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Abstract

Transduction is an inference principle that takes a training sam-
ple and aims at estimating the values of a function at given points
contained in the so-called working sample as opposed to the whole
of input space for induction. Transduction provides a confidence
measure on single predictions rather than classifiers — a feature
particularly important for risk-sensitive applications. The possibly
infinite number of functions is reduced to a finite number of equiv-
alence classes on the working sample. A rigorous Bayesian analysis
reveals that for standard classification loss we cannot benefit from
considering more than one test point at a time. The probability
of the label of a given test point is determined as the posterior
measure of the corresponding subset of hypothesis space. We con-
sider the PAC setting of binary classification by linear discriminant
functions (perceptrons) in kernel space such that the probability of
labels is determined by the volume ratio in version space. We
suggest to sample this region by an ergodic billiard. Experimen-
tal results on real world data indicate that Bayesian Transduction
compares favourably to the well-known Support Vector Machine,
in particular if the posterior probability of labellings is used as a
confidence measure to exclude test points of low confidence.

1 Introduction

According to Vapnik [9], when solving a given problem one should avoid solving a
more general problem as an intermediate step. The reasoning behind this principle is
that in order to solve the more general task resources may be wasted or compromises
may have to be made which would not have been necessary for the solution of the
problem at hand. A direct application of this common-sense principle reduces the
more general problem of inferring a functional dependency on the whole of input
space to the problem of estimating the values of a function at given points (working
sample), a paradigm referred to as transductive inference. More formally, given a
probability measure PXY on the space of data X × Y = X × {−1,+1} , a training
sample S = {(x1, y1) , . . . , (xℓ, yℓ)} is generated i.i.d. according to PXY . Additional
m data points W = {xℓ+1, . . . ,xℓ+m} are drawn: the working sample. The goal is
to label the objects of the working sample W using a fixed set H of functions f :



X 7→ {−1,+1} so as to minimise a predefined loss. In contrast, inductive inference,
aims at choosing a single function fℓ ∈ H best suited to capture the dependency
expressed by the unknown PXY . Obviously, if we have a transductive algorithm
A (W,S,H) that assigns to each working sample W a set of labels given the training
sample S and the set H of functions, we can define a function fS : X 7→ {−1,+1}
by fS (x) = A ({x} , S,H) as a result of the transduction algorithm. There are two
crucial differences to induction, however: i) A ({x} , S,H) is not restricted to select
a single decision function f ∈ H for each x , ii) a transduction algorithm can give
performance guarantees on particular labellings instead of functions. In practical
applications this difference may be of great importance.

After all, in risk sensitive applications (medical diagnosis, financial and critical
control applications) it often matters to know how confident we are about a given
prediction. In this case a general confidence measure of the classifier w.r.t. the
whole input distribution would not provide the desired warranty at all. Note that
for linear classifiers some guarantee can be obtained by the margin [7] which in
Section 4 we will demonstrate to be too coarse a confidence measure. The idea of
transduction was put forward in [8], where also first algorithmic ideas can be found.
Later [1] suggested an algorithm for transduction based on linear programming and
[3] highlighted the need for confidence measures in transduction.

The paper is structured as follows: A Bayesian approach to transduction is formu-
lated in Section 2. In Section 3 the function class of kernel perceptrons is introduced
to which the Bayesian transduction scheme is applied. For the estimation of volumes
in parameter space we present a kernel billiard as an efficient sampling technique.
Finally, we demonstrate experimentally in Section 4 how the confidence measure
for labellings helps Bayesian Transduction to achieve low generalisation error at a
low rejection rate of test points and thus to outperform Support Vector Machines
(SVMs).

