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ABSTRACT
Recommender systems are increasingly driving user experi-
ences on the Internet. This personalization is often achieved
through the factorization of a large but sparse observation
matrix of user-item feedback signals. In instances where
the user’s social network is known, its inclusion can signifi-
cantly improve recommendations for cold start users. There
are numerous ways in which the network can be incorpo-
rated into a probabilistic graphical model. We propose and
investigate two ways for including a social network, either as
a Markov Random Field that describes a user similarity in
the prior over user features, or an explicit model that treats
social links as observations. State of the art performance is
reported on the Flixster online social network dataset.

1. INTRODUCTION AND RELATED WORK
The Web has experienced explosive growth over the past

decade. Concurrent with the growth of the Web, recom-
mender systems have attracted increasing attention. Rec-
ommender systems aid users in selecting content that is most
relevant to their interests, and notable examples of popular
recommender systems are available for a variety of types of
online content, including movies [10], books [1], music [11],
and news [7].

Online social networks (OSNs), such as Facebook [2], Goo-
gle+ [6], and LinkedIn [8], have quickly become the fastest
growing part of the Web. For example, Facebook has grown
dramatically over the past three years, from 100 million
users in August 2008 [3] to 800 million users as of September
2011 [4]. This rapid growth in OSNs presents a substantial
opportunity for recommender systems that are able to e↵ec-
tively leverage OSN data for providing recommendations.

The task of a recommender system is to predict which
items will be of interest to a particular user. Recommender
systems are generally implemented using one of two ap-
proaches: content filtering and collaborative filtering. The
content filtering approach builds profiles that describe both
users and items. For example, users may be described by
demographic information such as age and gender, and items
may be described by attributes such as genre, manufacturer,
and author. One popular example of content filtering is the
Music Genome Project [9] used by Pandora [11] to recom-
mend music.

Collaborative filtering is an alternative to content filter-
ing, and relies only on past user behavior without using ex-
plicit user and item profiles. Examples of past user behav-
ior include previous transactions, such as a user’s purchase
history, and users’ ratings on items. Collaborative filtering
learns about users and items based on the items that users

have rated and users that have rated similar items. A major
appeal of collaborative filtering systems is that they do not
require the creation of user and item profiles, which require
obtaining external information that may not be easy to col-
lect. As such, collaborative filtering systems can be easily
applied to a variety of domains, such as movies, music, etc.

There are two primary approaches to collaborative fil-
tering: neighborhood methods and latent factor models.
Neighborhood method involve computing relationships be-
tween items or between users. Item-based neighborhood ap-
proaches [13, 20, 29] predict a user’s rating for an item based
on ratings of similar items rated by the same user. User-
based neighborhood approaches [12, 18] predict a user’s rat-
ing for an item based on the ratings of similar users on the
item. Item-based and user-based approaches generally use
a similarity computation algorithm to compute a neighbor-
hood of similar items or users; examples of similarity algo-
rithms include the Pearson Correlation Coe�cient algorithm
and the Vector Space Similarity algorithm.

In contrast to neighborhood methods, latent factor mod-
els use an alternative approach that characterizes users and
items in terms of factors inferred from patterns in ratings
data. In the case of movies, the inferred factors might be a
measure of traits such as genre aspects (e.g., horror vs. com-
edy), the extent to which a movie is appealing to females,
etc. For users, each factor indicates the extent to which a
user likes items that have high scores on the corresponding
item factors.

Some of the most successful recommender systems that
use latent factor models are based on matrix factorization
approaches [26, 27, 28, 30]. As described in Section 3, ma-
trix factorization models learn a mapping of users and items
to a join latent feature/factor trait space of dimensionality
K. User-item interactions are modeled as inner products in
this trait space. The inner product between each user and
item feature vector captures the user’s overall interest in the
item’s traits.

Traditionally, most recommender systems have not con-
sidered the relationships between users in social networks.
More recently, however, a number of approaches to social-
based recommender systems have been proposed and evalu-
ated. Most OSN-based approaches assume a social network
among users and make recommendations for a user based
on the ratings of users that have social connections to the
specified user.

Several neighborhood-based approaches to recommenda-
tion in OSNs have been proposed [24, 16, 15, 32]. These ap-
proaches generally explore the social network and compute
a neighborhood of users trusted by a specified user. Using
this neighbor, these systems provide recommendations by



aggregating the ratings of users in this trust neighborhood.
Since these systems require exploration of the social net-
work, these approaches tend to be slower than social-based
latent factor models when computing predictions.

