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Abstract

We extend the Bayesian skill rating system TrueSkill to infer entire time
series of skills of players by smoothing through time instead of filtering.
The skill of each participating player, say, every year is represented by a
latent skill variable which is affected by the relevant game outcomes that
year, and coupled with the skill variables of the previous and subsequent
year. Inference in the resulting factor graph is carried out by approximate
message passing (EP) along the time series of skills. As before the system
tracks the uncertainty about player skills, explicitly models draws, can deal
with any number of competing entities and can infer individual skills from
team results. We extend the system to estimate player-specific draw mar-
gins. Based on these models we present an analysis of the skill curves of
important players in the history of chess over the past 150 years. Results
include plots of players’ lifetime skill development as well as the ability to
compare the skills of different players across time. Our results indicate that
a) the overall playing strength has increased over the past 150 years, and
b) that modelling a player’s ability to force a draw provides significantly
better predictive power.

1 Introduction

Competitive games and sports can benefit from statistical skill ratings for use in match-
making as well as for providing criteria for the admission to tournaments. From a historical
perspective, skill ratings also provide information about the general development of skill
within the discipline or for a particular group of interest. Also, they can give a fascinating
narrative about the key players in a given discipline, allowing a glimpse at their rise and fall
or their struggle against their contemporaries.

In order to provide good estimates of the current skill level of players skill rating systems
have traditionally been designed as filters that combine a new game outcome with knowledge
about a player’s skill from the past to obtain a new estimate. In contrast, when taking a
historical view we would like to infer the skill of a player at a given point in the past when
both their past as well as their future achievements are known.

The best known such skill filter based rating system is the Elo system [3] developed by Arpad
Elo in 1959 and adopted by the World Chess Federation FIDE in 1970 [4]. Elo models the
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probability of the game outcome as P (1 wins over 2|s1, s2) := Φ
(

s1−s2√
2β

)

where s1 and s2

are the skill ratings of each player, Φ denotes the cumulative density of a zero-mean unit-
variance Gaussian and β is the assumed variability of performance around skill. Denote the
game outcomes by y = +1 if player 1 wins, y = −1 if player 2 wins and y = 0 if a draw
occurs. Then the resulting (linearised) Elo update is given by s1 ← s1 + y∆, s2 ← s2 − y∆
and

∆ = αβ
√

π
︸ ︷︷ ︸

K−Factor

(
y + 1

2
− P (1 wins over 2|s1, s2)

)

,

where 0 < α < 1 determines how much the filter weighs the new evidence versus the old
estimate.

The TrueSkill rating system [6] improves on the Elo system in a number of ways. TrueSkill’s
current belief about a player’s skill is represented by a Gaussian distribution with mean µ
and variance σ2. As a consequence, TrueSkill does not require a provisional rating period
and converges to the true skills of players very quickly. Also, in contrast to Elo, TrueSkill
explicitly models the probability of draws. Crucially for its application in the Xbox Live
online gaming system (see [6] for details) it can also infer skills from games with more than
two participating entities and infers individual players’ skills from the outcomes of team
games.

As a skill rating and matchmaking system TrueSkill operates as a filter as discussed above.
However, due to its fully probabilistic formulation it is possible to extend Trueskill to perform
smoothing on a time series of player skills. In this paper we extend TrueSkill to provide
accurate estimates of the past skill levels of players at any point in time taking into account
both their past and their future achievements. We carry out a large-scale analysis of about
3.5 million games of chess played over the last 150 years.

The paper is structured as follows. In Section 2 we review previous work on historical
chess ratings. In Section 3 we present two models for historical ratings through time, one
assuming a fixed draw margin and one estimating the draw margin per player per year.
We indicate how large scale approximate message passing (EP) can be used to efficiently
perform inference in these huge models. In Section 4 we present experimental results on a
huge data set from ChessBase with over 3.5 million games and gain some fascinating chess
specific insights from the data.

2 Previous Work on Historical Chess Ratings

Estimating players’ skills in retrospective allows one to take into account more information
and hence can be expected to lead to more precise estimates. The pioneer in this field
was Arpad Elo himself, when he encountered the necessity of initializing the skill values of
the Elo system when it was first deployed. To that end he fitted a smooth curve to skill
estimates from five-year periods; however little is known about the details of his method [3].