2 Bayesian Transductive Classification

Suppose we are given a training sample S = {(x1, y1) , . . . , (xℓ, yℓ)} drawn i.i.d. from
PXY and a working sample W = {xℓ+1, . . . ,xℓ+m} drawn i.i.d. from PX . Given
a prior PH over the set H of functions and a likelihood P(XY)ℓ|H=f we obtain a

posterior probability PH|(XY)ℓ=S
def
= PH|S by Bayes’ rule. This posterior measure

induces a probability measure on labellings b ∈ {−1,+1}m of the working sample
by1

PYm|S,W (b)
def
= PH|S ({f : ∀xℓ+i ∈ W f (xℓ+i) = bi}) . (1)

For the sake of simplicity let us assume a PAC style setting, i.e. there exists a
function f∗ in the space H such that PY|X=x (y) = δ (y − f∗ (x)) . In this case one
can define the so-called version-space as the set of functions that is consistent with
the training sample

V (S) = {f : ∀ (xi, yi) ∈ S f (xi) = yi} , (2)

outside which the posterior PH|S vanishes. Then PYm|S,W (b) represents the prior
measure of functions consistent with the training sample S and the labelling b
on the working sample W normalised by the prior measure of functions consistent
with S alone. The measure PH can be used to incorporate prior knowledge into

1Note that the number of different labellings b implementable by H is bounded above
by the value of the growth function ΠH (|W |) [8, p. 321].



the inference process. If no such knowledge is available, considerations of symmetry
may lead to “uninformative” priors.

Given the measure PYm|S,W over labellings, in order to arrive at a risk minimal
decision w.r.t. the labelling we need to define a loss function l : Ym × Ym 7→ R+

between labellings and minimise its expectation,

R (b, S,W ) = EYm|S,W [l (b,Ym)] =
∑
{b′}

l (b,b′)PYm|S,W (b′) , (3)

where the summation runs over all the 2m possible labellings b′ of the working
sample. Let us consider two scenarios:

1. A 0–1–loss on the exact labelling b , i.e. for two labellings b and b′

lc (b,b
′) = 1−

m∏
i=1

δ (bi − b′i) ⇔ Rc (b, S,W ) = 1− PYm|S,W (b) . (4)

In this case choosing the labelling bc = argminbRc (b, S,W ) of the highest
joint probability PYm|S,W (b) minimises the risk. This non-labelwise loss is
appropriate if the goal is to exactly identify a combination of labels, e.g. the
combination of handwritten digits defining a postal zip code. Note that
classical SVM transduction (see, e.g. [8, 1]) by maximising the margin on
the combined training and working sample approximates this strategy and
hence does not minimise the standard classification risk on single instances
as intended.

2. A 0–1–loss on the single labels bi , i.e. for two labellings b and b′

ls (b,b
′) =

1

m

m∑
i=1

(1− δ (bi − b′i)) , (5)

Rs (b, S,W ) =
1

m

m∑
i=1

∑
{b′}

(1− δ (bi − b′i))PYm|S,W (b′)

=
1

m

m∑
i=1

(
1− PH|S ({f : f (xℓ+i) = bi})

)
.

Due to the independent treatment of the loss at working sample points the
risk Rs (b, S,W ) is minimised by the labelling of highest marginal proba-
bility of the labels, i.e.

bi = argmaxy∈Y PH|S ({f : f (xℓ+i) = y}) .
Thus in the case of the labelwise loss (5) a working sample of m > 1
point does not offer any advantages over larger working samples w.r.t. the
Bayes-optimal decision. Since this corresponds to the standard classifica-
tion setting, we will restrict ourselves to working samples of size m = 1 ,
i.e. to one working point xℓ+1 .

3 Bayesian Transduction by Volume

3.1 The Kernel Perceptron

We consider transductive inference for the class of kernel perceptrons. The decision
functions are given by

f (x) = sign (⟨w,ϕ (x)⟩F ) = sign

(
ℓ∑

i=1

αik (xi,x)

)
w =

ℓ∑
i=1

αiϕ (xi) ∈ F ,
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Figure 1: Schematic view of data space (left) and parameter space (right) for a
classification toy example. Using the duality given by ⟨w,ϕ (x)⟩F = 0 data points
on the left correspond to hyperplanes on the right, while hyperplanes on the left
can be thought of as points on the right.

