
Proc. IJCAI, 97.Unbiased Assessment of Learning AlgorithmsTobias Sche�er and Ralf HerbrichTechnische Universit�at Berlin, Arti�cial Intelligence Group, FR 5-8Franklinstr. 28/29, 10587 Berlin, Germanysche�er@cs.tu-berlin.deAbstractIn order to rank the performance of machinelearning algorithms, many researchers conductexperiments on benchmark data sets. Sincemost learning algorithms have domain-speci�cparameters, it is a popular custom to adaptthese parameters to obtain a minimal error rateon the test set. The same rate is then usedto rank the algorithm, which causes an opti-mistic bias. We quantify this bias, showing,in particular, that an algorithm with more pa-rameters will probably be ranked higher thanan equally good algorithm with fewer parame-ters. We demonstrate this result, showing thenumber of parameters and trials required in or-der to pretend to outperform C4.5 or FOIL,respectively, for various benchmark problems.We then describe out how unbiased ranking ex-periments should be conducted.1 IntroductionEstimating the accuracy of a classi�er is a topic that hasexperienced much attention in the ML community. Oneof the main results is that N -fold cross validation pro-vides a bias-free [Sto74] though not variance-free [Zha92;Koh95], estimate of the true accuracy. n-fold crossvalidation means that n classi�ers are learned from((n � 1)=n)ths of the available data, and tested on theremaining (1=n)th of the training set. The averaged ac-curacies are a bias-free estimate of the accuracy of aclassi�er that is learned by the same algorithm on thecomplete data set. If the data set is too large, the accu-racy is usually estimated on a test set that was not usedfor learning (one-shot training and test), which causesa slight pessimistic bias. For model selection purposes,a .632 bootstrap [Efr79] may be preferable. Bootstrapexperiments are conducted by re-sampling a number oftraining sets of size n from an original data set of size nby randomly drawing samples with replacement. On the

average, (1 � 1=e)m � :632m distinct samples will ap-pear in the training set, and the averaged accuracies onthe remaining test sets provide an optimistically biasedestimate. The variance is claimed to be lower in manycases than the variance of cross validation [Efr83], whichis important when choosing an optimal model.Many papers propose new or modi�ed machine learn-ing algorithms, with claims such as \my new algorithmB is way better than algorithm A", or \extension X im-proves algorithmA a lot" typically supported by rankingexperiments on a well known set of benchmark problems.There is also a book [MST94], resulting from the Euro-pean StatLog project, that is dedicated to the compari-son of learning algorithms for benchmark problems.Virtually any learning algorithm possesses a numberof parameters (e.g., learning rates, number of learningsteps, pruning thresholds, etc.). Selecting values forthese parameters is the model selection task, which hasto be considered a part of the training process. Unfortu-nately, it has become custom to adjust these parameterssuch that the error on either the test set, or, in case ofn-fold cross validation, the averaged error on the n testsets, is minimized. Since the error on the test set is usedas the quality criterion for the model selection task, thetest set in
uences the training process. Hence, the as-sumption that the test sets are not used for learning,which is essential to the result that n-fold cross valida-tion is bias-free, is violated.Many authors are aware of that problem and prop-erly separate model selection from accuracy estimation,e.g., [KJ97], but a majority of authors seem to considerthe resulting distortion of the results negligible. One ofmany examples is the StatLog project [MST94], where ithas not been taken into account by all contributing part-ners. A slight bias would not be dramatic, if all learningalgorithms would be e�ected equally, such that rankingresults would still remain valid. But we argue that theparameters form a communication channel from the testset to the learning algorithm (see Figure 1), and thatthe resulting bias depends on the capacity of this chan-
