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Abstract. We consider fingerprinting methods for collaborative filter-
ing (CF) systems. In general, CF systems show their real strength when
supplied with enormous data sets. Earlier work already suggests sketch-
ing techniques to handle massive amounts of information, but most prior
analysis has so far been limited to non-ranking application scenarios and
has focused mainly on a theoretical analysis. We demonstrate how to
use fingerprinting methods to compute a family of rank correlation coef-
ficients. Our methods allow identifying users who have similar rankings
over a certain set of items, a problem that lies at the heart of CF applica-
tions. We show that our method allows approximating rank correlations
with high accuracy and confidence. We examine the suggested methods
empirically through a recommender system for the Netflix dataset, show-
ing that the required fingerprint sizes are even smaller than the theoreti-
cal analysis suggests. We also explore the of use standard hash functions
rather than min-wise independent hashes and the relation between the
quality of the final recommendations and the fingerprint size.

1 Introduction

Recommender systems supply users with items they are likely to find interest-
ing. Some methods use the content of the information item (in the content based
approach). We focus on the alternative collaborative filtering approach (CF sys-
tems), where the system predicts whether an item is likely to interest the target
user, based on the ranking of that item by other users. One obstacle in construct-
ing real-world CF systems is the need to handle huge volumes of information.

Previous work [7] suggested a technique for computing the similarity be-
tween users, based on sketching — rather than storing the full lists of items for
each user, it stores a concise fingerprint of the lists of examined items, called a
sketch. These fingerprints are extremely short, much shorter than compression
techniques allow, but only allow specific computations on the data. The sketches
of [7] allow approximating the proportional intersection similarity (PI) of any
two users. This method has been extended in [6], where similar fingerprints were
used to compute the correlation between two user’s rankings of items.

Both [7,6] have significant shortcomings. First, they focused on a very spe-
cific rank correlation coeflicient — Kendall’s Tau [19]. Other correlations, such as
Spearman’s rank correlation [23], are more appropriate for some settings [15]. For



example, Spearman’s Rho has the meaningful interpretation as a Pearson cor-
relation coeflicient, and known statistical tests can use it in significance testing.
Second, their sketches use min-wise independent families of hashes (MWIF's).
MWTFs are hard to construct and slow to use. Third, they only analyze sketches
theoretically, lacking empirical evidence regarding the quality of the sketches in
terms of the quality of the final recommendations based on these approximations.
Our contributions are:

1. We suggest a similar fingerprint which allows computing a family of rank
correlation coefficients, including the prominent Spearman rank correlation.
2. We discuss empirical analysis of such techniques, based on Collabriprint,
our CF infrastructure which uses fingerprinting techniques, that wastested
on the Netflix [8] dataset. Our empirical analysis shows that in practice:
— It suffices to use smaller sketches than the theoretical results require.
— It is possible to use standard hash functions, such as MD5 [21], instead of
the more complex MWIF's, and still obtain high accuracy and confidence.
— The final recommendation’s quality depends on the fingerprints’ size.
Even small fingerprints result in high quality recommendations.

2 Preliminaries

We first briefly explain the problem of fingerprinting in CF systems. Consider
Alice and Bob, who have both examined a set of n items. In some CF domains, the
mere fact that a user has examined an item implicitly tells the CF system that
the user liked the item. In other domains, explicit information is available as users
rate examined items on a certain scale. CF systems first seek users who share
similar rating patterns with the target user, and use their ratings to generate
a prediction for how the target user would rate items she has not examined.
A method for approximating the Proportional Intersection (PI) was suggested
in [7]. Given two users, Alice and Bob who examined the same number of items,
their PI is defined as follows. Denote by C; the set of items Alice examined, and
by C; the set of items Bob examined. Both users examined the same number
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The PI and Jackard measures only consider which items were examined.
Rank correlations, such as Spearman’s Rho and Kendall’s Tau, measure the
similarity between two rankings (orderings) of the same items. Spearman’s Rho
is simply a special case of the Pearson product-moment coefficient, in which
the data sets are converted to rankings before calculating the coefficient. Let
x; = 14(1) and y; = r(¢) be the rankings of item 4, given by Alice and Bob, and
let d; = x; — y;. Spearman’s Rho p,_ ., can be computed using the following
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direct formula: p,, ,, =1 — %. Both Kendall’s Tau and Spearman’s Rho

range from -1 (strong negative correlation) to 1 (strong positive correlation).
Computing user similarity metrics allow constructing CF recommender sys-

tems, by predicting the rating a target user would give any unexamined item,



based on the ratings given by other users, weighted according to similarity to
the target user. User similarity can be computed using the full information, con-
sisting of the lists of examined items and their ratings for each user. However,
such data sets can be extremely large, so it is desirable to compute similarities
while minimizing the size of the data. Fingerprinting provides a good tradeoff
between the required storage and the quality of the predictions.