where the mapping ϕ : X 7→ F maps from input space X to a feature space F
completely determined by the inner product function (kernel) k : X × X 7→ R
(see [9, 10]). Given a training sample S = {(xi, yi)}ℓi=1 we can define the version
space — the set of all perceptrons compatible with the training data — as in (2)
having the additional constraint ∥w∥F = 1 ensuring uniqueness. In order to obtain
a prediction on the label b1 of the working point xℓ+1 we note that xℓ+1 may
bisects the volume V of version space into two sub–volumes V + and V − , where
the perceptrons in V + would classify xℓ+1 as b1 = +1 and those in V − as b1 = −1
. The ratio p+ = V +/V is the probability of the labelling b1 = +1 given a uniform
prior PH over w and the class of kernel perceptrons, accordingly for b1 = −1 (see
Figure 1). Already Vapnik in [8, p. 323] noticed that it is troublesome to estimate
sub–volumes of version space. As the solution to this problem we suggest to use a
billiard algorithm.

3.2 Kernel Billiard for Volume Estimation

The method of playing billiard in version space was first introduced by Rujan [6]
for the purpose of estimating its centre of mass and consequently refined and ex-
tended to kernel spaces by [4]. For Bayesian Transduction the idea is to bounce
the billiard ball in version space and to record how much time it spends in each
of the sub-volumes of interest. Under the assumption of ergodicity [2] w.r.t. the
uniform measure in the limit the accumulated flight times for each sub-volume are
proportional to the sub-volume itself.

Since the trajectory is located in F each position w and direction v of the ball can
be expressed as linear combinations of the ϕ (xi) , i.e.

w =
ℓ∑

i=1

αiϕ (xi) v =
ℓ∑

i=1

βiϕ (xi) ⟨w,v⟩F =
ℓ∑

i,j=1

αiβjk (xi,xj)

where α,β are real vectors with ℓ components and fully determine the state of the
billiard. The algorithm for the determination of the label b1 of xℓ+1 proceeds as
follows:

1. Initialise the starting position w0 in V (S) using any kernel perceptron
algorithm that achieves zero training error (e.g. SVM [9]). Set V + = V − =
0 .



2. Find the closest boundary of V (S) starting from current w into direction
v , where the flight times τj for all points including xℓ+1 are determined
using

τj = −
⟨w,ϕ (xj)⟩F
⟨v,ϕ (xj)⟩F

.

The smallest positive flight time τc = minj:τj>0 τj in kernel space corre-
sponds to the closest data point boundary ϕ (xc) on the hypersphere. Note,
that if τc → ∞ we randomly generate a direction v pointing towards version
space, i.e. y ⟨v,ϕ (x)⟩F > 0 assuming the last bounce was at ϕ (x) .

3. Calculate the ball’s new position w′ according to

w′ =
w + τcv

∥w + τcv∥F
.

Calculate the distance tyi = ∥w −w′∥sphere = arccos
(
1− ∥w −w′∥2F /2

)
on the hypersphere and add it to the volume estimate V y corresponding to
the current label y = sign (⟨w +w′,ϕ (xℓ+1)⟩F ) . If the test point ϕ (xℓ+1)
was hit, i.e. c = ℓ+ 1 , keep the old direction vector v . Otherwise update
to the reflection direction v′ ,

v′ = v − 2 ⟨v,ϕ (xc)⟩F ϕ (xc) .

Go back to step 2 unless the stopping criterion (8) is met.

Note that in practice one trajectory can be calculated in advance and can be used
for all test points. The estimators of the probability of the labellings are then given
by p̂+ = V +/(V + + V −) and p̂− = V −/(V + + V −) . Thus, the algorithm outputs
b̂1 with confidence ĉtrans according to

b̂1
def
= argmaxy∈Y p̂y , (6)

ĉtrans
def
=

(
2 ·max

(
p̂+, p̂−

)
− 1
)
∈ [0, 1] . (7)

Note that the Bayes Point Machine (BPM) [4] aims at an optimal approximation
of the transductive classification (6) by a single function f ∈ H and that the well
known SVM can be viewed as an approximation of the BPM by the centre of the
largest ball in version space. Thus, treating the real valued output |f(xℓ+1)|

def
= ĉind

of SVM classifiers as a confidence measure can be considered an approximation of
(7). The consequences will be demonstrated experimentally in the following section.