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Figure 1: If model selection and accuracy estimationare mixed, the parameters for a communication channel,delivering information about the test set to the learningalgorithmnel, i.e., the number of parameters, and the number ofdi�erent parameter settings which are tested. The mainreason why many authors conduct their experiments inthe naive way is that unbiased experiments imply a lotof additional computational e�ort, especially when theparameters are manually adjusted. Our main contribu-tion is to quantify this parameter-bias, identifying somecases where it actually is negligible and showing otherswhere it makes ranking results invalid.In the following sections, we consider di�erent experi-mental settings: Section 2 quanti�es the bias of one-shottraining and test, Section 3 quanti�es the bias of n-foldcross validation when di�erent parameters are used foreach of the n trials, and Section 4 is dedicated to crossvalidation with equal parameter settings for each of then trials. Section 5 �nally recalls the proper way of con-ducting ranking experiments.2 One-shot training and testIn this section, we assume the following setting. A learn-ing algorithmL accepts a set of parameters and there are2p distinct parameter settings (i.e., the algorithm pos-sesses logb(2p) parameters with b possible values each).This set of parameters can be viewed as a communica-tion channel from the parameter optimizer to the learnerwith a capacity of p bits.2.1 CommunicationAs Figure 1 illustrates, when the learner is presenteda set of parameters and a training set, it generates ahypothesis hwhich is used to determine the accuracy of hon the test set of size m. The parameter optimizer is toldthis accuracy and responds with a new set of parameters,which are again used for training. This cycle is repeated

t times, and the best observed accuracy on the test set isthen submitted for publication. Based on the accuracymeasured on the test set, the parameter optimizer cansend p bits of information on the test set to the learningalgorithm.If H is the entropy of the test set then the capacityof the parameter channel allows to transmit informationabout the class labels of c = pH test samples (because Hbits are required to encode the class label of one sample),e.g., if the test set contains 4 uniformly-distributed classlabels, the entropy will be 2, allowing a parameter chan-nel of width 4 (16 distinct settings) to transmit the classlabels of 4=2 = 2 test objects. This leaves two questionsto be answered: how does the parameter optimizer getto know the class labels of the �rst c test instances, andhow much will this knowledge improve the result?2.2 Parameter adjustmentThe parameter optimizer guesses parameters and obtainsthe accuracy on the test set in return. We assume thatthe learning algorithm passes these parameters to thehypothesis, which uses the information to classify the�rst c test objects that it encounters in some particularway, i.e.,the parameters encode class labels for the �rst ctest objects. Then the parameter optimizer can use thefollowing strategy:1. for all objects i, 1 through c(a) for all labels l, 1 through jclassesj{ tell the learner to classify the ith object asclass l and determine the accuracy accl(b) keep the label of i to the class value l� thatresulted in the highest accuracy accl�This algorithm tries the assignment of every possibleclass label to each of c test samples, resulting in a com-plexity of c � jclassesj learning trials, and �nds the pa-rameter setting that encodes correct class labels for csamples. We can view this algorithm as greedy searchfor optimal learning parameters, but since the correctclass label of sample i is independent of the assignedclass label of any other sample, the greedy algorithmwill �nd an optimal assignment after c � jclassesj trials.12.3 Increase in observed accuracyNow, after being told the class labels of the �rst c testobjects, how much can we hope to improve the accu-racy on the test set? Assume that we have an initial1Note that this is not a lower bound for the numberof trials, as we have found an algorithm that needs onlyc( 32 � 12c + n) � n trials in the worst case, but while thealgorithm given above essentially performs a gradient searchin parameter space, the faster algorithm behaves unlike wewould expect a parameter optimizer to behave, so the �rstresult should be somewhat closer to the behavior of a \real"learning algorithm.