The method of 7] approximates the PI p; for any two users 4, j, by maintain-
ing short fingerprints of the lists of examined items, called sketches. This method
assumes ¢ and j have equal size lists of items Cq,Cs (so |Cy| = |C;| = n), and
the size of each sketch depends on the target confidence ¢ and accuracy e. The
method returns an approximation p; ; to p; ; such that, with probability of at
least 1 — 4, |p; ; — Pi,j| < e. Building on this work, a method for computing the
Kendall Tau correlation was proposed in [6]. This improves recommendations,
since even users who examined similar items may rate them differently.

Similarly to the above techniques, we also use a Min-Wise Independent Fam-
ily of hashes (MWIF). Let H be a family of functions over the source X and
target Y, so each h € H is a function h : X — Y, where Y is completely or-
dered. We say that H is MWIF if when randomly choosing a function h € H,
for any subset C' C X, any € C has an equal probability to be minimal un-
der h.'. Formally, we say that H is MWIF, if for all C C X, for any = € C,
Pricp[h(z) = mingech(a)] = ﬁ MWIF computations are slow, making them
ill-suited for many practical applications. For full discussion of MWIFs and their
construction see [10, 17].

3 Rank Correlation Fingerprints

Let ¢,7 be two users, and C;,C; the set of items each has examined. We now
present our fingerprinting method, based on randomly choosing hashes h from
a MWIF H. Similarly to [7], we consider the identities of items in the set C; of
items examined by each user as integers, apply h to all these integers and examine
the minimal value obtained. Given a randomly chosen h € H we denote minimal
value obtained after applying h to all elements in C; as m! = mingec,h(z).
Performing the same on C; we denote m? = mingec,;h(z). We now examine the

probability that m[* = m?. Theorem 1 in [7] has shown that when |C;| = |C;| so
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Proof. Denote x = Jy 2. The set C; U C; contains three types of items: items
that appear only in C;, items that appear only in C}, and items that appear in
C; N Cj. When an item in C; N C; is minimal under A, i.e., for some a € C; N C}

1 Tt does not matter which distribution is used to choose h from H, as long as this
distribution makes H a MWIF.



we have h(a) = mingec,uc,h(z), we get that mingec, h(r) = mingec;h(z).
On the other hand, if for some a € C; U C; such that a ¢ C; N C; we have
h(a) = mingec,uc,h(x), the probability that min.cc,h(x) = mingec,h(z) is
negligible 2. Since H is MWIF, any element in C = C; U Cj is equally likely
to be minimal under h. However, only elements in I = C; N C; would result in

h
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The fingerprints used in [7] are called item sketches, and are created using
k hash functions. Let vy, = (hy,hz,...,hs) be a tuple of k randomly chosen
functions from the MWIF H, and let C; be the set of items that user ¢ has
examined. Denote the minimal item in C; under hy as m?s = mingec,hs(x).

Definition 1 (Item Sketches). The Hj sketch of C;, S(C;), is the list of

minimal items in C; under the k randomly chosen functions from h: S¥(C;) =
(m?ﬂm?ﬂ...,m?ﬂ.

We call a hash h, where m”s = m? a collision hash, and say location s is

a sketch collision for i,j. The work [7] shows that in order to approximate the

2
PI p,, with accuracy € and confidence 4, it is enough to use k = ;n -5 hashes.

However, they do not compute how well the users’ tastes correlate, :;i problem
later addressed in [6] where the Kendall Tau correlation is approximated. We
focus on a different family of correlations, based on Spearman’s Rho. CF systems
seek users similar to a target user, filtering out users with a low Jackard similarity
to that user. Similarly to [6] we assume the CF system filters out any user with
a Jackard score (or PI score) lower than some value p*, and augment the item
sketches to compute rank correlations. The system then recommends items based
on scores that weight rankings given by users according to their similarity with
the target user. A strong user similarity metric is rank correlation.