Some latent factor models for social-based recommenda-
tion have also been proposed [21, 22, 23, 17, 31]. These
methods use matrix factorization to learn latent features for
user and items from the observed ratings and from users’
friends (neighbors) in the social network. Experimental re-
sults show better performance than neighborhood-based ap-
proaches.

In this work we present two matrix factorization models
for recommendation in social networks. We represent each
user and item by a vector of features. We model the social
network as a undirected graph with binary friendship links
between users. Such a model is the common case for most
OSNs. Our work makes the following contributions:

• We propose two models that incorporate the social net-
work into a Bayesian framework for matrix factoriza-
tion. The first model, called Edge MRF, places the
social network in the prior distribution. The second,
called the Social Likelihood model, places the social
network in the likelihood function. To the best of our
knowledge, these are some of the first fully Bayesian
matrix factorization models for recommendation in so-
cial networks.

• We perform experiments on a large scale, real world
dataset obtained from the Flixster.com social network.

• We report state of the art predictive performance for
the Social Likelihood model for cold start users.

• Based on our experimental results, we conclude that
the Social Likelihood model is better for cold start
users than placing the social network in the prior. The
Social Likelihood model performs better in higher di-
mensions than the social prior alternatives, because
the former relies on the same inner product structure
that is used to predict ratings.

The rest of the paper is organized as follows. We present
the probabilistic models and algorithms for inference in Sec-
tion 3. Section 4 presents an evaluation of our models using
the Flixster data set. Finally, Section 5 concludes the paper
and discusses some potential future work.

2. SOCIAL LINKS
For any given social network S with links (i, i0) 2 S be-

tween users i and i

0 in a system, we aim to encode the sim-
ilarity between the users’ latent feature or taste vectors u

i

and u
i

0 2 RK in a number of ways:

1. For each link, we define an “edge” energy
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which we incorporate into a Markov Random Field
(MRF) prior distribution p(U) over all user features.
Furthermore, we may not know the connection strength
⌧

ii

0 , and wish to infer that from user ratings; in other
words, for users with dissimilar tastes we hope that ⌧

ii

0

is negligible.

2. The links can be treated as explicit observations: de-
fine `

ii

0 = 1 if (i, i0) 2 S, and `

ii

0 = �1 otherwise. The
system can treat `
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0 as observations with
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where �(z) =
R

x

�1 N (x; 0, 1) dx is the cumulative Nor-
mal distribution. This likelihood is akin to a linear
classification model, where an angle of less than 90�

between u
i

and u
i

0 gives likelihood greater than a half
for the discrete value of `

ii

0 .

3. Let S(i) = {i0 : (i, i0) 2 S} be the set of neighbors for
user i. Jamali and Ester [17] use an energy
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in the prior, which can also be folded into an MRF.
The user feature is a priori expected to lie inside the
convex hull of its neighbors’ feature vectors.

3. PROBABILISTIC MODELS
We observe a user i’s feedback on item j, which we denote

by r

ij

2 R. Similar to the users, we let each item have a
latent feature v

j

2 RK . Their combination produces the
observed rating with noise,
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We furthermore define E(u
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k2/2, giving a Normal prior distribution on V as
p(V) =

Q
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v

I). In the “Social Likelihood”
model the prior p(U) would take the same form. However,
in the MRF models we encode S in the prior with either
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for the “Edge MRF”model or

p(U) / exp

"
X

i

E(u
i

) + E(u
i

,U)

#
(6)

for the“Average Neighbor”model. Both of these priors leave
any user u

i

|U\i to be conditionally Gaussian (read \ as with-
out), and can easily be treated with Gibbs sampling.

We now observe a sparse matrix R with entries r

ij

, and
consider the models, and the conditional distributions of
their random variables. The models under consideration are:

3.1 Baseline
Rating data in collaborative filtering systems generally

exhibit large user and item e↵ects that are independent of
user-item interactions [19] expressed in the baseline model.
For example, some users tend to give higher ratings than
others, and some items tend to receive higher ratings than
others. We model these e↵ects with user and item biases,
b
u

and b
v

, respectively. With these biases, the conditional
distribution for observed ratings becomes

p(r
ij

|u
i

, v
j

, b

i

, b

j

) = N (r
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; uT

i

v
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+ b

i

+ b

j

, �

�1) . (7)

where b

i

is the bias for each user and b

j

is the bias for each
item. We place flexible hyperpriors on the precisions for user
and item biases, denoted by ↵

bu

and ↵

bv

.
The baseline model depends on the settings �, ↵

u

, ↵

v

,
↵

bu

, and ↵

bv

, and ignores the social network and any of the
additions to the model that were described in Section 2. As
the � and ↵’s are unknown, we place a flexible hyperprior –
a conjugate Gamma distribution – on each, for example
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Figure 1: Graphical model for baseline
model.
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Figure 2: Graphical model for Social Likelihood model. Bi-
ases are omitted in this graphical model for clarity.