Probably best known in the chess community is the Chessmetrics system [8], which aims
at improving the Elo scores by attempting to obtain a better fit with the observed data.
Although constructed in a very thoughtful manner, Chessmetrics is not a statistically well-
founded method and is a filtering algorithm that disregards information from future games.

The first approach to the historical rating problem with a solid statistical foundation was
developed by Mark Glickman, chairman of the USCF Rating Committee. Glicko 1 & 2 [5]
are Bayesian rating systems that address a number of drawbacks of the Elo system while
still being based on the Bradley-Terry paired-comparison method [1] used by modern Elo.
Glickman models skills as Gaussian variables whose variances indicate the reliability of the
skill estimate, an idea later adopted in the TrueSkill model as well. Glicko 2 adds volatility
measures, indicating the degree of expected fluctuation in a player’s rating. After an initial
estimate past estimations are smoothed by propagating information back in time.

The second statistically well founded approach are Rod Edwards’s Edo Historical Chess
Ratings [2], which are also based on the Bradley-Terry model but have been applied only to
historical games from the 19th century. In order to model skill dynamics Edwards considers
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the same player at different times as several distinct players, whose skills are linked together
by a set of virtual games which are assumed to end in draws. While Edo incorporates a
dynamics model via virtual games and returns uncertainty measures in terms of the esti-
mator’s variance it is not a full Bayesian model and provides neither posterior distributions
over skills, nor does it explicitly model draws.

In light of the above previous work on historical chess ratings the goal of this paper is to
introduce a fully probabilistic model of chess ratings through time which explicitly accounts
for draws and provides posterior distributions of skills that reflect the reliability of the
estimate at every point in time.

3 Models for Ranking through Time

This paper strongly builds on the original TrueSkill paper [6]. Although TrueSkill is appli-
cable to the case of multiple team games, we will only consider the two player case for this
application to chess. It should be clear, however, that the methods presented can equally
well be used for games with any number of teams competing.

Consider a game such as chess in which a number of, say, N players {1, . . . , N} are competing
over a period of T time steps, say, years. Denote the series of game outcomes between two
players i and j in year t by yt

ij (k) ∈ {+1,−1, 0} where k ∈
{
1, . . . ,Kt

ij

}
denotes the number

of game outcomes available for that pair of players in that year. Furthermore, let y = +1 if
player i wins, y = −1 if player j wins and y = 0 in case of a draw.

3.1 Vanilla TrueSkill

In the Vanilla TrueSkill system, each player i is assumed to have an unknown skill
st

i ∈ R at time t. We assume that a game outcome yt
ij (k) is generated as follows. For

each of the two players i and j performances pt
ij (k) and pt

ji (k) are drawn according to

p
(
pt

ij (k) |st
i

)
= N

(
pt

ij (k) ; st
i, β

2
)
. The outcome yt

ij (k) of the game between players i and
j is then determined as

yt
ij (k) :=







+1 if pt
ij (k) > pt

ji (k) + ε
−1 if pt

ij (k) > pt
ij (k) + ε

0 if
∣
∣pt

ij (k)− pt
ji (k)

∣
∣ ≤ ε

,

where the parameter ε > 0 is the draw margin. In order to infer the unknown skills st
i the

TrueSkill model assumes a factorising Gaussian prior p
(
s0

i

)
= N

(
s0

i ;µ0, σ
2
0

)
over skills and a

Gaussian drift of skills between time steps given by p
(
st

i|st−1
i

)
= N

(
st; st−1, τ2

)
. The model

can be well described as a factor graph (see Figure 1, left) which clarifies the factorisation
assumptions of the model and allows to develop efficient (approximate) inference algorithms
based on message passing (for details see [6])

In the Vanilla TrueSkill algorithm denoting the winning player by W and the losing player by
L and dropping the time index for now, approximate Bayesian inference (Gaussian density
filtering [7]) leads to the following update equations for µW , µL, σW and σL.

µW ← µW +
σ2

W

cij

· v
(

µW − µL

cij

,
ε

cij

)

and σW ← σW

√

1− σ2
W

c2
ij

· w
(

µW − µL

cij

,
ε

cij

)

µL ← µL −
σ2

L

cij

· v
(

µW − µL

cij

,
ε

cij

)

and σL ← σL

√

1− σ2
L

c2
ij

· w
(

µW − µL

cij

,
ε

cij

)

.

The overall variance is c2
ij = 2β2 + σ2

W + σ2
L and the two functions v and w are given by

v (t, α) :=
N (t− α; 0, 1)

Φ (t− α)
and w (t, α) := v (t, α) · (v (t, α) + (t− α)) .

