
Invariant Pattern Recognition
by Semidefinite Programming Machines

Thore Graepel
Microsoft Research Ltd.

Cambridge, UK
thoreg@microsoft.com

Ralf Herbrich
Microsoft Research Ltd.

Cambridge, UK
rherb@microsoft.com

Abstract

Taking into account local invariances with respect to known pat-
tern transformations can greatly improve the accuracy of classi-
fication. Previous approaches are either based on regularisation
or on the generation of virtual (transformed) examples. We de-
velop a new framework for learning linear classifiers under known
transformations based on semidefinite programming. We present a
new learning algorithm—the Semidefinite Programming Machine
(SDPM)—which is able to find a maximum margin hyperplane
when the training examples are polynomial trajectories instead of
single points. The solution is found to be sparse in dual variables
and allows to identify those points on the trajectory with minimal
real-valued output as virtual support vectors. Extensions to seg-
ments of trajectories, to more than one transformation parameter,
and to learning with kernels are presented. In experiments we use
a Taylor expansion to locally approximate rotational invariance in
pixel images from USPS and find improvements over known meth-
ods, which can be seen as approximations to the SDPM method.

1 Introduction

One of the central problems of pattern recognition is the exploitation of known in-
variances in the pattern domain. In images these invariances may include rotation,
translation, shear, scaling, brightness, and lighting direction. In addition, specific
domains such as handwritten digit recognition may exhibit invariances such as line
thinning/thickening and other non-uniform deformations [8]. In the field of speech
recognition, say phoneme classification, invariances include variations in base fre-
quency or duration. When using machine learning approaches the challenge is to
combine the training sample with the knowledge of invariances to obtain a good
classifier.

Various approaches to the problem of incorporating invariances have been suggested.
Possibly the most straightforward way of incorporating invariances is by including
virtual examples into the training sample which have been generated from actual
examples by the application of the invariance T : Rθ ×Rn

x → Rn
x at some fixed θ ∈

Rθ. This approach is well exemplified by the method of virtual support vectors [7].



Images x subjected to the transformation T (θ, ·) describe a (complex) trajectory or
manifold in pixel space. The tangent distance [8] approximates the distance between
the trajectories (manifolds) by the distance between their tangent vectors (planes)
at a given value θ = θ0 and can be used with any kind of distance-based classifier.
Another approach, tangent prop [8], incorporates the invariance T directly into
the objective function for learning by penalising large values of the derivative of
the classification function w.r.t. the given transformation parameter. A similar
regulariser can be applied in the framework of support vector machines [1].

We take up the idea of considering the trajectory given by the combination of
training vector and transformation. While data in machine learning are commonly
represented as vectors x ∈ Rn we instead consider more complex training examples
each of which is represented as a (usually infinite) set

{T (θ,xi) : θ ∈ R} ⊂ Rn , (1)

which constitutes a trajectory in Rn. Our goal is to learn a linear classifier that
separates well the training trajectories belonging to different classes. In practice,
we may be given a “standard” training example x together with a differentiable
transformation T representing an invariance of the learning problem. The prob-
lem can be solved if the transformation T is approximated by a transformation T̃
polynomial in θ, e.g., a Taylor expansion of the form

T̃ (θ,xi) ≈ T (0,xi)+

r∑
j=1

θj ·
(
1

j!

djT (θ,xi)

dθj

∣∣∣∣
θ=0

)
= T (0,xi)+

r∑
j=1

θj ·(Xi)j,· . (2)

Our approach is based on a powerful theorem by Nesterov [5] which states that the
set P+

2l of polynomials of degree 2l non-negative on the entire real line is a convex
set representable by positive semidefinite (psd) constraints. Hence, optimisation
over P+