Figure 1 shows the graphical model for the baseline matrix
factorization model.

Inference for all the models will be done through Gibbs
sampling [14], which sequentially samples from the condi-
tional distributions in a graphical model. The samples pro-
duced from the arising Markov chain are from the required
posterior distribution if the chain is aperiodic and irreducible.

If we denote the entire set of baseline random variables
with ✓ = {U,V,b

u

,b
v
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u
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}, then samples
for u
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We’ve defined R(i) as the set of items j rated by user i. A
similarly symmetric conditional distribution holds for each
v
j

.
The conditional distribution b

i
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bias

\bi
⇠ N (b

i

; µ
i

, �

2

i

) is

µ

i

= �

2

i

2

4
�

X

j2R(i)

(r
ij

� (uT

i

v
j

+ b

j

))

3

5

�

2

i

=

0

@
↵

bu

+
X

j2R(i)

�

1

A
�1

(9)

A similar conditional distribution holds for each b

j

.
Due to the conveniently conjugate prior on ↵

u

, its condi-
tional distribution is also a Gamma density,
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U is defined as the set of all users. A similarly symmetric
conditional distribution holds for ↵

v

.
The conditional distribution used for sampling ↵

bu

is
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A similarly symmetric conditional distribution holds for ↵
bv

.
Finally, we draw samples for � from
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We’ve defined R as the set of all ratings.
Algorithm 1 gives a pseudo-algorithm for sampling from

✓|R.
The predicted rating r̂

ij

for any user and item can be
determined by averaging Equation (4) over the parameter
posterior p(✓|R). If samples ✓

(t) are simulated from the
posterior distribution, this average is approximated with the
Markov chain Monte Carlo (MCMC) estimate

r̂

ij

=
1
T

X

t

(u(t)T

i

v
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i

+ b
(t)

i

+ b
(t)

j

) .

3.2 Edge MRF
The Edge MRF model uses the prior in (5), which addi-

tionally depends on the setting of ⌧
ii

0 for all (i, i0) 2 S. If
the ⌧

ii

0 parameters are flexible, we hope to infer that the
similarity connection between two users with vastly di↵er-
ent ratings should be negligible, while correlations in very
similar users should be reflected in a higher ⌧

ii

0 connection
between them.

We extend the set of random variables to ✓

edge = {✓, ⌧}.
Due to ⌧

ii

0 now appearing in u
i

’s Markov blanket in Figure 3,
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Figure 3: Graphical model for Edge MRF model. Bi-
ases are omitted in this graphical model for clarity.
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model. Biases are omitted in this graphical model
for clarity.
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There is an interplay in µ
i

above, where u
i

is a combination
of his neighbors u

i

0 , and items rated v
j

.
By placing a flexible Gamma prior independently on each
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0 , we can infer each individually with
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3.3 Social Likelihood
Instead of embedding S in the prior distribution, we can

treat it as observations that need to be modeled together
with R. To adjust for the fact that there might be an
imbalance between the two observations (for example, |S|
might be much larger than the number of observed ratings)
we introduce an additional knob s > 0 in the likelihood.
When the graphical model only needs to explain observa-
tions `

ii

0 = 1, the inclusion of S shouldn’t outweigh any
evidence provided by the user ratings. Hence
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The e↵ect of the likelihood is that u
i

and u
i

0 should lie on
the same side of a hyperplane perpendicular to either, like
a linear classification model.

We extend the set of random variables to ✓

sl = {✓,H}.
H is a set of latent variables that make sampling from the
likelihood possible, and contains an h

ii

0 = suT

i

u
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0 + ✏ with
✏ ⇠ N (0, 1). We give its updates in the Appendix.

