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Abstract. Collaborative filtering (CF) shares information between users
to provide each with recommendations. Previous work suggests using
sketching techniques to handle massive data sets in CF systems, but
only allows testing whether users have a high proportion of items they
have both ranked. We show how to determine the correlation between
the rankings of two users, using concise “sketches” of the rankings. The
sketches allow approximating Kendall’s Tau, a known rank correlation,
with high accuracy ε and high confidence 1− δ. The required sketch size
is logarithmic in the confidence and polynomial in the accuracy.

1 Introduction

Recommender provide a user with recommendations regarding information items
she is likely to find interesting. These systems compare user profiles to reference
characteristics. Sometimes these characteristics are obtained from the content
of the item (in the content based approach), and sometimes from information
regarding the tastes of other users, in the collaborative filtering (CF) approach.

We consider a CF domain, where each user ranks the items she examined.
Consider Alice, who asks the CF system to give a prediction for a certain item.
The CF system must search for users who have ranked many of the items Alice
has ranked. Then, the system should consider their rankings, and decide whether
these users’ tastes are similar to Alice’s. A naive way to do this is to store the
complete item lists and rankings for each user. However, this requires storing an
enormous amount of data.The work [2] proposed a sketching technique for com-
puting the proportional intersection (PI) of the ranked item lists. Rather than
storing the full information they suggested very concise descriptions of ranked
item lists, called sketches. Give a target accuracy ε > 0 and a target confidence
δ, their method returned an approximation x̂ to the actual PI x, such that with
probability of at least 1−δ the approximation is accurate enough, so |x̂−x| ≤ ε.
The major shortcoming of [2] is that it did not allow computing a correlation
grade between the rankings. Even if there are many items ranked by both users,
it is hard to construct a recommendation based solely on this information, as
they may have given very different ratings these items. This work extends [2]
and provides methods for computing the correlation between the rankings using
sketching techniques. We construct an extremely concise representation of the



user’s item rankings, called a rank correlation sketch. Our sketches are designed
to approximate Kendall’s Tau [8], a well known rank correlation grade, while
maintaining an only a small fraction of the information.

Consider Alice and Bob, who have each examined and ranked a set of n items,
giving the item liked most has a rank of 1, the second best has a rank of 2, and
so on until the worst item with the rank n. A known statistic to measure the
correspondence between two rankings is Kendall’s Tau [8]. Given the rankings of
Alice and Bob, and given two items, A and B, we call the items a concordant pair
if Alice and Bob agree on their order (i.e. if both Alice and Bob prefer A over
B or if both prefer B to A). When Alice and Bob disagree on these items they
are called a discordant pair. Given two rankings, we denote by nc the number of
concordant pairs, and by nd the number of discordant pairs. Every pair is either
concordant or discordant, so nc = n− nd.

Definition 1. Kendall’s Tau of ra and rb is: τra,rb
= nc−nd

1
2 n(n−1)

The total number of pairs is 1
2n(n−1), so P (C) = nc

1
2 n(n−1)

is the probability
of a uniformly randomly chosen pair to be a concordant, and P (D) = nd

1
2 n(n−1)

is the probability for a discordant pair. Thus Kendall’s Tau can be expressed as
τra,rb

= p(C)− P (D) = P (C)− (1− P (C)) = 2P (C)− 1.
Consider the users of the CF system, a1, . . . , am. Each ai has a ranking ri of

the items she had experience with. Under our model, we only maintain a sketch
Si of each ranking.

A sketching framework allows approximating Kendall’s Tau τri,rj between
any two users, with a target confidence and accuracy.

Definition 2. A rank correlation sketching framework with confidence δ and
accuracy ε maintains only S1, S2, . . . , Sm, and for any two users, ai and aj,
allows computing τri,rj with accuracy of at least ε and with confidence of at least
1 − δ. That is, the framework returns an approximation ˆτi,j for τri,rj such that
with probability of at least 1− δ we have |τri,rj − ˆτi,j | ≤ ε.