2l can be formulated as a semidefinite program (SDP). Recall that an SDP
[9] is given by a linear objective function which is minimised subject to a linear
matrix inequality (LMI),

minimise
w∈Rn

c⊤w subject to A (w) :=
n∑

j=1

wjAj −B ≽ 0 , (3)

with Aj ∈ Rm×m for all j ∈ {0, . . . , n}. The LMI A (w) ≽ 0 means that
A (w) is required to be positive semidefinite, i.e., that for all v ∈ Rn we have
v⊤A (w)v =

∑n
j=1 wj

(
v⊤Ajv

)
− v⊤Bv ≥ 0 which reveals that LMI constraints

correspond to infinitely many linear constraints. This expressive power can be used
to enforce constraints for training examples as given by (1), i.e., constraints required
to hold for all values θ ∈ R. Based on this representability theorem for non-negative
polynomials we develop a learning algorithm—the Semidefinite Programming Ma-
chine (SDPM)—that maximises the margin on polynomial training samples, much
like the support vector machine [2] for ordinary single vector data.

The structure of the paper is as follows: In Section 2 we develop the theory of
SDPMs with a focus on conceptual clarity rather than technical details1. In Sec-
tion 3 we discuss extensions to the basic SDPM as presented in Section 2, specifically,
the restriction to segments of trajectories, an extension to more than one transform-
ation parameter, and learning with kernels. Section 4 presents experimental results
for a comparison with known methods.

1For more technical details, the interested reader is referred to a work-in-progress report
at http://www.research.microsoft.com/~rherb/papers/sdpm-tr.ps.gz.



0.1 0.2 0.3 0.4 0.5
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

φ
1
(x)

φ 2(x
)

SVM version space

SDPM version space

Figure 1: (Left) Approximated trajectories for rotated USPS images (2) for r = 1
(dashed line) and r = 2 (dotted line). The features are the mean pixel intensities
in the top and bottom half of the image. (Right) Set of weight vectors w which
are consistent with the six images (top) and the six trajectories (bottom). The dot
corresponds to the separating plane in the left plot.

2 Semidefinite Programming Machines

2.1 Linear Classifiers and Polynomial Examples

We consider binary classification problems and linear classifiers. Given a training
sample ((x1, y1) , . . . , (xm, ym)) ∈ (Rn × {−1,+1})m we aim at learning a weight
vector2 w ∈ Rn to classify examples x by y (x) = sign

(
w⊤x

)
. Assuming lin-

ear separability of the training sample the principle of empirical risk minimisation
recommends finding a weight vector w such that for all i ∈ {1, . . . ,m} we have
yiw

⊤xi ≥ 0. As such this constitutes a linear feasibility problem and is easily solved
by the perceptron algorithm [6]. Additionally requiring the solution to maximise
the margin leads to the well-known quadratic program of support vector learning
[2].

In order to be able to cope with known invariances T (θ, ·) we would like to generalise
the above setting to the following feasibility problem:

find w ∈ Rn such that ∀i ∈ {1, . . . ,m} : ∀θ ∈ R : yiw
⊤xi (θ) ≥ 0 , (4)

that is we would require the weight vector to classify correctly every transformed
training example xi (θ) := T (θ,xi) for every value of the transformation parameter
θ. The situation is illustrated in Figure 1. In general, such a set of constraints leads
to a very complex and difficult-to-solve feasibility problem. As a consequence, we
consider only transformations T̃ (θ,x) of polynomial form, i.e., x̃i (θ) := T̃ (θ,xi) =
X⊤

i θ, each polynomial example x̃i (θ) being represented by a polynomial in the row
vectors of Xi ∈ R(r+1)×n, with θ := (1, θ, . . . , θr)

⊤. Then the problem (4) can be
written as

find w ∈ Rn such that ∀i ∈ {1, . . . ,m} : ∀θ ∈ R : yiw
⊤X⊤

i θ ≥ 0 , (5)

2We omit an explicit threshold to unclutter the presentation.



which is equivalent to finding a weight vector w such that the polynomials pi (θ) =
yiw

⊤X⊤
i θ are non-negative everywhere, i.e., pi ∈ P+

r . The following proposition by
Nesterov [5] paves the way for an SDP formulation of the above problem whenever
r = 2l.
Proposition 1 (SD Representation of Non-Negative Polynomials [5]). The set
P+
2lof polynomials non-negative everywhere on the real line is SD-representable in

the sense that

1. for every positive semidefinite matrix P ≽ 0 the polynomial p (θ) = θ⊤Pθ
is non-negative everywhere, p ∈ P+

2l .