Again, the conditional distribution of u
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will adapt ac-
cording to the additions in the graphical model, shown in
Figure 2. u
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The Social Likelihood model di↵ers from both the Edge
MRF and Average Neighbor models through real-valued la-
tent variables h

ii

0 . If we compare (16) to (13) and (17), we
notice that u

i

is no longer required to be a positive combi-
nation of its neighbors u

i

0 . Indeed, if u
i

and u
i

0 continu-
ally give opposite ratings to items, h

ii

0 would be negative.
When we compare µ

i

in Equation 16 with that of the Edge
MRF model (Equation 13), we see that the Social Likeli-
hood model places neighboring users that are similar to each
other in the trait (latent feature) space on the same prefer-
ence cone/hyperplane in this space, since the h

ii

0 term in µ
i

is computed using the inner product between a user’s fea-
ture vector and his neighbor’s feature vector. In contrast,
the Edge MRF model places neighboring users close to each
other based on the Euclidean distance between their feature
vectors, as we see from Equation 1. As we will observe from
the experimental results in Section 4.3, this distinction be-
tween these models has an important impact on predictive
performance.

3.4 Average Neighbor
An alternative to specifying a “spring” between the u

i

’s is
to constrain each user’s latent trait to be an average of those
of his friends [17]. The maximum likelihood framework by
Jamali and Ester [17] easily slots into the Gibbs sampler in
Algorithm 1 by using the energy function (3) in the user
prior (6). We add a fixed tunable scale parameter, ⌧

J

> 0,
to the prior as shown in Figure 4, and extend the parameters



Algorithm 1 Gibbs sampling

1: initialize U, V, b
u

, b
v

, �, ↵
u

, ↵
v

, ↵
bu

, ↵
bv

2: if edge mrf then
3: initialize ⌧

ii

0 for all (i, i0) 2 S
4: end if
5: // gibbs sampling
6: repeat
7: for items j = 1, . . . , J in random order do
8: sample v

j

, similar to (8)
9: sample b

j

, similar to (9)
10: end for
11: for users i = 1, . . . , I in random order do
12: if baseline then
13: sample u

i

according to (8)
14: sample b

i

according to (9)
15: else if edge mrf then
16: sample ⌧

ii

0 for each i

0 2 S(i) according to (14)
17: sample u

i

according to (13)
18: else if social likelihood then
19: sample h

ii

0 for each i

0 2 S(i) according to the
Appendix

20: sample u
i

according to (16)
21: else
22: // average neighbor
23: sample u

i

according to (17)
24: end if
25: end for
26: sample ↵

u

according to (10)
27: sample ↵

v

similar to (10)
28: sample ↵

bu

according to (11)
29: sample ↵

bv

similar to (11)
30: sample � according to (12)
31: until su�cient samples have been taken
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We do not sample for ⌧

J

because there is no closed-form
expression for the conditional density on ⌧

J

. Therefore, be-
cause of the di�culty of sampling from this conditional den-
sity, we treat ⌧

J

as a tunable fixed parameter.
The Average Neighbor model di↵ers from the Edge MRF

model in that each user’s feature vector is constrained to
be the average of the feature vector of his neighbors. This
di↵erence is apparent when comparing the first term of µ

i

in Equation 17 and Equation 13. By constraining the user’s
feature vector to the average of his neighbors, we allow for
less flexibility in learning the user’s feature vector as com-
pared to the flexible, independent ⌧

ii

0 for each of the user’s
social links. In the Average Neighbor model, each of a user’s
neighbors contributes equally to the user’s feature vector,
while in the Edge MRF model, the extent of each neighbor’s
contribution varies based on the similarity between the user
and neighbor as expressed by ⌧

ii

0 .

4. EVALUATION
We evaluated the four models described in Section 3 by

evaluating their predictive performance on a publicly avail-

Metric Flixster
Users 1M

Social Links 5.8M
Ratings 8.2M
Items 49K

Users with Rating 130K
Users with Friend 790K

Table 1: General metrics for the Flixster data set

able data set obtained from the Flixster.com social network-
ing Web site [5]. In this section we describe the Flixster data
set, our experimental setup, and the results of our perfor-
mance experiments.

4.1 Flixster Data Set
Flixster is an online social network (OSN) that allows

users to rate movies, share movie ratings, discover new movies,
and add other users as friends. Each movie rating in Flixster
is a discrete value in the range [0.5, 5] with a step size of
0.5, so there are ten possible rating values (0.5, 1.0, 1.5,
. . . ). To our knowledge, the Flixster data set we use is the
largest publicly available OSN data set that contains nu-
meric ratings for items. We show some general metrics for
the Flixster dataset in table 1.