For the case of a draw we have the following update equations:

µi ← µi +
σ2

i

cij

· ṽ
(

µi − µi

cij

,
ε

cij

)

and σi ← σi

√

1− σ2
i

c2
ij

· w̃
(

µi − µi

cij

,
ε

cij

)

,
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and similarly for player j. Defining d := α− t and s := α + t then ṽ and w̃ are given by

ṽ (t, α) :=
N (−s; 0, 1)−N (d; 0, 1)

Φ (d)− Φ(−s)
and w̃ (t, α) := ṽ2 (t, α) +

(d)N (d; 0, 1)− (s)N (s; 0, 1)

Φ (d)− Φ(−s)
.

In order to approximate the skill parameters µt
i and σt

i for all players i ∈ {1, . . . , N} at all
times t ∈ {0, . . . , T} the Vanilla TrueSkill algorithm initialises each skill belief with µ0

i ← µ0

and σ0
i ← σ0. It then proceeds through the years t ∈ {1 . . . T} in order, goes through

the game outcomes yt
ij (k) in random order and updates the skill beliefs according to the

equations above.

3.2 TrueSkill through Time (TTT)

The Vanilla TrueSkill algorithm suffers from two major disadvantages:

1. Inference within a given year t depends on the random order chosen for the updates.
Since no knowledge is assumed about game outcomes within a given year, the results
of inference should be independent of the order of games within a year.

2. Information across years is only propagated forward in time. More concretely, if
player A beats player B and player B later turns out to be very strong (i.e., as
evidenced by him beating very strong player C repeatedly), then Vanilla TrueSkill
cannot propagate that information backwards in time to correct player A’s skill
estimate upwards.

Both problems can be addressed by extending the Gaussian density filtering to running full
expectation propagation (EP) until convergence [7]. The basic idea is to update repeatedly
on the same game outcomes but making sure that the effect of the previous update on that
game outcome is removed before the new effect is added. This way, the model remains the
same but the inferences are less approximate.

More specifically, we go through the game outcomes yt
ij within a year t several times until

convergence. The update for a game outcome yt
ij (k) is performed in the same way as before

but saving the upward messages m
f(pt

ij
(k),st

i)→st
i

(st
i) which describe the effect of the updated

performance pt
ij (k) on the underlying skill st

i. When game outcome yt
ij (k) comes up for

update again, the new downward message m
f(pt

ij
(k),st

i)→pt
ij

(k)

(
pt

ij (k)
)

can be calculated by

m
f(pt

ij
(k),st

i)→pt
ij

(k)

(
pt

ij (k)
)

=

∫ ∞

−∞

f
(
pt

ij (k) , st
i

) p (st
i)

m
f(pt

ij
(k),st

i)→st
i

(st
i)

dst
i ,

thus effectively dividing out the earlier upward message to avoid double counting. The
integral above is easily evaluated since the messages as well as the marginals p (st

i) have
been assumed Gaussian. The new downward message serves as the effective prior belief on
the performance pt

i (k). At convergence, the dependency of the inferred skills on the order
of game outcomes vanishes.

The second problem is addressed by performing inference for TrueSkill through time (TTT),
i.e. by repeatedly smoothing forward and backward in time. The first forward pass of TTT
is identical to the inference pass of Vanilla TrueSkill except that the forward messages
m

f(s
t−1

i
,st

i)→st
i

(st
i) are stored. They represent the influence of skill estimate st−1

i at time

t− 1 on skill estimate st
i at time t. In the backward pass, these messages are then used to

calculate the new backward messages m
f(s

t−1

i
,st

i)→s
t−1

i

(
st−1

i

)
, which effectively serve as the

new prior for time step t− 1,

m
f(s

t−1

i
,st

i)→s
t−1

i

(
st−1

i

)
=

∫ ∞

−∞

f
(
st−1

i , st
i

) p (st
i)

m
f(s

t−1

i
,st

i)→st
i

(st
i)

dst
i .