2. for every polynomial p ∈ P+
2l there exists a positive semidefinite matrix

P ≽ 0 such that p (θ) = θ⊤Pθ.

Proof. Any polynomial p ∈ P2l can be written as p (θ) = θ⊤Pθ, where P = P⊤ ∈
R(l+1)×(l+1). (1) P ≽ 0 implies ∀θ ∈ R : p (θ) = θ⊤Pθ = ∥P 1

2 θ∥2 ≥ 0, hence p ∈
P+
2l . (2) Every non-negative polynomial p ∈ P+

2l can be written as a sum of squared
polynomials (see, e.g. [4]), hence ∃qi ∈ P+

l : p (θ) =
∑

i q
2
i (θ) = θ⊤ (∑

i qiq
⊤
i

)
θ

where P :=
∑

i qiq
⊤
i ≽ 0 and qi is the coefficient vector of polynomial qi.

2.2 Maximising Margins on Polynomial Samples

In this subsection we develop an SDP formulation for the problem of learning a
maximum margin classifier3 given the polynomial constraints (5). It is well-known
(see, e.g., [9]) that SDPs include quadratic programs as a special case. The squared
objective ∥w∥2 is minimised by replacing it with an auxiliary variable t subject to a
quadratic constraint t ≥ ∥w∥2 that is written as an LMI using Schur’s complement
lemma,

minimise (w,t)
1

2
t subject to F (w, t) :=

(
In w
w⊤ t

)
≽ 0 ,

and ∀i : G (w,Xi, yi) := G0 +
n∑

j=1

wjGj

(
(Xi)·,j , yi

)
≽ 0 .(6)

This constitutes an SDP (3) by the fact that a block-diagonal matrix is psd if and
only if all its diagonal blocks are psd.

For the sake of illustration consider the case of l = 0 (the simplest non-trivial case).
The matrix G (w,Xi, yi) reduces to a scalar yiw

⊤xi − 1, which translates into the
standard SVM constraint yiw

⊤xi ≥ 1 linear in w.

For the case l = 1 we have G (w,Xi, yi) ∈ R2×2 and

G (w,Xi, yi) :=

(
yiw

⊤(Xi)0,· − 1 1
2yiw

⊤(Xi)1,·
1
2yiw

⊤(Xi)1,· yiw
⊤(Xi)2,·

)
. (7)

Although we require G (w,Xi, yi) to be psd the resulting optimisation problem
can be formulated in terms of a second-order cone program (SOCP) because the
matrices involved are only 2× 2.4

3In order to emphasise conceptual issues and to simplify the presentation we do not
consider the soft-margin case and we omit the bias b.

4The characteristic polynomial of a 2 × 2 matrix is quadratic and has at most two



For the case l ≥ 2 the resulting program constitutes a genuine SDP. Again for the
sake of illustration we consider the case l = 2 first. Since a polynomial p of degree
four is fully determined by its five coefficients p0, . . . , p4, but the symmetric matrix
P ∈ R3×3 in p (θ) = θ⊤Pθ has six degrees of freedom we require one auxiliary
variable ui per training example,

G (w, ui,Xi, yi) =

 yiw
⊤ (Xi)0,· − 1 1

2yiw
⊤ (Xi)1,·

yiw
⊤(Xi)2,·−ui

2
1
2yiw

⊤ (Xi)1,· ui
1
2yiw

⊤ (Xi)3,·
yiw

⊤(Xi)2,·−ui

2
1
2yiw

⊤ (Xi)3,·
1
2yiw

⊤ (Xi)4,·

 .