4.2 Experimental Setup
The metric we use to evaluate predictive performance is

root mean square error (RMSE), which is defined as

RMSE =

sP
(i,j)

(r
i,j

� r

0
i,j

)2

n

(18)

where r

i,j

is the actual rating for user i and item j from the
test set, r

0
i,j

is the predicted rating, and n is the number
of ratings in the test set. We randomly select 80% of the
Flixster data as the training set and the remaining as the
test set.

In all of our experiments, we place flexible priors on the
↵’s and � in our models by setting a

u0

= a

v0

=
p
K, b

u0

=
b

v0

= b

bu0

= b

bv0

= 1, a
bu0

= a

bv0

= 2, and a

�0

= b

�0

=
1.5. For the Edge MRF model, we place a flexible prior on
each ⌧

ii

0 by setting a

⌧0

= b

⌧0

= 0.15. We set s = 1 for
the Social Likelihood model and ⌧

J

= 1 for the Average
Neighbor model in all experiments, except where s and ⌧

J

are adjusted between a range of 0.001 and 1000 as stated
below.

We run the Gibbs samplers for all of our experiments with
a burn-in of 50 update samples of all parameters and 300
samples after burn-in. During the post burn-in period of
300 samples, we collect samples for all parameters and com-
pute updated predictions based on each sample. Figure 5
shows RMSE as the number of samples increases for each
model. The Gibbs samplers converge quickly, and after ob-
taining 200-250 samples, the predictive performance does
not significantly improve.

4.3 Experimental Results
Table 2 shows the RMSE values for all of our models

for di↵erent settings of the latent factor dimensionality pa-
rameter K. We see that predictive performance generally
improves (i.e., RMSE decreases) as K is increased, as ex-
pected. Notice that predictive performance is relatively close
amongst all models for K = 5, to within 0.29%, while the
performance delta increases to 0.76% for K = 20. This may
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Figure 5: RMSE for models as a function of the
number of samples included in the estimate, after
burn-in.

Model K = 5 K = 10 K = 20
Baseline 0.8590 0.8468 0.8433

Edge MRF 0.8593 0.8458 0.8381
Average Neighbor 0.8581 0.8423 0.8369
Social Likelihood 0.8568 0.8442 0.8380

Table 2: RMSE for models with di↵erent settings of
dimensionality K

indicate that the social-based models are able to more e↵ec-
tively exploit social network signals as the number of model
parameters increases, which is not possible for the baseline
model with no consideration of the social network.

Next, we examine the predictive performance of our mod-
els for cold start users. We define cold start users as users
who have rated five movies or less in the training set. For
the Flixster data set approximately 40% of users with rat-
ings are cold start users, so predictive performance on cold
start users is quite important.

Table 3 shows the RMSE values for our models for cold
start users. Notice that for the baseline model, predictive
performance worsens as K is increased. In contrast, the
other models provide approximately the same or improved
predictive performance as model complexity grows. Based
on these results, we see that for cold start users, the Social
Likelihood model provides the best predictive performance
of the models that we considered, and that all of the so-
cial models outperform the baseline model. Furthermore,
compared to the baseline model, we conclude that the Edge
MRF and Average Neighbor models place a more e↵ective
prior distribution on the model parameters by considering
the social network. However, these models are outperformed
by the Social Likelihood model, which is able to e↵ectively
model the social network as observations using the inner
product similarity between neighbors. Figures 7, 8, and 9
reveal that the performance di↵erences between models tend
to be minimized as the number of observed ratings per user
increases.

Figure 6 shows that the Social Likelihood model outper-
forms the other models for users with few ratings (10 or
less ratings). As the number of ratings increases, the pre-

Model K = 5 K = 10 K = 20
Baseline 1.1205 1.14407 1.2180

Edge MRF 1.1424 1.0970 1.0984
Average Neighbor 1.0814 1.0721 1.0662
Social Likelihood 1.0569 1.0583 1.0563

Table 3: RMSE for cold start users for models with
di↵erent settings of dimensionality K

dictive performance of all models converges. Based on the
results presented in Table 3 and Figure 6, we conclude that
for cold start users, the Social Likelihood model is able to
leverage the social network more e↵ectively than the other
models we considered. For users with more ratings, the so-
cial network appears to have little to no impact on predictive
performance.