2 Sketches for Approximating Rank Correlation

Our sketching framework extends [2], so we first review that technique. Consider
Alice and Bob, with the set C1 of items that Alice has rated, and the set C2

of items that Bob has rated, from the universe U of items, where |C1| = |C2|.
Consider a sketch Si that is the identity of a single item chosen uniformly at
random from Ci. The probability of choosing the same item in S1 and S2 depends
on |C1∩C2|

|C1| , and is small. One insight comes from deciding to let the sketch Si be
the minimal item from Ci. If the minimal item in C1 ∪C2 is in C1 ∩C2 = T , we
are guaranteed to find the item in S1 ∩ S2. However, always using the minimal
item always generates the same S1, S2. The methods in [2] overcome this by
using min-wise independent hashes. Let H be a family of functions such that
each h ∈ H is a function h : X → Y , where Y is completely ordered. We say



H is min-wise independent if, when randomly choosing h ∈ H, for any subset
C ⊆ X, any x ∈ C has an equal probability of being the minimal under h.

Definition 3. H is min-wise independent, if for all C ⊆ X, for any x ∈ C,
Prh∈H [h(x) = mina∈Ch(a)] = 1

|C| .

The work [7] constructs such families. The work in [2] uses them to build
sketches for approximating the PI. In that work they use integers to define the
identity of items in U (where |U | = u), so any subset of items C ⊆ U , is
represented as a list of |C| integers in [u] ([u] denoting {1, 2, . . . , u}). They use a
family H of min-wise independent functions from [u] to [n2]. Thus, although the
domain is the huge universe of [u] items, the hashed values are in the smaller
range of [n2] items 3. The methods of [2] consider users a1, a2, each with a list Ci

of examined items, such that |C1| = |C2|. The sketches they propose approximate
the PI between the two users, p1,2 = |C1∩C2|

|C1| = |C1∩C2|
|C2| . These sketches are based

on randomly choosing hashes from H. Given h ∈ H, we can apply h on all the
integers in C1 and examine the minimal integer we get, mh

1 = minx∈C1h(x). We
can do the same to C2 and examine mh

2 = minx∈C2h(x). The following Lemma
is proved in [2].

Lemma 1. Prh∈H [mh
1 = mh

2 ] = p1,2
2−p1,2

.

We refer to the the sketches used by [2] as item sketches. They are defined as
follows. Let vk = 〈h1, h2, . . . , hk〉 be a tuple of k randomly chosen functions from
the min-wise independent family H, and let Ci be the set of items that user ai

has examined. Denote the minimal item in Ci under hj as m
hj

i = minx∈Cihj(x).

Definition 4 (Item Sketches). The Hk sketch of Ci, S(Ci), is the list of
minimal items in Ci under the k randomly chosen functions from h: Sk(Ci) =
(mh1

i , mh2
i , . . . , mhk

i ).

There are several key observations regarding item sketches. First, since H is
min-wise independent, each sketch S(Ci) on its own is a list of k random items
from Ci (after applying a hash function on each item). Second, due to Lemma
1, randomly choosing a function h ∈ H and testing whether mh

1 = mh
2 is a

Bernoulli trial, with success probability of α = pa,b

2−pa,b
. We denote by Xi the

random variable of the Bernoulli trial using hash hi, so Xi = 1 if mhi
a = mhi

b ,
and Xi = 0 otherwise. Given an item sketch of k hashes, we get k such Bernoulli
trials, X1, . . . , Xk, and can estimate α = pa,b

2−pa,b
as

Pk
i=1 Xi

k . Since α = pa,b

2−pa,b
,

we have pa,b = 2α
1+α , so given an estimate α̂ for α, we can estimate pa,b as

ˆpa,b = 2α̂
1+α̂ . The work [2] shows that to approximate the PI pa,b within accuracy

ε and confidence 1− δ, it is enough to use k = ln 2
δ

2 ε2
9

hashes. The methods in [2]

do not show how to compute the correlation between the rankings.
3 The methods of [2] build on the results of [7], which show that using a range of n2

integers mitigates the effect of collisions in the hashed values. Thus, the probability
of two different items in [u] to be mapped to the same value after applying the hash
(a collision) is very small.