This procedure is repeated forward and backward along the time series of skills until con-
vergence. The backward passes make it possible to propagate information from the future
into the past.
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st−1
W

τ≈

st
W
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pW

st−1
L

τ≈

st
L

β≈

pL

−

d

>0

st−1
W

τ≈

st
W

β≈

pW

st−1
L

τ≈

st
L

β≈

pL

εt−1
L

ς≈

εt
L

>0

+

uL−

d

>0

εt−1
i

ς≈

εt
i

>0

st−1
i

τ≈

st
i

β≈

pi

st−1
j

τ≈
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j
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j
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>0
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<0

+
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>0

Figure 1: Factor graphs of single game outcomes for TTT (left) and TTT-D. In the left graph
there are three types of variables: skills s, performances p, performance differences d. In the
TTT-D graphs there are two additional types: draw margins ε and winning thresholds u.

The graphs only require three different types of factors: factor
τ≈ takes the form N

(
·; ·, τ2

)
,

factor > 0 takes the form I (· > 0) and factor ± takes the form I (· ± · = ·).

3.3 TTT with Individual Draw Margins (TTT-D)

From exploring the data it is known that the probability of draw not only increases markedly
through the history of chess, but is also positively correlated with playing skill and even
varies considerably across individual players. We would thus like to extend the TrueSkill
model to incorporate another player-specific parameter which indicates a player’s ability to
force a draw. Suppose each player i at every time-step t is characterised by an unknown skill
st

i ∈ R and a player-specific draw margin εt
i > 0. Again, performances pt

ij (k) and pt
ji (k)

are drawn according to p
(
pt

ij (k) |st
i

)
= N

(
pt

ij (k) ; st
i, β

2
)
. In this model a game outcome

yt
ij (k) between players i and j at time t is generated as follows:

yt
ij (k) =







+1 if pt
ij (k) > pt

ji (k) + εt
j

−1 if pt
ji (k) > pt

ij (k) + εt
i

0 if −εt
i ≤ pt

ij (k)− pt
ji (k) ≤ εt

j

.

In addition to the Gaussian assumption about player skills as in the Vanilla TrueSkill model
of Section 3.1 we assume a factorising Gaussian distribution for the player-specific draw
margins p

(
ε0
i

)
= N

(
ε0
i ; ν0, ς

2
0

)
and a Gaussian drift of draw margins between time steps

given by p
(
εt
i|εt−1

i

)
= N

(
εt; εt−1, ς2

)
. The factor graph for the case of win/loss is shown

in Figure 1 (centre) and for the case of a draw in Figure 1 (right). Note, that the positivity

of the player-specific draw margins at each time step t is enforced by a factor > 0 .

Inference in the TTT-D model is again performed by expectation propagation, both within
a given year t as well as across years in a forward backward manner. Note that in this
model the current belief about the skill of a player is represented by four numbers: µt

i and
σt

i for the skill and νt
i and ςt

i for the player-specific draw margin. Players with a high value
of νt

i can be thought of as having the ability to achieve a draw against strong players, while
players with a high value of µt

i have the ability to achieve a win.

5



1850 1872 1894 1916 1938 1960 1982 2004
0

0.5

1

1.5

2

2.5
x 10

5

Year

F
re

qu
en

cy

Figure 2: (Left) Distribution over number of recorded match outcomes played per year
in the ChessBase database. (Right) The log-evidence P (y|β, τ) for the TTT model as a
function of the variation of player performance, β, and skill dynamics, τ . The maximizing
parameter settings are indicated by a black dot.

4 Experiments and Results

Our experiments are based on a data-set of chess match outcomes collected by ChessBase1.
This database is the largest top-class annotated database in the world and covers more than
3.5 million chess games from 1560 to 2006 played between ≈200,000 unique players. From
this database, we selected all the matches between 1850 (the birth of modern Chess) and
2006. This results in 3,505,366 games between 206,059 unique players. Note that a large
proportion of games was collected between 1987 and 2006 (see Figure 2 (left)).

Our implementation of the TrueSkill through Time algorithms was done in F#
2 and builds

a factor graph with approximately 11,700,000 variables and 15,200,000 factors (TTT) or
18,500,000 variables and 27,600,000 factors (TTT-D). The whole schedule allocates no more
than 6 GB (TTT) or 11 GB (TTT-D) and converges in less than 10 minutes (TTT)/20
minutes (TTT-D) of CPU time on a standard Pentium 4 machine. The code for this
analysis will be made publicly available.