In general, since a polynomial of degree 2l has 2l + 1 coefficients and a symmetric
(l + 1)×(l + 1) matrix has (l + 1) (l + 2) /2 degrees of freedom we require (l − 1) l/2
auxiliary variables.

2.3 Dual Program and Complementarity

Let us consider the dual SDP corresponding to the optimisation problems above.
For the sake of clarity, we restrict the presentation to the case l = 1. The dual of
the general SDP (3) is given by

maximise
Λ∈Rm×m

tr (BΛ) subject to ∀j ∈ {1, . . . , n} : tr (AjΛ) = cj ; Λ ≽ 0,

where we introduced a matrix Λ of dual variables. The complementarity conditions
for the optimal solution (w∗, t∗) read A ((w∗, t∗))Λ∗ = 0 . The dual formulation
of (6) with (7) combined with the F (w, t) part of the complementarity conditions
reads

maximise
(α,β,γ)∈R3m

−1

2

m∑
i=1

m∑
j=1

yiyj [x̃ (αi, βi, γi,Xi)]
⊤
[x̃ (αj , βj , γj ,Xj)] +

m∑
i=1

αi

subject to ∀i ∈ {1, . . . ,m} : Mi :=

(
αi βi

βi γi

)
≽ 0 , (8)

where we define extrapolated training examples x̃(αi, βi, γi,Xi) := αi(Xi)0,· +
βi(Xi)1,· + γi(Xi)2,·. As before this program with quadratic objective and psd
constraints can be formulated as a standard SDP in the form (3) and is easily
solved by a standard SDP solver5. In addition, the complementarity conditions
reveal that the optimal weight vector w∗ can be expanded as

w∗ =
m∑
i=1

yix̃ (αi, βi, γi,Xi) , (9)

in analogy to the corresponding result for support vector machines [2].

It remains to analyse the complementarity conditions related to the example-related
G (w,Xi, yi) constraints in (6). Using (7) and assuming primal and dual feasibility
we obtain for all i ∈ {1, . . . ,m} at the solution (w∗, t∗,M∗

i ),
G (w∗,Xi, yi) ·M∗

i = 0 , (10)
the trace of which translates into

yiw
⊤ (α∗

i (Xi)0,· + β∗
i (Xi)1,· + γ∗

i (Xi)2,·) = α∗
i . (11)

These relations enable us to characterise the solution by the following proposition:

solutions. The condition that the lower eigenvalue be non-negative can be expressed as a
second-order cone constraint. The SOCP formulation—if applicable—can be solved more
efficiently than the SDP formulation.

5We used the SDP solver SeDuMi together with the LMI parser Yalmip under Matlab
(see also http://www-user.tu-chemnitz.de/~helmberg/semidef.html).



Proposition 2 (Sparse Expansion). The expansion (9) of the optimal weight vector
w∗ in terms of training examples Xi is sparse in the following sense: Only those
examples Xi (“support vectors”) may have non-zero expansion coefficients α∗

i which
lie on the margin, i.e., for which Gi (w

∗,Xi, yi) ≽ 0 rather than Gi (w
∗,Xi, yi) ≻

0. Furthermore, in this case α∗
i = 0 implies β∗

i = γ∗
i = 0 as well.

Proof. We assume α∗
i ̸= 0 and derive a contradiction. From G (w∗,Xi, yi) ≻ 0 we

conclude using Proposition 1 that for all θ ∈ R we have yiw
∗,⊤((Xi)0,· + θ(Xi)1,· +

θ2(Xi)2,·) > 1. Furthermore, we conclude from (10) that det(M∗
i ) = α∗

i γ
∗
i −β∗2

i = 0,
which together with the assumption α∗

i ̸= 0 implies that there exists θ̃ ∈ R such
that β∗

i = θ̃α∗
i and γ∗

i = β∗2
i /α∗

i = θ̃2α∗
i . Inserting this into (11) leads to a

contradiction, hence α∗
i = 0. Then, det(M∗

i ) = 0 implies β∗
i = 0 and the fact that

G (w∗,Xi, yi) ≻ 0 =⇒ yiw
∗,⊤ (Xi)2,· ̸= 0 ensures that γ∗

i = 0 holds as well.