Recall that the s parameter controls the influence of the
social network in the Social Likelihood model. Larger values
of s cause the social network to have more influence on the
learned latent feature vectors for users, while smaller values
of s cause the social network to have less impact. Figure 10
compares the predictive performance of the Social Likeli-
hood model for di↵erent values of s for users with few (0-5),
more (40-80), and many ratings (320-640). These results
show that s has little impact on predictive performance for
users with more ratings. However, for cold start users with
0-5 ratings, s has a significant impact on predictive perfor-
mance. For these users, the optimal value of s appears to
be approximately 1. These findings regarding the impact
of s on cold start users vs. users with more ratings are in
agreement with our other results. Therefore, we conclude
that the social network has a significant impact on predic-
tive performance only for cold start users.

In the Average Neighbor model, the ⌧
J

parameter controls
the influence of the social network. Figure 11 compares the
predictive performance of the Average Neighbor model for
di↵erent values of ⌧

J

for users with few (0-5), more (40-80),
and many ratings (320-640). These results show that ⌧

J

has
little impact on predictive performance for users with more
ratings. However, for cold start users with 0-5 ratings, ⌧

J

has
a significant impact on predictive performance. For these
users, the optimal value of ⌧

J

appears to be approximately
1. These results are similar to the findings for the impact of
the s parameter in the Social Likelihood model, and provide
further evidence that the social network has a significant
impact on predictive performance only for cold start users.

In Figure 12, we examine how predictive performance of
the Social Likelihood model changes with the number of
observed friends (neighbors) per user, for users with few (0-
20), more (60-160), and many (200 or more) friends. We
see that predictive performance for cold start users is best
when these users have many friends. When the number of
observed ratings per user exceeds 320 ratings, we see that the
predictive performance is worst for users with many friends.
Therefore, we conclude that for a user with many ratings
and many friends, when we consider this user’s observed
ratings and social network, the observed ratings data can be
a better indicator of the user’s preferences.

5. CONCLUSIONS
In this work we have proposed and investigated two novel

models for including a social network in a Bayesian frame-
work for recommendation using matrix factorization. The
first model, which we call the Edge MRF model, places the
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Figure 6: Performance of models, where users are
grouped by the number of observed ratings in the
training data. These results were obtained using K =
5 models.
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Figure 7: Performance of baseline models, where
users are grouped by the number of observed ratings
in the training data. These results were obtained us-
ing K = 5, 10, and 20 models.
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Figure 8: Performance of Edge MRF and Average
Neighbor models, where users are grouped by the
number of observed ratings in the training data.
These results were obtained using K = 5, 10, and
20 models.
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Figure 12: Impact of the number of observed friends
per user on the predictive performance for users
with few (0-20), more (60-160), and many (200 or
more) friends. In addition to the number of friends,
users are grouped by the number of observed ratings
in the training data. Results were obtaining using
the Social Likelihood model with K = 5.

social network in the prior distribution over user features as
a Markov Random Field that describes user similarity. The
second model, called the Social Likelihood model, treats so-
cial links as observations and places the social network in the
likelihood function. We evaluate both models using a large
scale dataset collected from the Flixster online social net-
work. Experimental results indicate that while both models
perform well, the Social Likelihood model outperforms ex-
isting methods for recommendation in social networks when
considering cold start users who have rated few items.
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APPENDIX
Let µ = suT

i

u
i

0 denote the inner product in (15), where

�(`
ii

0 µ) =

Z
⇥(`

ii

0 h
ii

0 )N (h
ii

0 ;µ, 1) dh
ii

0

arises from marginalizing out latent variable h

ii

0 from the joint
density

p(`
ii

0 |h
ii

0 )p(h
ii

0 |µ) = ⇥(`
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0 h
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0 )N (h
ii

0 ;µ, 1) .

The step function ⇥(x) is one when its argument is nonneg-
ative, and zero otherwise. We wish to sample from the den-
sity p(h

ii

0 |`
ii

0 , µ) to use in (16). We do so by first defining
�

max

= 1 and �
min

= �(�µ) if `

ii

0 = 1; alternatively, we set
�

max

= �(�µ) and �
min

= 0 if `

ii

0 = �1. We then sample
u ⇠ U(�

max

��
min

), where U(·) gives a uniform random number
between zero and its argument.

A sample for h

ii

0 is obtained through the transformation

h

ii

0 = µ+ ��1(�
min

+ u) .

Care should be taken with the numeric stability of ��1 when its
arguments are asymptotically close to zero or one; see [25] for
further details.