2.1 Rank Correlation Sketches

We now describe our method for constructing a rank correlation sketching frame-
work. We first return to Alice and Bob. Now suppose we have a set of items I
that both Alice and Bob have ranked, from the universe U of items. Denote by
n the size of I, so |I| = n. We are interested in approximating τra,rb

, Kendall’s
Tau rank correlation between Alice’s ranking of the items in I and Bob’s rank-
ing. We denote by nc the number of concordant pairs, and by nd the number
of discordant pairs, so τra,rb

= nc−nd
1
2 n(n−1)

. As noted in Section 1, the probability
P (C) = nc

1
2 n(n−1)

is closely relate to Kendall’s Tau, and τra,rb
= 2P (C)− 1.

Lemma 2 (Approximating P (C) and Kendall’s Tau). Approximating P (C)
with accuracy ε

2 gives an approximation to Kendall’s Tau with accuracy ε.

Proof. We use the approximation ˆP (C) for P (C) to approximate Kendall’s Tau.
Our approximation for τra,rb

is ˆτra,rb
= 2 ˆP (C)−1. If our error in our estimation

of P (C) is at most ε
2 , we have |P (C)− ˆP (C)| ≤ ε

2 , so |τra,rb
− ˆτra,rb

| = |2P (C)−
1−(2 ˆP (C)−1)| = |2(P (C)− ˆP (C))| ≤ 2 · ε

2 = ε. Thus, to approximate Kendall’s
Tau with accuracy ε it is enough to approximate P (C) with accuracy ε

2 .

We now consider a pair of items chosen uniformly at random from I, x, y ∈ I.
Given Alice’s and Bob’s rankings, we can test whether this is a concordant pair.
This is a Bernoulli trial, with a success probability of P (C). We define the

random variable of this Bernoulli trial as: X1 =

{
1 if x, y is a concordant pair
0 if x, y is a discordant pair

Given kp such pairs, we have a sequence of kp such Bernoulli trials, X1, . . . , Xkp .
Let X be the number of successes in this series of Bernoulli trials, X =

∑kp

j=1 Xj .
We have chosen the pairs uniformly at random, so the Xis are identical but inde-
pendent. Thus X has the Binomial distribution X ∼ B(k, α), and the maximum
likelihood estimator for P (C) is ˆP (C) = X

kp
. We now derive the required num-

ber of random item pairs required to approximate P (C) with accuracy εc and
confidence δc. To achieve the desired accuracy and confidence, the number of
sampled pairs, kp, must be large enough. We find the appropriate kp by using
Hoeffding’s inequality [6].

Theorem 1 (Hoeffding’s inequality). Let X1, . . . , Xn be independent ran-
dom variables, where all Xi are bounded so that Xi ∈ [ai, bi], and let X =∑n

i=1 Xi. Then the following inequality holds: Pr(|X−E[X]| ≥ nε) ≤ 2 exp
(
− 2 n2 ε2Pn

i=1(bi−ai)2

)
.

Let X1, . . . , Xkp be the series kp of Bernoulli trials, as defined above. Again,
let X =

∑kp

j=1 Xj , and take ˆP (C) = X
kp

as an estimator for P (C). All Xi are
either 0 or 1 (so they are bounded between these values), and E[X] = kp ·
P (C). Thus, the following holds: Pr(|X−kpP (C)| ≥ kεc) ≤ 2e−2 kp ε2c . Therefore
the following also holds: Pr(| ˆP (C) − P (C)| ≥ εc) ≤ 2e−2 kp ε2c . We now extract
the number of pairs required so that this probability is below some required
confidence level δc.



Theorem 2 (Pair Samples for Approximating P (C)). A confidence inter-
val for P (C) is [ ˆP (C)− εc, ˆP (C)+ εc]. This interval holds the correct P (C) with
probability of at least 1−δc. The required number of pair samples to perform this

is kc =
ln 2

δc

2 ε2c
.