Disregarding the issue of mixing time [2] and the dependence of trajectories we
assume for the stopping criterion that the fraction p+i of time t+i spent in volume
V + on trajectory i of length

(
t+i + t−i

)
is a random variable having expectation p+ .

Hoeffding’s inequality [5] bounds the probability of deviation from the expectation
p+ by more than ϵ ,

P

(
1

n

n∑
i=1

p+i − p+ ≥ ϵ

)
≤ exp

(
−2nϵ2

) def
= η . (8)

Thus if we want the deviation ϵ from the true label probability to be less than
ϵ < 0.05 with probability at least 1 − η = 0.99 we need approximately n ≈ 1000
bounces. The computational effort of the above algorithm for a working set of size
m is of order O (nℓ (m+ ℓ)) .
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Figure 2: Generalisation error vs. rejection rate for Bayesian Transduction and
SVMs for the thyroid data set (σ = 3 ) (a) and the heart data set (σ = 10 ).
The error bars in both directions indicate one standard deviation of the estimated
means. The upper curve depicts the result for the SVM algorithm; the lower curve
is the result obtained by Bayesian Transduction.

4 Experimental Results

We focused on the confidence ĉtrans Bayesian Transduction provides together with
the prediction b̂1 of the label. If the confidence ĉtrans reflects reliability of a label
estimate at a given test point then rejecting those test points whose predictions carry
low confidence should lead to a reduction in generalisation error on the remaining
test points. In the experiments we varied a rejection threshold θ between [0, 1] thus
obtaining for each θ a rejeection rate together with an estimate of the generalisation
error at non-rejected points. Both these curves were linked by their common θ -axis
resulting in a generalisation error versus rejection rate plot.

We used the UCI2 data sets thyroid and heart because they are medical ap-
plications for which the confidence of single predictions is particularly important.
Also a high rejection rate due to too conservative a confidence measure may in-
cur considerable costs. We trained a Support Vector Machine using RBF kernels
k (x,x′) = exp

(
−∥x− x′∥2 /2σ2

)
with σ chosen such as to insure the existence of a

version space. We used 100 different training samples obtained by random 60%:40%
splits of the whole data set. The margin ĉind of each test point was calculated as a
confidence measure of SVM classifications. For comparison we determined the la-
bels b̂1 and resulting confidences ĉtrans using the Bayesian Transduction algorithm
(see Section 3) with the same value of the kernel parameter. Since the rejection for
the Bayesian Transduction was in both cases higher than for SVMs at the same level
θ we determined θmax which achieves the same rejection rate for the SVM confi-
dence measures as Bayesian Transduction achieves at θ = 1 (thyroid: θmax = 2.15
, heart: θmax = 1.54 ). The results for the two data sets are depicted in Figure 2.

In the thyroid example Figure 2 (a) one can see that ĉtrans is indeed an appropriate
indicator of confidence: at a rejection rate of approximately 20% the generalisation
error approaches zero at minimal variance. For any desired generalisation error
Bayesian Transduction needs to reject significantly less examples of the test set as
compared to SVM classifiers, e.g. 4% less at 2.3% generalisation error. The results of
the heart data set show even more pronounced characteristics w.r.t. to the rejection

2UCI University of California at Irvine: Machine Learning Repository



rate. Note that those confidence measures considered cannot capture the effects of
noise in the data which leads to a generalisation error of 16.4% even at maximal
rejection θ = 1 corresponding to the Bayes error under the given function class.

5 Conclusions and Future Work

In this paper we a presented a Bayesian analysis of transduction. The required
volume estimates for kernel perceptrons in version space are performed by an ergodic
billiard in kernel space. Most importantly, transduction not only determines the
label of a given point but also returns a confidence measure of the classification
in the form of the probability of the label under the model. Using this confidence
measure to reject test examples then lead to improved generalisation error over
SVMs. The billiard algorithm can be extended to the case of non-zero training
error by allowing the ball to penetrate walls, a property that is captured by adding
a constant λ to the diagonal of the kernel matrix [4]. Further research will aim at
the discovery of PAC-Bayesian bounds on the generalisation error of transduction.
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