classi�er h, learned by C4.5 [Qui92] say, which classi-�es ph objects of the test set (of size m) correctly. Forthe �rst c test instances we repeat the class labels thatwe were told by the parameter optimizer, rather thanusing h, we classify the remaining m � c instances us-ing h. Hence the number of hits is ph � x + c, wherex is the number of hits that h would have obtained onthe �rst c test instances (which are now classi�ed cor-rectly). We now determine the probability P (c�X � z)that this procedure increases the number of hits by z.Drawing c samples from a total of m, we know that phof the m are \hits" (classi�ed correctly by h). Hence,the number of hits within the c drawn samples follows ahyper-geometric distribution (note that m is �nite). Wethen replace the c drawn samples with c \hits" (becausethe parameter optimizer \tells" us their class labels viathe parameter channel).P (c�X � z) = cXk=zP (c�X = k) (1)= cXk=zP (X = c� k) (2)= cXk=zH(m; ph; c)(c� k) (3)= cXk=z � phc�k��m�phk ��mc � (4)This leads us to the bias and computational e�ort (ex-plained in Section 2.2), required to achieve this bias forone-shot training and test. t is the expected number oflearning experiments that need to be conducted in orderto obtain ph + z hits on the m test samples with prob-ability P (c�X � z), when ph is the true hit rate of h,provided a parameter channel with p bits of capacity isused. P (c�X � z) = pHXk=z � phpH�k��m�phk ��mpH � (5)t = jclassesj � pH (6)2.4 A�ected benchmark problemsIn this section, as well as in Sections 3.1 and 4.1, we willquantify the bias on concrete data sets. We assume thatwe use a real learning algorithm, C4.5 in most cases,which we \tune" with additional parameters in order topretend to outperform the learning algorithm one rankhigher than the initial learner. We will answer two ques-tions: How many parameters do we need to succeed withprobability> 90% after performing su�ciently many tri-als (note that this is an exact rather than an empiricalresult) and how many trials do we need in the average

to obtain this result, provided the parameter optimizerperforms gradient search in parameter space, which maybe an inexact result since it depends on the actual opti-mizer as well as how strong the parameters in
uence theresult.Land-sat satellite images: This data set contains4435 training and 2000 test instances. The default er-ror rate is .231. Based on [MST94], C4.5 is ranked 10th(error .150, i.e.,1700 hits on the test set). To be ranked9th it would have to outperform Bay-tree (error .147)for which C4.5 needs only z = 6 extra hits on the testset. If we get class labels of c = 60 instances, thenP (c �X � z) > 90%. Hence we need t = 6 � 60 = 360trials with di�erent parameter settings and sinceH = 2:5we need a parameter channel of 150 bits. Although anautomatic parameter adjustment system may very wellrun 360 trials, a parameter channel of 150 bits is fairlyuncommon (e.g., achieved by 45 parameters with 10 pos-sible values each). Using c = 16 samples (parameterchannel of 40 bits) and 96 experiments, we still have a2% chance of being over-ranked.DNA: This data set, also described in [MST94], pos-sesses 2000 training and 1186 test instances. C4.5 isranked 10th (1096 hits). To be ranked 9th it would haveto outperform INDCart, requiring z = 4 extra hits. Weneed to be told c = 85 class labels to achieve this with90%: P (c � X � z) > :9. Since we have 3 classes, weneed t = 3 � 85 = 255 trials. Since H = 1:4908, weneed 126 bit of parameters, e.g., 37 parameters with 10possible values each.For both data sets we conclude that only a very ea-ger scientist may obtain a modest over-ranking of hisalgorithm by using an incremental algorithm and an au-tomatic parameter-adjustment procedure.3 n-fold cross validation withparameter adjustmentIn this section we study the bias caused by parame-ter adaptation when n-fold cross validation is conductedwith parameter values chosen di�erently for the n runsof the learning algorithm. As an example, the number oflearning steps is crucial to the performance of back prop-agation. Often, the optimal number of learning steps isdetermined by observing the error on the test set andselecting the point at which the error rate starts increas-ing again. The minimum errors that occured in the nlearning curves are then averaged and published, i.e.,thenumber of learning steps may not be �xed to one valuewithin the n folds. Also, this setting is often used whenthe splits of the training set are explicitly stated (e.g.,mesh or vehicle silhouettes).To achieve an average of z extra hits per fold this way,n � z has to equal at least nc �PiXi, where Xi is thenumber of hits lost by not using h on c samples of fold