Proof. We use Hoeffding’s inequality to bound the error below our target confi-
dence level δc, and get: Pr(| ˆP (C)−P (C)| ≥ εc) ≤ 2 e−2 kc ε2c ≤ δc. We extract εc

and kc: −2 kc ε2c ≤ ln δc

2 . Equivalently: ε2c ≥ − ln δc
2

2 k . Finally we get the following:

εc ≥
√

1
2kc

ln 2
δc

and kc ≥
ln 2

δC

2 ε2c
.

The required number of pairs in Theorem 2 considered approximating P (C)
and not Kendall’s Tau. However, due to Lemma 2 we get the following corollary.

Corollary 1 (Pair Samples for Approximating Kendall’s Tau). The fol-
lowing is an approximation for Kendall’s Tau: ˆτra,rb

= 2 ˆP (C)− 1. In order for
it to have accuracy εt and confidence δt the required number of random pairs

samples is kt =
2 ln 2

δt

ε2t
.

2.2 From Item Sketches To Rank Correlation Sketches

We now augment the sketches of [2] to approximate Kendall’s Tau. The PI
sketches of [2] approximate the PI. When the CF system attempts to provide
Alice (with items Ca) with a recommendation, it filters out users who do not
have a high enough PI with her, so only users with a PI exceeding a threshold,
p∗, remain. Consider a candidate, Bob (with item set Cb), where the PI of Alice
and Bob is pa,b. By definition of the PI, pa,b = |Ca∩Cb|

|Ca| = |Ca∩Cb|
|Cb|

4, and since
Bob has passed the filtering stage we have pa,b ≥ p∗. The item sketch from
Definition 4 randomly chooses k hashes from H, and lists the minimal items
under these k hashes. By definition of H as a min-wise independent family, for
any user’s set of items C, any item has an equal probability of being minimal
under the hash, so Prh∈H [h(x) = mina∈Ch(a)] = 1

|C| . Let h ∈ H be a randomly
chosen hash function from H. We denote the minimal item in Ci under h as
mh

i = minx∈Cih(x). We show that if Alice and Bob have a PI of at least p∗, the
probability of having the same value at each sketch location is at least p∗

2−p∗ .

Lemma 3 (Probability Of The Same Item Appearing In Two Sketches).
Let Alice and Bob be two users with a PI of at least p∗, Alice with item set Ca

and Bob with item set Cb. Then Prh∈H [mh
a = mh

b ] ≥ p∗

2−p∗ (i.e. the probability

of Alice and Bob having same minimal item under h is at least p∗

2−p∗ ).

Proof. We denote the PI of Alice and Bob as pa,b ≥ p∗. Due to Lemma 1 we have
Prh∈H [mh

a = mh
b ] = pa,b

2−pa,b
, and since f(x) = x

2−x is monotonically increasing

in the domain [0, 1] we have Prh∈H [mh
a = mh

b ] ≥ p∗

2−p∗ .

4 Note that we are still assuming the same size of item set per user.



Consider Alice and Bob, with a PI of at least p∗. Lemma 3 states that any
location i has a probability of at least ps = Prhi∈H [mhi

a = mhi

b ] ≥ p∗

2−p∗ to
contain the same value in Alice’s sketch and in Bob’s sketch. Since the range
of the hashes in H is [n2] (where n is the number of items examined by each
user), having the same minimal item under h, mhi

a = mhi

b , indicates with high
probability that this is the same item, so |{x ∈ Ca|hi(x) = mhi

a }| = |{y ∈
Cb|hi(y) = mhi

b }| = 1, and both Ca and Cb contain only one item x (so x ∈ Ca

and x ∈ Cb) such that hi(x) = mhi
a = mhi

b .
Let hi be the hash for the i’th location in the item sketch. The augmenting

part of the sketch includes the rank of the item that is minimal under h. We
denote the ranking of user a over the items in Ca as ra, so ra maps items from
Ca to their rank in [n] (where |Ca| = n). Thus ra : Ca → [n] is reversible. We
randomly choose a hash for each sketch location. Given the hash hi for location i,
we consider the items who are minimal under hi, i.e. M = {x ∈ Ca|hi(x) = mhi

a }.
If |M | = 1 we denote M = {m}, and denote gi

a = ra(m). If |M | ≥ 1, which occurs
with a very low probability, we denote m′ to be the minimal item in M (under
the original ordering, not under hi), and denote gi

a = ra(m′). The sketch for user
a in the i’th location contains the minimal item in Ca under hi, and its ranking
in user a’s eyes.

