.

The efficiency of the f-subsumption test is crucial to the performance of ILP
learning algorithms. This is of special importance to generalization based learn-
ing algorithms, that usually generate larger clauses and have to test generalized
clauses for consistency w.r.t a huge set of samples. Hence, our future work will
focus on graph based machine learning algorithms, that make use of the pre-
sented efficient matching algorithms. We shortly completed the implementation
of a first prototype of our learning system, that requires about 2 minutes to learn
a fairly good hypothesis for the mesh design data set.

ACKNOWLEDGMENT

This work was partially supported by an Ernst-von-Siemens-Fellowship held by
Tobias Scheffer. We wish to thank all our colleagues for their patience during
the long time we performed our experiments on their workstations.

References

[BM92] B. Bolsak and S. Muggleton. The application of inductive logic program-
ming to finite-element mesh design. In Inductive Logic Programming, Lon-
don, 1992. Academic Press.

[CP90] R. Carraghan and P. Pardalos. An exact algorithm for the maximum clique
problem. Operations Research Letters, 9:375-382, 1990.

[DB93]
[DMR92]

[Fis81]
[FGL*o1]

[GHPY6]

[GLS5]
[Gots7]
[GW96a]
[GW96b)]
[IT96]
[KC92]

[KL94]

[KNS6]

[Kow75]
[Lov78]
[MF90]

[Mug93]
[Plo70]

[Rob65]
[Sic76]
[Soc88]

[Tin76]

L.. DeRaedt and M. Bruynooghe. A theory of clausal discovery. In Proc.
Workshop on ILP, 1993.

S. Dzeroski, S. Muggleton, and S. Russel. Pac-learnability of determinate
logic programs. In Proc. 5th ACM Workshop on Computational Learning
Theory, pages 128-135, 1992.

N. Eisinger. Subsumption and connection graphs. In Proc. IJCAI 1981.
U. Feige, S. Goldwasser, L. Lovasz, S. Safra, and M. Szegedy. Approximat-
ing the maxclique is almost NP-complete. In Proc. 32nd IFEE Symp. on
Foundations of Comp. Sct., 1991.

L. Gibbons, D. Hearn, and P. Pardalos. A continuous based heuristic for
the maximum clique problem. In Clique, Graph Coloring and Satisfiability:
Second DIMACS Implementation Challenge, 1996.

G. Gottlob and A. Leitsch. On the efficiency of subsumption algorithms.
J. ACM, 32(2):280-295, 1985.

G. Gottlob. Subsumption and implication. Information Processing Letters,
24:109-111, 1987.

P. Geibel and F. Wysotzki. Learning relational concepts with decision
trees. In Proc. ICML, 1996.

P. Geibel and F. Wysotzki. Relational learning with decision trees. In
Proc. FCAI 1996.

D. S. Johnson and M. A. Trick, editors. Clique, Graph Coloring and Satisfi-
ability: Second DIMACS Implementation Challenge, DIMACS series, 1996.
B. M. Kim and J. W. Cho. A new subsumption method in the connection
graph proof procedure. Theoretical Computer Science, 103:283-309, 1992.
J.-U. Kietz and M. Liibbe. An efficient subsumption algorithm for induc-
tive logic programming. In Proc. International Conference on Machine
Learning, 1994.

D. Kapur and P. Narendran. NP-completeness of the set unification and
matching problems. In Proc. 8th International Conference on Automated
Deduction, 1986.

R. Kowalski. A proof procedure using connection graphs. J. ACM,
22(4):572-595, 1975.

D. W. Loveland. Automated theorem proving: A logical basis. FElsevier,
North Holland, 1978.

S. Muggleton and C. Feng. Efficient induction of logic programs. In Proc.
1st Conf. on Algorithmic Learning Theory, pages 368-381, 1990.

S. Muggleton. Inverting implication. Artificial Intelligence Journal, 1993.
G. D. Plotkin. A note on inductive generalization. In B. Meltzer and
D. Michie, editors, Machine Intelligence, volume 5, pages 153-163, 1970.
J. A. Robinson. A machine-oriented logic based on the resolution principle.
J. ACM, 12(1):23-41, 1965.

Sharon Sickel. A search technique for clause interconnectivity graphs.
IEEE Transactions on Computers, C-25(8):823-835, 1976.

R. Socher. A subsumption algorithm based on characteristic matrices. In
Proc. 9th Int. Conf. on Automated Deduction, 1988.

G. Tinhofer. Zum algorithmischen Nachweis der [somorphie von endlichen
Graphen. In H. Noltemeier, editor, Graphen, Algorithmen, Datenstruk-
turen. 2. Fachtagung tber Graphentheoretische Konzepte der Informatik.
Carl Hanser Verlag, 1976.

[UW81] S. Unger and F. Wysotzki. Lernfdhige Klassifizierungssysteme. Akademie
Verlag Berlin, 1981.

[vdLNC93] P. van der Laag and S. Nienhuys-Cheng. Subsumption and refinement in
model inference. In Machine Learning: FCML, 1993.

[Wei76] B. Weisfeiler. On Construction and Identification of Graphs. Number 558
in Lecture Notes in Mathematics. Springer Verlag, Berlin, 1976.

[WSK81] F. Wysotzki, J. Selbig, and W. Kolbe. Concept learning by structured ex-
amples — an algebraic approach. In Proceedings of the 7th International
Joint Conference on Artificial Intelligence, 1981.

This article was processed using the ¥TEX macro package with LLNCS style