The expansion (9) of the weight vector is further characterised by the following
proposition:
Proposition 3 (Truly Virtual Support Vectors). For all examples Xi lying on the
margin, i.e., satisfying G (w∗,Xi, yi) ≽ 0 and M∗

i ≽ 0 there exist θi ∈ R ∪ {∞}
such that the optimal weight vector w∗ can be written as

w∗ =
m∑
i=1

α∗
i yix̃i (θi) =

m∑
i=1

yiα
∗
i

(
(Xi)0,· + θ∗i (Xi)1,· + θ∗2i (Xi)2,·

)

Proof. (sketch) Mi ≽ 0 implies det(Mi) = αγ − β2 = 0. We only need to consider
α∗
i ̸= 0, in which case there exists θ∗i such that β∗

i = θ∗i α
∗
i and γ∗

i = θ∗2i α∗
i . The

other cases are ruled out by the complementarity conditions (10).

Based on this proposition it is possible not only to identify which examples Xi are
used in the expansion of the optimal weight vector w∗, but also the corresponding
value θ∗i of the transformation parameter θ. This extends the idea of virtual support
vectors [7] in that Semidefinite Programming Machines are capable of finding virtual
support vectors that were not explicitly provided in the training sample.

3 Extensions to SDPMs

3.1 Optimisation on a Segment

In many applications it may not be desirable to enforce correct classification on the
entire trajectory given by the polynomial example x̃ (θ). In particular, when the
polynomial is used as a local approximation to a global invariance we would like
to restrict the example to a segment of the trajectory. To this end consider the
following corollary to Proposition 1.
Corollary 1 (SD-Representability on a segment [5]). The set P+

l (−τ, τ) of poly-
nomials non-negative on a segment [−τ, τ ] is SD-representable.

Proof. (sketch) Consider a polynomial p ∈ P+
l (−τ, τ) where p := x 7→

∑l
i=0 pix

i

and
q := x 7→

(
1 + x2

)l · [p(τ(2x2(1 + x2)−1 − 1))] .

If q ∈ P+
2l is non-negative everywhere then p is non-negative in [−τ, τ ].



The proposition shows how we can restrict the examples x̃ (θ) to a segment θ ∈
[−τ, τ ] by effectively doubling the degree of the polynomial used. As a matter of
fact, this is the SDPM version used in the experiments in Section 4. Note that the
matrix G (w,Xi, yi) is sparse because the resulting polynomial contains only even
powers of θ.

3.2 Multiple Transformation Parameters

In practice it would be desirable to treat more than one transformation at once.
For example, in handwritten digit recognition transformations like rotation, scaling,
translation, shear, thinning/thickening etc. may all be relevant [8]. Unfortunately,
Proposition 1 only holds for polynomials in one variable. However, its first statement
may be generalised to polynomials of more than one variable: for every psd matrix
P ≽ 0 the polynomial p (θ) = v⊤

θ Pvθ is non-negative everywhere, even if vi is
any power of θj . This means, that optimisation is only over a subset of these
polynomials6. Considering polynomials of degree two and θ := (1, θ1, . . . , θD) we
have,

x̃i (θ) ≈ θ⊤
[

xi (0) ∇⊤
θ xi (0)

∇θxi (0) ∇θ∇⊤
θ xi (0)

]
θ ,

where ∇⊤
θ denotes the gradient and ∇θ∇⊤

θ denotes the Hessian operator.