Definition 5 (Rank Correlation Sketches). The Hk rank correlation sketch
of Ca, Sk(Ca), contains the both the item sketch and the rank sketch. As before,
the item sketch is just the list of minimal items in Ca under the k randomly
chosen hashes, so Sk

items(Ca) = (mh1
a ,mh2

a , . . . , mhk
a ), and the rank sketch con-

tains the ranks of these items, so Sk
ranks(Ca) = (g1

a, . . . gn
a ). The rank correlation

sketch is simply the concatenation of these two sketches.

Consider two locations i and j where the item sketch for both Alice and Bob
is the same, i.e where mhi

a = mhi

b and m
hj
a = m

hj

b . Each such location is called
a sketch collision. Given two such collisions, with high probability the ranking
sketch at these two locations refers to the same items, i.e. there are two items
x, y such that x, y ∈ Ca and x, y ∈ Cb, and such that gi

a = ra(x), gi
b = rb(x), gj

a =
ra(y), gj

b = rb(y). Since any item has an equal probability to be minimal under
a random hash h ∈ H (as H is min-wise independent), the sketches in these
locations provide us with Alice’s and Bob’s rankings for a pair of items chosen
uniformly at random from Ca∩Cb. Corollary 1 gives the required number of pairs
to approximate Kendall’s Tau, but each pair requires two independent collisions
5. Thus, approximating Kendall’s Tau is reduced to finding a sketch that would
have the required number of collisions with high probability.

2.3 Collisions And Sketch Size

Consider Alice, who seeks a recommendation from the CF system. The CF sys-
tem has a PI threshold p∗, and selects only candidates who have a higher PI
5 Notice that given m sketch collisions we can generate m(m−1)

2
pairs, but these pairs

would not be independent.



with her. As shown in [2], in order to compute the PI with accuracy εi and con-

fidence δp, it is enough to use a sketch based on kp =
ln 2

δp

2
ε2p
9

hashes. After filtering

out candidates with too low a PI, the CF system remains with candidates, and
computes Kendall’s Tau for each of them, with accuracy εt and confidence 1−δt.

Lemma 3 shows that the probability of a collision in each location is at least
p = p∗

2−p∗ . Thus each location is a Bernoulli trial, with success probability of at
least p (success being a collision). Theorem 1 shows that approximating Kendall’s

Tau with accuracy εt and confidence δt requires 2kt =
4 ln 2

δt

ε2t
sketch collisions.

We determine the size of the sketch needed to have such a required number of
collisions with probability of at least 1−δc. Given a sketch based on m hashes, the
number of collisions X has the Binomial distribution with parameters m, p. We
require k = 2kt collisions, and thus are interested in the cumulative distribution
function F (k,m, p) = P (X ≤ k) =

∑
i = 0k

(
m
i

)
pi(1 − p)n−i. We find a sketch

size m that is high enough that F (k, m, p) is below our confidence level δc, using
the following result from [3]:

Theorem 3 (Binomial Distribution Tail Bound). F (k,m, p) ≤ exp
(
−2 (mp−k)2

n

)

Theorem 4 (Rank Correlation Sketch Size). A rank correlation sketching
framework for users with PI of at least p∗, where p = p∗

2−p∗ , requires sketch size

of m ≥ k
p +

ln 1
δc

4p2 (1 + 3
√

k), where k = 2kt =
4 ln 2

δt

ε2t
.

Proof. We require a sketch size m such that F (k, m, p) ≤ exp
(
−2 (mp−k)2

n

)
≤ δc.