Our fingerprints are the item sketches of Definition 1, augmented with the
rating of the minimal item under the hash. Consider Alice and Bob, with Jackard
similarity of at least p*. The item sketches in Definition 1 use k random hashes,
and the fingerprint is the list of the minimal items under each hash. Due to
Theorem 1, given users ¢ with items C; and j with items C}, the probability of
a collision for i,5 on any location s (i.e. P(m! = m?)) depends on J; ;. Due
to Theorem 1, if J; ; > p*, any location has a probability of at least p* of being
a collision. A collision in location s is hs(g), where ¢ is an identity of an item
chosen uniformly at random from C; NC; (an item both ¢ and j examined). Our
fingerprints include the rating of the item ¢ 3.

Similarly to item sketches (Definition 1), each location is built using a ran-
domly chosen hash. Let h; be the hash for the i’th location. The augmentation

2 Such an event requires that two different items, z; € C; and z; € C; to be mapped to
the same value h* = h(x;) = h(z;), and that this value would also be the minimal
value obtained when applying h to both all items in C; and in Cj. As discussed
in [17], the probability for this is negligible when h’s range is large enough.

3 The sketches of [6] are similar, although we employ a very different algorithm to
compute Spearman’s Rho (whereas they compute Kendall’s Tau).



for location ¢ contains the rating of the item that is minimal under h;. When
constructing the sketch for user a, we consider the user’s item set C, and the
ratings of the items in C,. The rating of user a for items in C, is denoted as 7.
Thus, r, maps items in C, to their rating. Given h;, consider the set of items
that are minimal under h; 4, i.e. M = {z € C,|hi(z) = ml*}. If only one item
is minimal under the hash, so |[M| = 1, we denote M = {m}, and denote the
rating of that item as g% = r,(m). Only with a very low probability do we have
|M| > 1. If M| > 1, denote m’ to be the minimal item in M, under some pre-
determined ordering (not under h;), and denote g& = 7,(m’). The sketch for user
a in the i’th location contains the minimal item in C, under h;, and its rating
in a’s eyes. We denote the sketch for user a with items C, (where the sketch is
based on Hy = (hq, ..., h), the k randomly chosen hashes from the MWIF), as
Sk(C,).

Definition 2 (Rank Correlation (RC) Sketches). The Hj, RC sketch of C,
Sk(C,), contains the both the item sketch and the rank sketch. The item sketch
1s the list of minimal items in C, under the k randomly chosen hash functions
from, so Sk (C.) = (mM mhz .. mh) and the rank sketch contains the
ranks of these items, so S* . (Ca) = (g,...g"). The rank correlation sketch is
the concatenation of these two sketches.

The fingerprint size required for approximating Kendall’s Tau using RC
sketches was analyzed in [6]. We provide a similar analysis for a Spearman’s
Rho. Observe that an RC sketch collision for two users ® provides the ratings of
each of the two users of a randomly chosen item from C, N C} . Thus, a collision
provides rq(z), rp(x) for a randomly chosen items z € C,NC},. We now determine
how many collisions are required to approximate Spearman’s Rho with a target
accuracy and confidence. We wish to return an approximation p,_;, to Spearman’s
Rho p,p such that with probability of at least 1 — ¢ we have |p,, ,, — pi ;| < e
We use the following theorem from [6] regarding the required number of hashes
to provide at least k collisions.

Theorem 2. Let k be a certain required sketch collisions, and let p be a bound
from below on the Jackard similarity of any two users. The required fingerprint
size to achieve the required number k of sketch collisions with probability 1 — 6,
ism2%+ (1+3VEk).

1
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The sketch collision probability depends on the Jackard similarity (as shown
in Theorem 1). Theorem 2 shows that given a minimal Jackard similarity, a
long enough fingerprint would provide the required number of collisions with

4 If each item is hashed to a different value then there is only one item whose value
under the hash is minimal. However, several items may be mapped to the same
value, so there may be several items minimal under the hash.

5 Recall that a sketch collision is a sketch location i with hash function h; where the
minimal items of the two users (a with items C, and b with items C%) under h; are

i Ry
the same, so ml = my’.



high probability. The required fingerprint length is logarithmic in the required
confidence . and polynomial in the required number of collisions. We now show
that a family of rank correlations, including Spearman’s Rho, can be computed
using the RC sketches of Definition 2, generalizing the results of [6].