Note that the scaling behaviour with regard to the number D of parameters is more
benign than that of the naive method of adding virtual examples to the training
sample on a grid. Such a procedure would incur an exponential growth in the
number of examples, whereas the approximation above only exhibits a linear growth
in the size of the matrices involved.

3.3 Learning with Kernels

Support vector machines derive much of their popularity from the flexibility added
by the use of kernels [2, 7]. Due to space restrictions we cannot discuss kernels in
detail. However, taking the dual SDPM (8) as a starting point and assuming the
Taylor expansion (2) the crucial point is that in order to represent the polynomial
trajectory in feature space we need to differentiate through the kernel function.

Let us assume a feature map ϕ : Rn → F ⊆ RN and k : X × X → R be the kernel
function corresponding to ϕ in the sense that ∀x, x̃ ∈ X : [ϕ(x)]⊤[ϕ(x̃)] = k (x, x̃).
The Taylor expansion (2) is now carried out in F . Then an inner product expression
between data points xi and xj differentiated, respectively, u and v times reads

[
ϕ(u)(xi)

]⊤ [
ϕ(v)(xj)

]
︸ ︷︷ ︸

k(u,v)(xi,xj)

=

N∑
s=1

(
duϕs(x(θ))

dθu

∣∣∣∣
x=xi,θ=0

)
·

 dvϕs(x̃(θ̃))

dθ̃v

∣∣∣∣∣
x̃=xj ,θ̃=0

 .

The kernel trick may help avoid the sum over N feature space dimensions, however,
it does so at the cost of additional terms by the product rule of differentiation. It
turns out that for polynomials of degree r = 2 the exact calculation of elements
of the kernel matrix is already O

(
n4
)

and needs to be approximated efficiently in
practice.



0.1 0.15 0.2 0.25 0.3 0.35

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.31 0.315 0.32 0.325

0.188

0.189

0.19

0.191

0.192

0.193

SVM Q−VSVM Q−SDPM SDPM

0.01

0.02

0.03

0.04

0.05

0.06

T
es

t E
rr

or

(a) (b)

Figure 2: (a) A linear classifier learned with the SDPM on 10 2D-representations
of the USPS digits “1” and “9” (see Figure 1 for details). Note that the “support”
vector is truly virtual since it was never directly supplied to the algorithm (right
hand zoom-in). (b) Test error distribution of classifiers learned with the SVM,
virtual SVM, quadratically approximated SDPM (see text) and SDPM algorithm
on 50 independent training sets of size m = 20.

4 Experimental Results

In order to test and illustrate the SDPM we used the well-known USPS data set of
16×16 pixel images in [0, 1] of handwritten digits. We considered the transformation
rotation by θ and calculated the first and second derivatives x′

i (θ = 0) and x′′
i (θ = 0)

based on an image representation smoothed by a Gaussian of variance 0.09.

For the purpose of illustration we calculated two simple features, averaging the first
and the second 128 pixel intensities, respectively. Figure 2 (a) shows a plot of 10
training examples of digits “1” and “9” together with the quadratically approxim-
ated trajectories for θ ∈ [−20◦, 20◦]. The examples are separated by the solution
found with an SDPM restricted to the same segment of the trajectory. Following
Propositions 2 and 3 the weight vector found is expressed as a linear combination
of truly virtual support vectors that had not been supplied in the training sample
directly.

In a second experiment, we probed the performance of the SDPM algorithm on the
full feature set of 256 pixel intensities using 50 training sets of size m = 20 of the
digits “1” rotated by −10◦ and the digits “9” rotated by +10◦. We compared the
performance of the algorithm (measured on an independent test set) to the perform-
ance of the original support vector machine (SVM) [2], the virtual support vector
machine [7] provided with quadratic approximations to the rotation transformation
(Q-VSVM), and a quadratic approximation to the SDPM (Q-SDPM) where we ran
the SVM algorithm on Xi = (x̃i (−10◦) ; x̃i (0) ; x̃i (+10◦)). The results are shown
in Figure 2 (b). Clearly, taking into account the invariance is useful and the pre-
selection of support vectors by the virtual support vector machine has its price in
generalisation performance. The Q-SDPM almost reaches the generalisation per-
formance of the SDPM which is due to the fact that the difference between the
convex hull enclosed by the parabola and that of Xi is negligible for one parameter
θ, D = 1. It can be expected that for increasing D the performance improvement
becomes more pronounced by the effect that in high dimensions most volume is
concentrated on the boundary of the convex hull of the polynomial manifold.