i. P (nc� nXi=1Xi � nz) (7)= ncXk=nzP (nc� nXi=1Xi = k) (8)= ncXk=nzP ( nXi=1Xi = nc� k) (9)Unfortunately, there is no explicit formula for the dis-tribution of a sum of hyper-geometric random num-bers. However, we can split the probability of a sumof random numbers considering every possible combina-tion that yields this sum [Ren70]: P (X + Y = z) =Pj P (X = j)P (Y = z� j). We can use this equation tosplit the last summand, resulting in the following recur-sive equation: P (Pmi=1Xi = x) = Pxj=0 P (Pm�1i=1 Xi =x � j)P (Xm = j). Instantiated to our situation thisyields P ( nXi=1Xi = nc� k) (10)= nc�kXl=0 P (n�1Xi=1Xi = nc� k � l)�P (Xn = l) (11)= nc�kXl=0 P (n�1Xi=1Xi = nc� k � l)�H(m; ph; c)(l) (12)= nc�kXl=0 P (n�1Xi=1Xi = nc� k � l)��phl ��m�phc�l ��mc � (13)Straightforward evaluation of this recursive equation foran instantiation is very expensive, since for each evalua-tion of P (Pni=1Xi = k) we must calculate P (Pn�1i=1 Xi =k0) for every k0 < k. By iteratively �lling an array thatis indexed n and k with P (Pni=1Xi = k) the formulacan be evaluated quickly.3.1 A�ected benchmark problemsFEM mesh design: [DM94], a relational problem pop-ular in inductive logic programming. It is explicitly splitinto �ve learning problems. There are 277 samples and13 classes and the entropy is H = 2:87. FOIL [Qui90]achieves an accuracy of 21% (59 hits). To achieve 26%accuracy with a probability of 99%, FOIL needs c = 5class labels, while to achieve 31% with a probability of93% FOIL would need c = 8 class labels. To achieve

26%, we need to conduct 65 trials and a parameter chan-nel of 14 bits, while to achieve 31% we require 104 trialsand a parameter channel of 23 bits.of The parameteradaptation bias is so strong, that accuracy results caneasily be pushed from 21% to 31% on this data set.Diabetes: There are 768 samples with 2 classes,H = :9331. C4.5 achieves 561 hits (rank 13), we needto outperform Quadisc (.5 additional hits per fold). Weonly need c = 4 class labels to succeed with probability92%, i.e.,we need a parameter channel of 3.7 bits andhave to conduct 8 trials.In this experimental setting (parameter optimizationin each of the n folds) almost arbitrarily good resultsare easily achievable. Ranking results achieved with thissetting are distorted with high probability.4 n-fold cross validation with �xedparametersWhile in the last section the parameter optimizer wasable to communicate the class labels of the �rst c testobjects to the learner, the best the parameter optimizercan do here is to communicate the most frequently ob-served class label of test object i in all folds for the �rstc objects. If, for example, we have 3 folds and in twoof them the �rst presented test object is of class A, theparameter optimizer may tell the learner that the �rstpresented test object is of class A, which entails 2=3 ofan extra hit averaged over the three folds.Now what is the probability that the number of extrahits Y gained this way takes value y? We study thisproblem for two class labels. In this case, for each posi-tion in the test set j, 1 � j � c, we choose the class thatthe majority of the n samples (drawn from position j ofthe n folds) belongs to. There will be maxfy; n�yg rep-resentatives of this class. Assuming that c is signi�cantlyless than m and the probability of choosing y samples isbinomially distributed B(n; p)(y), where p is the proba-bility of the default class, i.e.,the most frequent class inthe data set2. Hence:P (Y = y) =8<: 0 y < n2B(n; p)(y) +B(n; 1� p)(y) y > n2B(n; p)(y) y = n2(14)The total number of nz additional hits on n folds is thedi�erence between the number of extra hits as explainedin the last paragraph and the number of lost hits by notusing the hypothesis h calculated in the last section:P ( cXj=1 Yj � nXi=1Xi � nz) (15)2Without this assumption the probability would be hyper-geometrically distributed, but the number of parametersneeded to determine the class labels of a number of samplesthat gets close to the size of the test set would be outrageous.