We now show how the RC sketches from Definition 2 allow computing a
family of rank correlations. Members of this family could be expressed as a
certain bounded function of the rank differences, summed across all items. We
begin by an analysis of Spearman’s Rho, and then generalize to this family of

rank correlathgs The definition of Spearman’s Rho had a direct formula for it:

Pror =1 — Gn(n’giol)’ We first note that d; is simply the difference between the

rating of a certain item in the first user’s eyes and in the second user’s eyes.
Consider an item x chosen uniformly at random from the set of possible items.
We can examine r,(z) and 7,(2) and define the following random variable.

Definition 3. The Spearman’s Rho random wvariable X;, for item x is X; =
1— ﬁ(v"a(GC)Q—TIb(w))2

n2—

[X,] = B[ Sral)—re@)?y

’ﬂ2

. . n_ o d?
1= 22 B(ra (@) = ro(@)2) = 1= g - 2(5(rali) — ro(i))? = 1 = Simtpt =
pra,rb

We now denote p = p,._ ,, for short. Given k such random variables, X1, ..., Xy,

The random variable X; has an expectation of: E

we can use % Zle X, as an estimate for p. We now derive the required number
of such random items to approximate p with accuracy e¢ and confidence §. To
achieve the desired accuracy and confidence, the number of sampled items, k,
must be large enough. We find the appropriate k by using Hoeffding’s inequal-
ity [16] (see similar analysis for very different uses in [11,4, 3]).

Theorem 3 (Hoeffding’s inequality). Let Xy,..., X, be independent ran-
dom wvariables, where all X; are bounded so that X; € [a;,b;], and let X =
>ty Xi. Then the following inequality holds.

Pr(|X — E[X]| > ne) < 2e p( 207 € >
— =~ NE) =~ X —<n 5 5
> i1 (bi —a)?
Let Xl, ..., X} be the serieb k of random variables, as defined above. Let
X = ZJ 1 X, and take p = £ as an estimator for p.

Theorem 4. A confidence mterval for pis [p—¢€,p+€]. This interval holds the

correct p with probability of at least 1 — 5. The required number of pair samples
18111 5

to perform this is k >

Proof. We use Hoeﬁ'dmg s inequality to bound the error below the target con-
fidence level §. We note that 0 < nfil < 1. Due to the definition of X; (see
Definition 3), all X; are bounded between -5 and 1, and E[X] = k - p. Thus,
from Hoeffding’s inequality, the following holds: Pr(|X — kp| > ke) < 2e~Ts ke,

Therefore the following also holds: Pr(|p — p| > €) < 2~ 715 k< We get that
—1c ke? <In2. Finally we obtain: € > \/@ and k > 181” 5




Using fingerprints with a the length determined by Theorem 2, we have a
high probability of getting a large enough number of sketch collisions. Each such
sketch collision gives the rating r,(x),r,(x) of a certain randomly chosen item
x, that both users (a and b) ranked. Thus, with high probability, we obtain a
series of random variables as required by Theorem 4. To compute an estimate for
Spearman’s Rho, we take the rankings r,(x), rp(z) of each item x that occurs on

W, the random
1

variables defined above. Given ¢ sketch collisions, as above, we use = > | X; as
an estimate for p. The analysis so far was specific for Spearman’s Rho. However,
we now show the same type of an analysis can be used for many similar rank

correlation functions.

a sketch collision, and use them to compute X; = 1 —

Theorem 5. Let a be a constant and the function f be bounded between certain
constant values by and by,. The previous fingerprinting approach can be used to
compute any rank correlation of the form: o =a+ L 3" f(rq(i),rs(i)).

Proof. Let a be a constant and f a function bounded between b; and by, and
consider a rank correlation of the form defined above. We can define a set of
random variables X; as in Definition 3. The expectancy of the X;’s would be
a. Also, since f is bounded, we can apply Hoeffding in the same way. Note the
bound distance |by, — b;| only changes the resulting constant in the expression
derived for the fingerprint size, so the approach works well for any bounds.
Performing the analysis similarly to Theorem 4 gives the fingerprint size for any
member of this family of functions, and the same RC sketches can be used.