In the first experiment, we built the TTT model for the above mentioned collection of Chess
games. The draw margin was chosen such that the a-priori probability of draw between two
equally skilled players matches the overall draw probability of 30.3%. Moreover, the model
has a translational invariance in the skills and a scale invariance in β/σ0 and τ/σ0. Thus,
we fixed µ0 = 1200, σ0 = 400 and computed the log-evidence L := P (y|β, τ) for varying
values of β and τ (see Figure 2 (right)). The plots show that the model is very robust to
setting these two parameters except if β is chosen too small. Interestingly, the log-evidence is
neither largest for τ � 0 (complete de-coupling) nor for τ → 0 (constant skill over life-time)
indicating that it is important to model the dynamics of Chess players. Note that the log-
evidence is LTTT = −3, 953, 997, larger than that of the naive model (Lnaive = −4, 228, 005)
which always predicts 30.3% for a draw and correspondingly for win/loss3. In a second
experiment, we picked the optimal values (β∗, τ∗) = (480, 60) for TTT and optimised the
remaining prior and dynamics parameters of TTT-D to arrive at a model with a log-evidence
of LTTT−D = −3, 661, 813.

In Figure 3 we have plotted the skill evolution for some well–known players of the last 150
years when fitting the TTT model (µt, σt are shown). In Figure 4 the skill evolution of
the same players is plotted when fitting the TTT-D model; the dashed lines show µt + εt

1For more information, see http://www.bcmchess.co.uk/softdatafrcb.html.
2For more details, see http://research.microsoft.com/fsharp/fsharp.aspx.
3Leakage due to approximate inference.
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Figure 3: Skill evolution of top Chess players with TTT; see text for details.

whereas the solid lines display µt; for comparisons we added the µt of the TTT model as
dotted lines.

As a first observation, the uncertainties always grow towards the beginning and end of a
career since they are not constrained by past/future years. In fact, for Bobby Fischer the
uncertainty grows very large in his 20 years of inactivity (1972–1992). Moreover, there seems
to be a noticeable increase in overall skill since the 1980’s. Looking at Figure 4 we see that
players have different abilities to force a draw; the strongest player to do so is Boris Spassky
(1937–). This ability got stronger after 1975 which explains why the model with a fixed
draw margin estimates Spassky’s skill larger.

Looking at individual players we see that Paul Morphy (1837–1884), “The Pride and Sorrow
of Chess”, is particularly strong when comparing his skill to those of his contemporaries in
the next 80 years. He is considered to have been the greatest chess master of his time, and
this is well supported by our analysis. “Bobby” Fischer (1943–) tied with Boris Spassky at
the age of 17 and later defeated Spassky in the “Match of the Century” in 1972. Again,
this is well supported by our model. Note how the uncertainty grows during the 20 years of
inactivity (1972–1992) but starts to shrink again in light of the (future) re-match of Spassky
and Fischer in 1992 (which Fischer won). Also, Fischer is the only one of these players
whose εt decreased over time—when he was active, he was known for the large margin by
which he won!

Finally, Garry Kasparov (1963–) is considered the strongest Chess player of all time. This is
well supported by our analysis. In fact, based on our analysis Kasparov is still considerably
stronger than Vladimir Kramnik (1975–) but a contender for the crown of strongest player
in the world is Viswanathan Anand (1969–), a former FIDE world champion.

5 Conclusion

We have extended the Bayesian rating system TrueSkill to provide player ratings through
time on a unified scale. In addition, we introduced a new model that tracks player-specific
draw margins and thus models the game outcomes even more precisely. The resulting factor
graph model for our large ChessBase database of game outcomes has 18.5 million nodes and
27.6 million factors, thus constituting one of the largest non-trivial Bayesian models ever
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Figure 4: Skill evolution of top Chess players with TTT-D; see text for details.

tackled. Full approximate inference takes a mere 20 minutes in our F# implementation and
thus demonstrates the efficiency of EP in appropriately structured factor graphs.

One of the key questions provoked by this work concerns the comparability of skill estimates
across different eras of chess history. Can we directly compare Fischer’s rating in 1972 with
Kasparov’s in 1991? Edwards [2] points out that we would not be able to detect any skill
improvement if two players of equal skill were to learn about a skill-improving breakthrough
in chess theory at the same time but would only play against each other. However, this
argument does not rule out the possibility that with more players and chess knowledge
flowing less perfectly the improvement may be detectable. After all, we do see a marked
improvement in the average skill of the top players.

In future work, we would like to address the issue of skill calibration across years further,
e.g., by introducing a latent variable for each year that serves as the prior for new players
joining the pool. Also, it would be interesting to model the effect of playing white rather
than black.
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