= ncXk=nzP ( cXj=1 Yj � nXi=1Xi = k) (16)= ncXk=nz ncXl=k P ( cXj=1 Yj = l)�P ( nXi=1Xi = l � k) (17)We can determine P (Pcj=1 Yj = l) and P (Pni=1Xi =l � k) as follows:P ( cXj=1Yj = l) (18)= lXr=0P (c�1Xj=1Yj = l � r)P (Yc = l) (19)P ( nXi=1Xi = l � k) (20)= l�kXq=0P (n�1Xi=1Xi = l � k � q)P (Xn = q) (21)= l�kXq=0P (n�1Xi=1Xi = l � k � q)�H(m; ph; c)(q) (22)= l�kXq=0P (n�1Xi=1Xi = l � k � q)��phq ��m�phc�q ��mc � (23)Note that in this situation the probability of beingranked too high depends on the hit rate of a defaultclassi�er and the hit rate of the initial hypothesis: if thedefault hit rate is high and the initial classi�er performspoorly, the probability of being over-ranked is high.4.1 A�ected benchmark problemsDiabetes: In this setting, we need c = 7 parameters toachieve .5 extra hits per fold with a probability of 2%.Increasing the number of parameters further decreasesthe probability, since the expected number of sampleswith equal class labels at some position in n folds, di-vided by the number of folds, is small compared to thehit rate of the initial hypothesis. In this experimentalsetting, diabetes is \safe".Heart disease: In this data set [MST94] there are270 samples, 2 classes, H = :991. Since C4.5 performspoorly for this problem we only need c = 2 extra hits,a parameter channel of 2 bits and 4 trials are su�cient
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optimizer follows a gradient descent-like search.It shows that it is hard to be over-ranked in the one-shot training and test situation if the test set is large.In the n-fold cross validation situation, the probabilityof being over-ranked is high if the di�erence between de-fault hit rate and true accuracy is low. If in the n-foldcross validation setting di�erent parameter values areused (i.e.,the parameters are optimized locally) a highlyover-ranked result can be achieved, so experiments con-ducted this way do not yield valid results.Our considerations do not prove that any learning al-gorithm actually is much worse than claimed, but theydo show that such claims are not validly supported byexperiments in the naive setting. Our results are con-structive in some sense: using the provided equations itcan easily be proven that in some situations { dependingon the properties of the data set { the naive but inexpen-sive experimental setting yields perfectly valid results.Based on our calculations, the validation of perfor-mance evaluations for new learning algorithms seems tobe di�cult: many authors do not document their ex-perimental settings to a su�cient degree, and empiricalresults that are based on the naive setting are likely tobe distorted and cannot be compared to those obtainedwith unbiased experiments. Heuristic modi�cations thatadd new parameters may easily be over-estimated. Evenif the modi�cation does not improve the true accuracyof the hypothesis, a new parameter may improve theranking results.An important question is which additional assump-tions were made in our calculation. To summarize them:we assumed that the test sets are in random order (incontrast to ordered by their class labels), but that theorder is �xed, as experiments with di�erent parametersettings are conducted. We also assumed that the pa-rameter optimizer conducts a gradient descent for op-timal parameters and showed that it will �nd optimalparameters if the parameters encode class labels for the�rst c test samples. Hill climbing algorithms for parame-ter adaptation are fairly common. Also, di�erent param-eter settings will result in di�erent classi�cation of someof the test samples, although not every distinct parame-ter setting may yield a di�erent classi�er. However, thecorrelation between parameters and class labels of testset samples is usually less direct than assumed, hencethe number of experiments required to gain z extra hitsmay be higher, and|depending on the learner|the biasmay be smaller in real world situations than in our cal-culation.Parameters of learning algorithms are undesirablesince the more parameters an algorithm has the less ro-bust the algorithm is, and the harder it is to obtain asatisfactory result for a new problem. Buchanan, para-phrased by [Cat91], called this the China syndrome:
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