4 Empirical Analysis

We tested the CF fingerprinting approach by analyzing approximations of sim-
ilarity metrics in the Netflix [8] movie ratings dataset. As discussed in the in-
troduction, there are several disadvantages to the approaches of [7, 6]: the use of
MWTIFs, the high theoretical bound on the fingerprint length, and the lack of em-
pirical evaluation regarding the quality of the similarity approximation and final
recommendations. We discuss how to overcome these drawbacks, and support
this with empirical evidence. We show how to replace MWIFs with MD5 [21],
widely used hash function. We show that the accuracy of the procedure in prac-
tice is much higher than the theoretical bounds, and empirically investigate the
relation between overall recommendation accuracy and the fingerprint length.
The Netflix dataset is a movie ratings dataset, released in October 2006 by
Netflix (www.netflix.com) [8]. It contains a 100 million anonymous movie ratings,
given by half a million users on a collection of 17,000 movies. Fingerprinting
allows approximating user similarity with high accuracy. Our framework, called
Collabriprint was built using C# and F#. We used it on the Netflix dataset,
running several tests. We computed both movie to movie similarity through the
PI/Jackard similarity of the sets of users who watched the movies, and rank
correlation similarity through Kendall’s Tau and Spearman’s Rho correlation



between users’s rating of movies. We have examined the approximation error
in similarity and the change in recommendation quality for different fingerprint
lengths, as measured by the number k of hashes used. Our implementation has
used various MD5 hash functions rather than MWIFs.

Although MWIF hashes are required for the theoretical results, constructing
and using such a family is computationally expensive, and there are no widely
used implementations of them. As an alternative, we have chosen to use the MD5
hash [21], a widely used hash. Since we require many such functions, we used
HMAC (keyed Hash Message Authentication Code) versions of MD5, HMAC-
MD5. HMACs are computed using a hash function in combination with a key,
where different keys result in different hash functions, all of which appear to have
a random behavior. We chose MD5 for several reasons: it is a cryptographic hash
functions with semi-random behavior; It has an HMAC version; It is commonly
used in many applications, and there are widely available libraries implementing
it; It works quite quickly in terms of computation time.

Our first tests were conducted on randomly chosen movies pairs. For each
pair we computed the Jackard similarity using the full data set, and through
fingerprints. Denoting the correct PI as p and the PI estimate as p, the inaccuracy
for the movie pair is e = [p— p|. Given an accuracy level € we say the experiment
had a big error if e > €, and say it was accurate if e < €. Let s be a sequence of m
experiments. Given €, denote by b, the number of experiments with a big error,
and g = m — b, the number of accurate ones. We denote the fraction of bad
experiments as f,(e) = %_ Let 6 be a confidence level. The empirical accuracy
for a target confidence 0, is the maximal € for which fp(¢), the fraction of bad
experiments, is at most §. For our analysis we used a confidence level 1—§ = 0.9.
For each fingerprint size s, we chose 2000 random movie pairs. For each such
pair we performed 10 experiments, each using a different fingerprint of s random
hash functions. Thus, for each fingerprint size we had 20,000 experiments. We
measured the empirical accuracy for that sequence. The theoretical fingerprint
size for target accuracy e = 0.1 and target confidence 1—4¢ = 0.9 (from the bounds
in [7]), is s = 1350. The required size for € = 0.15 and 1 — ¢ = 0.9 is s = 600.
We tested the empirical accuracy e.(s) for fingerprint sizes of 15,20, 25, ...,100
and of 150,200, ...,650 (all of which are much shorter than the required size
for accuracy € = 0.1 and 1 — 6 = 0.9). Figure 1 shows the empirical accuracy
(measured in the experiment sequence) and the theoretical accuracy (obtained
from the theoretical formulas), for a confidence level of 1 — § = 0.9. Lower
accuracy numbers are better, as the accuracy is the maximal allowed error.
Figure 1 shows that on the Netflix dataset, the actual accuracy is much better
than the theoretical bounds predict.

We also attempted to find the required fingerprint size to achieve a certain
target accuracy e (with a target confidence of 1 — 4§ = 0.9). To get the em-
pirical required fingerprint size s. for target accuracy e, we found the minimal
fingerprint size s such that the empirical accuracy €. for that size is better than
the required accuracy € (i.e. €.(s) < €). The following figure presents both the
theoretical and empirical required sizes for different values of target accuracy.
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As Figure 2 shows, the required fingerprint size in empirical tests is much
smaller than the theoretical bounds. The figure shows the empirical fingerprint
size is roughly proportional to the theoretical bounds. The empirical size is
about only 5% of the theoretical required size. The above results indicate that
in practice it is not necessary to use large sizes to achieve very good accuracy.
Given a dataset sample, we suggest finding the right size to use empirically.