Thus we require −2(mp−k)2

n ≤ ln δc, or that (mp−k)2

m ≥ ln 1
δc

2 . We denote d =
ln 1

δc

2 .
The requirement is thus that p2m2+(−2pk−d)m+k2 ≥ 0. Solving the quadratic

equation (and taking the bigger solution) we get m ≥ 2pk+d+
√

4pkd+d2

2p2 or that

m ≥ k
p + d

2p2 +
√

4pkd+d2

2p2 . An even strong requirement is that m ≥ k
p + d

2p2 (1 +√
4k + 1), or even that m ≥ k

p + d
2p2 (1 +

√
9k) = k

p + d
2p2 (1 + 3

√
k). We finally

get that the requirement is m ≥ k
p +

ln 1
δc

4p2 (1 + 3
√

k).

Thus the sketch size is polynomial in the accuracy, and logarithmic in the
confidence 6.

3 Related Work

There are many examples of CF systems, such as GroupLens [9] and Ringo [11].
[9] uses the Pearson correlation, while [11] uses other measures. This paper tack-
les the problem of handling the massive data sets in CF systems. We suggested
6 There are two confidence levels, δt the maximal probability of mis-approximating

Kendall’s Tau, and δc, the maximal probability of not having enough sketch colli-
sions. From the union bound, the probability of having a bad approximation is at
most δc + δt, and the sketch size is logarithmic in both.



sketching to approximate rank correlations. One example of a sketching tech-
nique is [4]. We extend [2] to compute rank correlations, using a min-wise inde-
pendent family of hashes. Such families were treated in [7]. Our methods fits
in the Locally Sensitive Hashing (LSH) [5] framework, but is specialized for CF
systems. Similar approach are Random Projections [1] and Semantic/Spectral
Hashing [10, 12].

4 Conclusion

A challenge in CF systems is handling huge amounts of information. We have
suggested a sketching approach to approximate the rank correlation with a given
accuracy and confidence. The sketch size is logarithmic in the confidence, and
polynomial in the accuracy. There are many directions for future research. Our
methods only allow computing Kendall’s Tau and not other rank correlations,
such as Spearman’s Rho. Also, we assume a complete ranking over items, and
do not allow for ties. Another shortcoming of our analysis here is that it is only
theoretical. It would be desirable to test these methods on real data sets.

References

1. Dimitris Achlioptas. Database-friendly random projections: Johnson-
Lindenstrauss with binary coins. JCSS, 66, 2003.

2. Yoram Bachrach, Ely Porat, and Jeffrey S. Rosenschein. Sketching techniques for
collaborative filtering. In IJCAI 2009, Pasadena, California, July 2009. To appear.

3. Kai Lai Chung. Elementary Probability Theory with Stochastic Processes. Springer-
Verlag, 1974.

4. Joan Feigenbaum, Sampath Kannan, Martin Strauss, and Mahesh Viswanathan.
An approximate L1-difference algorithm for massive data streams. SIAM J. Com-
put, 32(1):131–151, 2002.

5. Aristides Gionis, Piotr Indyk, and Rajeev Motwani. Similarity search in high
dimensions via hashing. In VLDB: International Conference on Very Large Data
Bases. Morgan Kaufmann Publishers, 1999.

6. Wassily Hoeffding. Probability inequalities for sums of bounded random variables.
Journal of the American Statistical Association, 58(301):13–30, 1963.

7. Piotr Indyk. A small approximately min-wise independent family of hash functions.
Journal of Algorithms, 38(1):84–90, January 2001.

8. Maurice G. Kendall. A new measure of rank correlation. Biometrika, 30:81–93,
1938.

9. P. Resnick, N. Iacovou, M. Suchak, P. Bergstorm, and J. Riedl. Grouplens: An
open architecture for collaborative filtering of netnews. In Proceedings of the ACM
Conference on Computer Supported Cooperative Work, pages 175–186. ACM, 1994.

10. Ruslan Salakhutdinov and Geoffrey Hinton. Semantic hashing. International Jour-
nal of Approximate Reasoning, December 2008.

11. Upendra Shardan and Pattie Maes. Social information filtering: Algorithms for
automating “word of mouth”. In ACM CHI’95, volume 1, pages 210–217, 1995.

12. Yair Weiss, Antonio Torralba, and Rob Fergus. Spectral hashing. In Advances in
Neural Processing Systems, 2008.