6There exist polynomials in more than one variable that are non-negative everywhere
yet cannot be written as a sum of squares and are hence not SD-representable.



5 Conclusion

We introduced Semidefinite Programming Machines as a means for learning on
infinite families of examples given in terms of polynomial trajectories in data space.
The crucial insight lies in the SD-representability of non-negative polynomials which
allows us to replace the simple non-negativity constraint in algorithms such as
support vector machines by positive semidefinite constraints.

While the efficiency of SDP solvers has recently leapt forward due to the application
of interior-point methods, it can still hardly be claimed that SDPMs are computa-
tionally competitive on real-world tasks. Rather, we would like SDPMs to be seen
as a conceptual contribution in the sense that they are able to learn based on the in-
formation provided by polynomial examples. In fact, the method of virtual support
vectors [7] can be seen as an approximation to the SDPM by linear constraints. On
the practical side we note the following: (i) The resulting SDP is well structured
(and hence can be solved relatively efficiently) in the sense that A (w, t) is block-
diagonal with many small blocks, which may often be sparse as well. (ii) It may
often be sufficient to satisfy the constraints—e.g., by a version of the perceptron
algorithm for semidefinite feasibility problems [3]—without necessarily maximising
the margin.

Open questions remain about training SDPMs with multiple parameters (see Sub-
section 3.2) and about the efficient application of SDPMs with kernels (see Sub-
section 3.3). Finally, it would be interesting to obtain learning theoretical results
regarding the fact that SDPMs effectively make use of an infinite number of (non
IID) training examples.

References
[1] O. Chapelle and B. Schölkopf. Incorporating invariances in non-linear support vector

machines. In T. G. Dietterich, S. Becker, and Z. Ghahramani, editors, Advances in
Neural Information Processing Systems 14, pages 609–616, Cambridge, MA, 2002. MIT
Press.

[2] C. Cortes and V. Vapnik. Support vector networks. Machine Learning, 20:273–297,
1995.

[3] T. Graepel, R. Herbrich, A. Kharechko, and J. Shawe-Taylor. Semidefinite program-
ming by perceptron learning. In S. Thrun, L. Saul, and B. Schölkopf, editors, Advances
in Neural Information Processing Systems 16. MIT Press, 2004.

[4] A. Nemirovski. Five lectures on modern convex optimization, 2002. Lecture notes of
the C.O.R.E. Summer School on Modern Convex Optimization.

[5] Y. Nesterov. Squared functional systems and optimization problems. In H. Frenk,
K. Roos, T. Terlaky, and S. Zhang, editors, High Performance Optimization, pages
405–440. Kluwer Academic Press, 2000.

[6] F. Rosenblatt. The perceptron: A probabilistic model for information storage and
organization in the brain. Psychological Review, 65(6):386–408, 1958.

[7] B. Schölkopf. Support Vector Learning. R. Oldenbourg Verlag, München, 1997. Dokt-
orarbeit, TU Berlin. Download: http://www.kernel-machines.org.

[8] P. Simard, Y. LeCun, J. Denker, and B. Victorri. Transformation invariance in pattern
recognition, tangent distance and tangent propagation. In G. Orr and M. K., editors,
Neural Networks: Tricks of the trade. Springer, 1998.

[9] L. Vandenberghe and S. Boyd. Semidefinite programming. SIAM Review, 38(1):49–95,
1996.