We analyzed the quality of the recommendations based on fingerprints of
different length. We implemented a simple recommendation algorithm, based
on [9], where the score for item ¢ for target user u (using the user set U of
recommender) is 4+k-) ., sim(u, s)- (s[i] — 5) where sim(u, s) is the similarity
between u, s, such as Jackard, Spearman Rho or Kendall’s Tau, s[i] is the ranking
user s gives item 4, and @ is the average rating of user u. The value k is used
as a normalizing factor, typically = Slim(ms). Our recommender set U was
the 1000 most Jackard similar users, and we used Kendall Tau for sim. Both
measures can be computed using the full data, or by fingerprinting. Obviously,
the fingerprint scores differ from the full data scores.

Consider the scores computed for each movie in the full data set, which we
call true scores. When ordering movies according to the true scores, the first
items are the best recommendations. We call an item in the top 5% of the list
relevant items. Now consider scores computed using the fingerprints only, which
we call fingerprint scores. Sorting the list by fingerprint scores, and taking the
top items, we obtain the recommendations made using the fingerprints. The
quality of the fingerprint method is determined by its precision, the proportion
of relevant items out of all the fingerprint recommendations. The following figure
presents the relation between the fingerprint size (number of hashes used), and
the quality of the recommendations.
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Another important parameter is the recall of the method, the proportion of
the relevant items that are covered. The recall is the proportion of relevant items
(top 5% items under the true scores) covered by the top 5% of the items under
the fingerprint scores. The recall values we measured range from 26% for 250
hashes to 33% for 1500 hashes. These results indicate that the quality of the
recommendations is strongly related to the length of the fingerprint used. As
seen in Figure 3, although longer fingerprints increase the quality, the quality
improvement rate drops as more hashes are used. In some domains fingerprinting
may allow the data to fit in RAM, rather than secondary storage (disks), and
we suggest choosing the highest fingerprint length that allows the data to fit in
memory, to maximize recommendation quality.

5 Related Work

We analyzed the famous Netflix dataset [8], a relatively recent CF domain. Early
recommender systems include GroupLens [20] and Ringo [22]. Today’s CF sys-
tems, as used by Amazon.com, MovieFinder.com and Launch.com face massive
datasets. CF algorithms correlate human ratings to predict future preferences.
There are many such correlations, such as the Pearson correlation used in [20]
or the cosine similarity used in [9]. We focused on fingerprinting in massive
CF systems. Similar works use fingerprints to approximate relations between
strings. The work [13] presents a sketch for the L;-difference, and [12] examines
Hamming norm. This work extends [7, 6]. Both are purely theoretical, while this
work includes theoretical analysis of different rank correlations and empirical
analysis. While we use MD5 hashes for the empirical analysis, our theoretical re-
sults are based on MWIF hashes. MWIFs were treated in [10, 17]. We hope such
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techniques can be used to build fingerprints for various uses, such as collabora-
tive filtering [7], trust and reputation aggregation [18,5] and general preference
aggregation and voting procedures [14].

Other techniques also concisely represent data relations. Our methods use
the Locally Sensitive Hashing (LSH) [2] framework, but our analysis is based
on assumptions that are specific to CF. Similar approaches are Random Projec-
tions [1] and Spectral Hashing [24]. Our methods are simple and efficient, and
the empirical analysis shows they perform well on real CF datasets.

6 Conclusion

We suggest fingerprinting methods for CF systems, extending previous works
to allow computing a family of rank correlations, including Spearman’s Rho.
We also provide empirical analysis of the suggested methods. Our results are
based on Collabriprint, a complete fingerprinting based recommender system.
Our results show that it is possible to use simple hash functions (rather than
MWTIFs) and short fingerprints to obtain high quality recommendations.
Several questions remain open for future research. First, we used a simple
CF approach, and it would be interesting to see how the fingerprint size affects
more sophisticated approaches. Also, it might be possible to create more sophis-
ticated fingerprints to improve recommendation quality while still keeping the
fingerprints small. Also, an even shorter fingerprint may be possible in certain
restricted domains. Finally, other fingerprinting applications would be welcome.
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